U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 1, 2025 ISSN 1223-7027

NEW VISCOSITY ALGORITHM WITH STRONG CONVERGENCE FOR
QUASIMONOTONE VARIATIONAL INEQUALITIES

Duong Viet Thong®"

This paper investigates quasimonotone and Lipschitz continuous variational
inequalities in real Hilbert spaces. To address this problem, we propose a mew iterative
algorithm for finding an element of the solution set of the quasimonotone variational
inequality problem. Our approach combines techniques from the inertial modified subgra-
dient extragradient algorithm and the viscosity approximation method. Using a new self
adaptive stepsize, we establish a strong convergence theorem for the sequence generated
by the proposed algorithm under appropriate conditions. The results presented in this
work improve upon and generalize some recent findings in this area.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be
a nonempty, closed and convex subset of H. Let F': H — H be a single-valued mapping.

We study the classical variational inequality (VI) as formulated by Fichera [I8] and
Stampacchia [32] (see also Kinderlehrer and Stampacchia [24]) which is: Find a point «* € C
such that

(Fz*,x — ™) > 0,Vz € C. (1)

The solution set of VI is denoted by S.
The dual variational inequality of VI is to find z* € C such that

(Fr,x —x*) > 0,Vx € C.

We denote the solution set of the dual VI by Sp. Sp is clearly a closed convex set
(possibly empty). When F is continuous and C is convex, Sp C S. If F' is pseudomonotone
and continuous, then S = Sp (see, Lemma 2.1 in [13]). The inclusion S C Sp is false if F
is quasimonotone and continuous (see, Example 4.2 in [39]).

We also use St and Sy for the trivial and nontrivial solution sets of VI; that is,

Sy ={a* € C|(Fz*,z —z*) = 0,Va € C},

Sn = S\Sr.
We assume that the following conditions hold:

Condition 1.1. Sp # 0.
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Condition 1.2. The mapping F : H — H is L-Lipschitz continuous on H. However, the
information of L is not necessary to be known.

Condition 1.3. The mapping F is sequentially weakly continuous on C, i.e., for each
sequence {x,} C C : {x,} converges weakly to =* implies {Fx,} converges weakly to Fz*.

Condition 1.4. The mapping F' is quasimonotone on H.

Variational inequality (VI) is a very general mathematical model with numerous ap-
plications in fields like economics, engineering, transportation, and more (see [11 [7], [0} [T'7, [24],
29]). Over the past decades, many algorithms have been developed for solving VIs, including
extragradient methods [20], projection and contraction techniques [8] 20} [33], and various
splitting methods [36].

Korpelevich [26] (independently of Antipin [4]) introduced the extragradient method
for solving monotone variational inequalities, which requires two projections onto the feasible
set per iteration. An important extension is the subgradient extragradient method proposed
by Censor et al. [10, 1T, [12], where the second projection is replaced by one onto a half-space
containing the feasible set. Since half-space projections have an explicit form, this reduces
computational complexity compared to the extragradient method. Recently, approaches
combining the advantages of projection contraction methods [20] [33] and the subgradient
extragradient method have been studied [14] [15] 30, [36].

We now discuss an inertial-type algorithm based on a discrete version of a second-order
dissipative dynamical system [5] [6]. This approach can be viewed as a procedure for accel-
erating convergence, as discussed in [3, 29]and references therein. Recently, several authors
have studied inertial methods when the operator F' is quasimonotone (or non-monotone), see
[2, 211, 22], 28] [37] B8], [39] and references therein. These works analyze the convergence prop-
erties of inertial-type algorithms and demonstrate their numerical performance on various
imaging and data analysis problems.

To the best of the authors’ knowledge, the study of strong convergence for solving
quasimonotone variational inequalities in the Hilbert space setting remains unexplored. This
motivates the following research question: Can we establish strong convergence results for an
inertial subgradient extragradient method to solve quasimonotone variational inequalities?

Motivated by the existing literature, this paper aims to address the aforementioned re-
search question. Specifically, we introduce a new inertial subgradient extragradient method
for finding an element in the solution set of a quasimonotone, Lipschitz-continuous varia-
tional inequality problem.

The first proposed iterative method combines two well-established techniques: the
inertial modified subgradient extragradient method [I5, [35] and the viscosity approxima-
tion method [27]. Our proposed algorithm computes only one projection onto the closed
convex set C' per iteration and employ self-adaptive step sizes to approximate a solution of
the quasimonotone variational inequality problem. Moreover, we use a novel self adaptive
stepsize which may increase a positive value and has never been used in literature before.
This approach represents a novel and state-of-the-art contribution to the study of inertial
extragradient methods for solving variational inequality problems.

In Section [2| we provide some standard definitions and preliminary concepts. We
then introduce our proposed algorithm and establish the strong convergence of the iterative
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sequence to a solution of the considered variational inequality in Section Finally, we
present our conclusions in Section

2. Preliminaries

The weak convergence of {z,} to x is denoted by x,, — = as n — oo, while the strong
convergence of {z,} to x is written as x,, — x as n — oo. For each x,y € H, we have
lz +yll* < llll* + 2{y, 2 + v). (2)

For every point 2 € H, there exists a unique nearest point in C, denoted by Pc(z)
such that ||z — Po(2)|| < ||z —y|| Yy € C. Pc is called the metric projection of H onto C.
It is known that Po is nonexpansive. For properties of the metric projection, the interested
reader could be referred to [19, Section 3].

We need to recall the following results and properties, which are useful for the later
convergence analysis.

Lemma 2.1. ([I9]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Given x € H and z € C. Then z = Po(z) <= (x — 2,2 —y) > 0 Vy € C. Moreover,

|Po(x) — Pe(y)l® < (Po(z) — Poly), —y) Yo,y € C.
Definition 2.1. ([9]) Let F': H — H be a mapping. Then the mapping F is said to be:
(1) L-Lipschitz continuous with L > 0 if
[F(z) = F(y)ll < Lljz —yl| Yo,y € H.
(2) monotone if
(F(z) = F(y),r—y) >0 Va,y € H.

(3) pseudomonotone in the sense of Karamardian [23] if

(F(z),y —x) 2 0= (F(y),y —x) 20 Va,y € H.
(4) quasimonotone, if

(F(z),y—2x)>0= (F(y),y —x) >0 Va,y € H.
(5) d0-strongly pseudomonotone if there exists a constant 6 > 0 such that

(F(z),2 —y) 2 0= (F(y),x —y) > d||lz —y|* Va,y € H.

(6) sequentially weakly continuous if, for each sequence {x,} in H, {x,} converges weakly

to a point x € H implies {F(x,)} converges weakly to F(x).

It is easy to see that every (2) = (3) = (4) but the converse is not true.
The following lemma provides some sufficient conditions for nonemptiness of Sp.

Lemma 2.2. ([39]) If either

(1) F is pseudomonotone on C' and S # 0,

(2) F is the gradient of G, where G is a differential quasiconvex function on an open set
K,C C K and attains its global minimum on C,

(3) F is quasi-monotone on C, F # 0 on C and C is bounded,

(4) F is quasi-monotone on C, F # 0 on C and there exists a positive number r such
that, for every v € C with ||v|]| > r, there exists y € C such that ||y|| < r and
(F(v),y—v) <0,

(5) F is quasimonotone on C and Sy # 0,
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(6) F is quasi-monotone on C, intC is nonempty and there exists v* € S such that
F(v*) #0.
Then, Sp is nonempty.
Lemma 2.3. ([34]) Let {a,} and {b,} be sequences of nonnegative real numbers satisfying
the inequality
Ap+1 < an + bn

If :z b, < 00, then lim, .o a, exists.
Lemma 2.4. ([31]) Let {a,} be sequence of nonnegative real numbers, {ay} be a sequence of

real numbers in (0,1) with Yo" | a, = o0 and {b,} be a sequence of real numbers. Assume
that

apy1 < (1 - an)an + 057zbn7 Vn > 1,
If limsupy,_, o bn, < 0 for every subsequence {an,} of {an} satisfying iminfy_ oo (an, +1 —

Gp,,) > 0 then lim, o a, = 0.

3. Main results

We now introduce a novel modified extragradient method to solve quasimonotone
variational inequalities. The proposed iterative algorithm takes the following form:

Algorithm 3.1.

Initialization: Let f : H — H be a contraction mapping with contraction parameter
k € [0,1). Given a,71 > 0 and {0,} is a nonnegative real numbers sequence such that
>0 1 0n < +00. Let so,s1 € H be arbitrary. We assume that {8,},{e,} are two positive

;l = 0, where {B,} C (0,1) satisfies the

sequences such that €, = o(8,), means lim,

following conditions:
o0
n=1
Iterative Steps: Given the current iterate s,, calculate s,41 as follows:

Step 1. Compute

Wy = Sp + an(sn - Sn—l)

and
vp = Po(wn, — T Fwy,),
where .
min{a, ————}  if $p # Sn_1,
oy = l[sn = sn—1]| (3)
« otherwise,

If wy, = v, or Fw, =0 then stop and w, is a solution of . Otherwise go to Step 2.
Step 2. Compute
Zn = PTn (wn - "YTnnann)v
where
Tn :{xEH | <wnanFwn7Un7mfvn> SO}’
(W — v, Ay)
" fA, #0,
o = 1An]?
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and
Ay = wy, — vy — T (Fw, — Foy,).

Step 3. Compute
Spn+1 = (1 - 5n)zn + ﬁf(zn)

Update
lwn = vnll

miny y—————— (146, Tn} if Fw, # Fuy,,
Tn+l 1= { HFwn - Fvn” ( )

(1+0n)7 otherwise.
Set n:=n+1 and go to Step 1.

Remark 3.1. 1. From , the definition of {ay,} we have lim,,_, 4 %Hsn — Sp-1]| =0

Bn

We start the convergence analysis by proving the following lemma.

Lemma 3.1. Assume that F is L-Lipschitz continuous on H. Let {r,} be the sequence
generated by . Then
lim 7, =7 with T > min{ﬁ,ﬁ} .
n—o0 L
Moreover u
[Fwn = Fop|| £ ——|lwn — vn. (5)
Tn+1

Proof. First, we prove that lim,,_,, 7,, exists. Indeed, we show that [ 2 (1 +6,) < +oc.
We have

k
H 1 + 9 elnHﬁzl(H@n) —e K In(1+0,)
n=1

Sezz "<eZ"19“—e < 400,

where 6 := 327 6,,. Letting k — 400 we get [[°°, (1 +6,,) < +oc. On the other hand, we
have
Tn+1 S (1 + en)an S (1 + Tn)(l + en—l)Tn—l
S .. < (1 + 0 )(1 + 9n71)<1 + 91)7'1

g]’[ (1+0,)7 <e’r =M, ¥n.

This implies that 7,41 = (1+6, )Tn <7, + M¥,. Appling Lemma. we obtain lim,, . 7,
exists. Now, we prove that
T, > min {%,ﬁ} Vn.
Indeed, from F' is L-Lipschitz continuous on H we get
|[Fwn = Fyn| < Lllwn — yn]-
If Fwy # Fy, then
e — gl _ g

[Fw: — Fya|| — L

By the definition of {r,}, we get 75 > min{%,7}. If Fws = Fy, then we get » =

(14 61)m > 1. Therefore, in both cases, we get

Ty > min{%,ﬁ}.
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Employing mathematical induction, we now see that 7, > min{#,7;} for all n > 1. The
proof is completed. O

Remark 3.2. It should emphasize here that the sequence {1,} generated by is new and
different from [28].

Next, we need the following lemma as the key to our results.

Lemma 3.2. [16] Assume that Conditions and the mapping F' is quasimonotone on
H. Let {w,} be a sequence generated by Algorithm . If there exists a subsequence {wy, }
convergent weakly to z € H and limg_yo0 || Wy, — vp, || =0, then z € Sp or Fz = 0.

Theorem 3.1. Assume that Conditions hold and Fx # 0 Vx € C then the sequence
{sn} is generated by Algorithm converges strongly to an element p € Sp C S, where

p:PSDOf(p)‘

Remark 3.3. Frist, we note that Ps,, o f is contraction mapping, hence there exists unique
p such that p = Pg,, o f(p).

Proof. Claim 1.
120 = plI* < lwn = pII* = lwn = 20 = YAl = 2 =yl Anl® ¥n >0, (6)
Using , we have
1AL = llwn = vn = T (Fw, — Fo,)]|
> |wn = vall = Tl Fwn — Fo,||

HTn

n+1

HTn
=(1- Wy, — Un |- 7
(1= 22 ) oo = g

n

> |lwn — vn|| = l|wn — vnl|

HTn

Tn+1

Since lim,,— oo (1 — ) =1—pu > 0, there exists ng € N such that

HTn
Tn+1
It follows from that for all n > ng we get

1—
1 >T'u Vn > ng.

L—p
1An]l 2 —=lwn = vall > 0. (8)
Since z* € Sp € C C Ty, using Lemma [2.I] we have

l|2n — :L'*||2 =[|Pr, (wn — Y1 Tn Fon) — PTnx*||2

S<Zn - £L'*,wn - ’YnnTnF'Un - ‘T*>
1 * (|12 1 * (|2 1 2
=520 = 2" " + 5llwn = yaTn Fvn = 2"* = Sll20 — wn + Y0070 Fon|

1
+ *727727%”1?1%“2 — (wn — 2", YN T Fop)

* (12
2+

1
=320 = 2| + 5 llwa
ERJEN

- 7”2” - w’ﬂH2 2’727777,7—7%”}7[071”2 - <Zn - wna’ynnTnF’Un>

1 . 1 . 1 .
25”271 -z ”2 + §||wn -z ||2 - inn - wn”2 — (20 — 2", YT Fop).
This implies that

20 = 21 < llwn — 22 = 120 — wall2 = 2ymaTa(zn — a*, Fon). (9)
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Since v, € C and z* € Sp, we get (Fv,, v, —z*) > 0, which implies
(Fop,zn — x%) = (Fup, 2, — Un) + (F0n, 0 — &%) > (Fop, 2, — Un).
Thus, we obtain
29N T (FVp, 25, — %) < =290, T (FUn, 25 — p). (10)
On the other hand, from z, € T,, we have
(wp, — T Fwy, — Uny 2n, — vg) < 0.
This implies that

(wWn, — vy — T (Fwy — Fuy), 2, — Un) < T (Fog, 2, — Up),

thus
(An, zn — ) < Tp(Fop, 2n — Up).
Hence
29N T {F U, 2n — V) < =290 (A, 25 — Up). (11)
On the other hand, we have
_2777n<An7 Zn — vn> = _27nn<An7 Wp — Un> + 2’7"7n<An7 Wy, — Zn> (12)
n — Un, An .
From , we have A, #0 Vn > ng, thus n, = (w”Av”2>7 which means
(Wy, — Uy, Ap) = || An|* Y0 > ng. (13)
Moreover
27"7n<Amwn —zZn) = 2<'777nAmwn — Zn)

= |jwn — Zn||2 + '727772L|‘An||2 — [lwn = 25 — 'WnAn”Q- (14)
Substituting and into we get for all n > ng that
=290 Ay 20 — V) < _2’)’77721|‘An”2 + [lwn — Zn||2 + '7277721||An||2 — lwn — 20 — ’mnAnHQ
l|wn — Zn||2 — lwn — 25 — ’YnnAn”Z —(2- ’Y)’W?iHAnHz- (15)
Combining and , we obtain
=290 T (Fon, 2n — vn) < _2'777721||An”2 + [Jwn, — Zn||2 + 72777%||An‘|2 — lwn — 2 — VnnAnHQ
= |jwn — Zn”z — [Jwn — 25 — ”YnnAnH2 -2~ ’Y)’Y”Z”AnHQ- (16)
Again, combining and , we get
29N T (F U, 2 — $*> < _2'7773||An”2 + ||wn - Zn||2 + '727772L||An||2 = |lwn — 2n — VnnAnHQ
= |Jwn — Zn||2 — lwn — 25 — ’YnnAn”Z -2~ V)FYUZHAHHQ- (17)
Substituting into @ we get
ll2n — x*H2 < fJwn — x*”Q — lwn — 20 — ’mnAnHQ —(2- ’7)777721||An”2 Vn > ng.

Claim 2.

()
1—
-
" lwn = val* < | Anll? Yn > no.

(2
Tn+1
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Indeed, we have

]
H&MSW%—vﬁ+ﬂJﬂ%—F%HS(L%””)Mm—%w
Tn+1

Hence
2
AT,
18002 < (14 272 o, = w,
Tn+1
or equivalently
1 S 1
A2~ 7 \2 '
" <1+ “") wn — v 2
Tn+1
Again, we find
<wn — Un, An> = Hwn - vn”Q - Tn<wn — Un, Fwn - F'Un>

> ||wy, — vn||2 — Tollwn — vall[| Fwn — Fo,||
HTn

n—+

.
_ (1 _ Hn ) l[wn — v 2.
Tn+1

T
Ml Anll? = (W — va, An) > (1 e > [wn, — v )2
Tn+1

> Hwn_vn”2_ ”wn_vnH2

Hence for all n > ng

and

1 HTn
<wn — Un, An> Tn+1

> .
||An||2 o <1+ HUTn >2

Tn+1

Tn =

Combining and (19), we get

2
KTn
1 Hn
2 < Tn+1> 2
[AL]" > 72Hwn —v,||* VYn > ng.
UTn
1+
( 7'n-~-1>

Claim 3. {s,} is bounded. Indeed, by Claim 1, we have

n

20 = ol < [lwn —p|  Yn > ny.

Moreover, by the definition of w, we get

lwn = pll = |lsn + an(sn — sn—1) = pl|
< s _pH + anlsn — SanH
«
= llsn =Pl + Bnz=l5n — sn1l-
Bn

o
By condition ﬁ—ann — Sp—1]| = 0, there exists a constant M; > 0 such that
n

o
—[8n — Sn_1]| < My Vn.
n

B

(20)

(21)
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Combining , and we obtain
lzn = pll < llwn = pll < llsn = pll + Bn M. (23)
From the definition of {s,} we get
[$n+1 = pll = 1Bnf(2n) + (1 = Bn)zn — pl
= [18n(f(zn) —p) + (1 = Bn)(zn — D)
< Bnllf (zn) = pll + (1 = Bn)ll2n — pll
< Bullf(zn) = (D) + Bullf(p) — pll + (1 = Bp)ll2n — pll
< Bnkllzn = pll + Bull £ (p) — pll + (1 = Bn)ll2n — pll
= (1= (1 =r)Bn)llzn —pll + Bullf(p) — pll- (24)
Substituting into we obtain
[sn1 = pll (1= (1= £)Bn)llsn = pll + BuMy + Bull £ (p) — pll

—(1 = (1= K)B)lsm — pll + (1 — r) B, LT 1/ (p) — pll

1-r
M+ | f(p) —pH}
1-k
My + 1) =l
1—k '
This implies {s,,} is bounded. We also get {z,},{f(2n)}, {wn} are bounded.
Claim 4.

[wn = 20 = Y00 Anl* + (2 = N | Anl® < llsn =PI = I5n41 = plI* + BuMa ¥n > no,
for some M, > 0. Indeed, we get
Isn+1 = ol <Ballf(za) = pII* + (1 = Ba)llzn — pII?
<Bu(llf(zn) = F®I + £ (0) = pID? + llz0 — 2l
<Bn(kllzn =l + 1f(p) = pID* + (1 = Bn)ll2n — pII?
<Bullzn = pll + 1) = pID* + (1 = Bu)llzn — pII?
=llzn = plI* + Ba(2llz0 — pllIl.f(P) = 2l + 1/ (2) — pII*)
<llzn = plI* + Bn Mo, (25)
for some My > 0. Substituting @ into we get
st =PI < llwon — 22 = 100 = 20— Vi Bal® = 2 = VIR IA? + Budla.  (26)
It implies from that
lwn = plI? < (ln — pll + B M1)?
= [lsn = plI* + Bu(2Mi |50 — pll + B M?)
< lsn = plI* + B2 Ms, (27)
for some M3 > 0. Combining and we obtain
Isns1 = DI < llsn — DI + BuMs — 1w — 20 — YnAall? = (2 = Py I All? + B M.
This implies that
J0n = 20 = A An 2 + 2 = 2B < 5w — pI2 = 541 — pI2 + B M,
where My := My + Ms3.

<max{|[s, —pl,

<... <max{||so — p|l,
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Claim 5.

801 = plI* <(1— (1 = &)Bn)llsn — plI”
2 3M «,,

1- n M on - 7 .o lon T °on— ’
+ (L= 8)n| 7= (P) =P suna p>+1_ﬁﬁn||8 Sn—1|
for some M > 0. Indeed, we have
[[wn —p||2 = |[$n + an(sn — Sn-1) _pH2

= llsn = plI* + 200 (80 — P, 50 — s0—1) + apllsn = sn—1?
< llsn = plI* + 20mllsn = pllllsn = sn—1ll + afllsn — sn—1]/*. (28)
Using we have
I$n+1 = pII* = [1Bnf (z0) + (1 = Ba)zn — p|?
= [1Ba(f(20) = F®)) + (1 = Bn) (20 — p) + Bu(f(p) — )2
S N1Ba(f(z0) = F®) + (1 = Bu) (20 = P)II* + 28 (f () = P, $n41 — P)
< Ballf(zn) = FOIIP + (1 = Ba)llzn — pII* +2Ba(f(p) = P, $nt1 — D)
< Buk®llzn = pI* + (1= Ba)llzn — pI* + 2B, (f (P) — P, S0t1 — p)
< Butillzn = pl* + (1= Ba)llzn — plI* +28.(f(P) — P, 5041 — P)
= (1= (1= #)Bu)llzn = plI* +2Ba(f () = P, Sns1 — 1)
< (1= (1= K)Bn)llwn = plI* + 28 (f(p) = P, $n41 — D). (29)
Substituting into
Isn+1 = plI? (1= (1 = &)Ba) 150 — plI* + 2anllsn = plllsn — sp-1l]
+apllsn = sn—1l® + 28, (f(9) = P, Sns1 — p)

2
(1~ (1= R8s — Bl + (1= W) (D) = . 1)
+anwn—azn(awn—pn+auwn—&ln0

<1 = (1= w)Bu)lsn = Bl + (L= K)Ba o (F5) = prsuss — )

+aulln = 5ot (2050 =9l + s — 5,0l
<(1— (1= &)Bo)llsn I

(U= K)o (F(0) — Py 3 — 2+ M allsn — 5o
<(1— (1= &)Ba)llsn — I

0| 8 o

(f(p) =P Sn+1 —p) + fwfnllsn = sn-1ll|,

K 1

for M := sup,, en{llsn — Pl @llsn — Sn—1]|} > 0.
Claim 6. The sequence {||s,, — p||}, n > 0, converges to zero. To see this, set

an = ||sn 7p||2
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and

2 3M «y,
= 1— I<E<f(p) — D, Sn+1 _p> + 77”571 — STL—].H'

1—k B,
Then Claim 5 can be rewritten as follows:
An 41 S (1 - (1 - K)ﬂn)an + (1 - K)Bnbn

By Lemma 2.4 it is sufficient to show that lim supy,_, ., bn, < 0 for every subsequence {ay, }
of {a,} satisfying

by, :

liminf(an, +1 — an, ) > 0.
k—o0 )

3M «,,
17"’€ﬂn

Since lim,, 4 |$n — Sn—1]| = 0, we only need to show that

hmsup<f(p) — Py Snp+1 — p> <0

k—o0

for every subsequence {||s,, — pl|} of {||sn — pl||} satisfying
lin inf (|5, 41 — 2] — l15n, — 2} > 0.
k—o0
Suppose that {||s,, — p||} is a subsequence of {||s,, — p||} such that
lim inf({|sn, +1 = pll = l[sn, —p[) = 0.
k—o0
Then
tim inf (|| sy 41 =p[* = [ sn,.=pl*) = lim inf[([[sn 1 =pll=[lsn, =2 1) (I$n,+1 =Pl +[[sn, =PI] > 0.
—00 k— o0

Using Claim 4, we obtain

lim sup [nwnk Al 2 2 [ A, ||2]

k—o0

< tsnsup [, — = [~ 5l + 6 M|
k—oco

< lim sup [snk —p||2 — |Snp+1 —p||2} + lim sup B, M4
k—oc0 k—oo

= i | =5l = 50, = oI
—00
<0.
This implies that
lIm ||wn, — Zn, — Y Anll =0 and lim ||A,, || =0. (30)
k—o0 k—o0

In view of 7 we obtain

lim ||Jwy, — 2zn, || =0. (31)
k—o0
On the other hand, using Claim 2 we get
lim ||wy, — v, || = 0. (32)
k—o0
Now, we claim that
ISn+1 — Snill = 0 as n — co. (33)

Indeed, by definition {s,,+1} we have

||Snk+1 — Znyg ” = /BnkHan - f(znk)” — 0 asn — +o0. (34)
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Combining and we deduce

||S"Lk+1 - wnk” < ”snk+1 - Zﬂk” + Hznk - wnkH — 0 as n — +o0. (35)

Moreover, we have

«
||8nk — Wny, H = ankHSnk - Snk—lll = 6nk Bnk ||Snk - Snk—lll — 0. (36)
ny

Combining and , we get
||57Lk+1 - Snk” < ||snk+1 - wnk” + Hwnk - SnkH — 0.

Since the sequence {s,, } is bounded, without any loss of generality we may assume that
{Sn, } converges weakly to some z* € H so that

limsup(f(p) — p, sn, —p) = (f(p) — p, 2" — p). (37)

k—o0

Using , we get

Wy, — 2% as k — 0.

Now, using , we get limy_s o0 || wn, — Un, || = 0, Lemma and the assumption Fx #
0, Vo € C' we get 2" € Sp.
From and the definition of p = Pg, o f(p), and z* € Sp. we have

limsup(f(p) — p, $n, —p) = (f(p) —p, 2" —p) <0. (38)

k—o0

Combining and (38)), we have

limsup(f(p) = p, sny+1 — p) = limsup(f(p) — p, Sn,+1 — 5n,,) + limsup(f(p) — p, $n, — )

k—o0 k—o0 k—o0

= limsup(f(p) — p, Sy — D)

k— oo
=(f(p) —p, 2" —p)
<0. (39)

Hence, by 1] lim,, 00 %Hsn — $p—1|| = 0. Combining Claim 5 and Lemma we have

limy, 00 ||$n, — p|| = 0. The proof is completed.
]

4. Conclusions

This paper introduced a novel extragradient method for solving quasimonotone vari-
ational inequalities in real Hilbert spaces. The proposed algorithm requires computing only
one projection onto the feasible set C' per iteration and employs an adaptive stepsize rule.
Notably, the convergence of our proposed method does not necessitate prior knowledge of the
Lipschitz constant of the variational inequality mapping. Our method represents a novel and
state-of-the-art contribution to the study of solving quasimonotone variational inequalities
in infinite-dimensional Hilbert spaces.
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