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REMARKS ON d-ARY PARTITIONS AND AN APPLICATION TO
ELEMENTARY SYMMETRIC PARTITIONS

Mircea Cimpoeas', Roxana Tanase?

We prove new formulas for p (n), the number of d-ary partitions of
n, and, also, for Py(n), its polynomial part.

Given a partition A = (A1,..., ), its associated j-th symmetric elementary
partition, pre;()), 4s the partition whose parts are {Xiy ---Ai; @ 1 <1 < --- <
i; < L}. We prove that if X and p are two d-ary partitions of length £ such that
pre;(A) = pre;(u), then A = p.
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1. Introduction

Let n be a positive integer. We denote [n] = {1,2,...,n}. A partition of
n is a non-increasing sequence of positive integers \; whose sum equals n. We
define p(n) as the number of partitions of n and we define p(0) = 1. We denote
A= ()\1,/\2,...,)\@) with Ay > X > --- > Ay > 1 and ‘)\’ =M+---+ A =n We
refer to |A| as the size of A and the numbers \; as parts of A\. The number ¢(\) = ¢
is the number of parts of A and it is called the length of A\. For more on the theory
of partitions, we refer the reader to [1].

Let d > 2 be an integer. A partition A = (Ay,..., ) is called d-ary, if all
Ai’s are powers of d. A 2-ary partition is called binary. In Proposition 3.3 we
establish a natural bijection between the set of all integer partition and the set of
d-ary partitions, which conserves the length (but not the size).

In Theorem 3.5 we give a new formula for pg(n), the number of d-ary par-
titions of n, using the fact that a d-ary partition is a partition with the parts in
{1,d,d?,d3,...}. In Theorem 3.6, we give a new formula for W;(d, n)’s, the Sylvester
waves of pg(n). Also, in Theorem 3.7 and Theorem 3.8 we give new formulas for
Pi(n) = Wi(d,n), the polynomial part of pg(n).
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Now, let K be an arbitrary field and S = K|[x1,...,x¢] be the ring of poly-
nomials over K in ¢ indeterminates. We recall that the j** elementary symmetric
polynomial of S is

ej(x1,...,x0) = Z Ty Tiy -+ @5, where 1 < j < /L.
1<y <ig <. <i; <Y
Also, we define eg(z1,...,2¢) =1 and ej(x1,...,27) =0 for j > L.
Given a partition A, we have e;(\) = 0 if /(\) < j and
ej(\) = > AisNig + Aij, i 1< 5 < L(N).

1<i1 <i2<... <1 <L(A)
For instance, if A = (3,2,1,1) is a partition of 7 then
es(\) = e2(3,2,1,1) =3-2+3-1+3-1+2-1+2-1+1-1=17.

In [2, 3], Ballantine et al introduced the following definition. Given a partition A,
the partition pre;()) is the partition whose parts are

XAy 1 1<ip <<y <L)}

and they called it an elementary symmetric partition.

Note that pre;(A) = A, but pre;(\) # A, for j > 2. For example, if A =
(3,2,1,1), then prey(N\) = (6,3,3,2,2,1).

A natural question to ask is the following: If A and p are two partitions such
that pre;(\) = pre;(u) then is it true that A = p? Only the following cases are
known in literature: (i) j = 2 and m(\), m(p) < 3, see [3, Proposition 14] and (ii)
j = 2 and X and p are binary partitions; see [3, Proposition 15]. In Theorem 4.2
we extend the later result and we prove that if A and p are two d-ary partitions of
length ¢ such that pre;(\) = pre;(u), where 1 < j < /£ —1, then A = p.

%

2. Preliminaries

Let a := (ay,aq,...,a,) be a sequence of positive integers, where r > 1. Let A
be a partition. We say that A has parts in a if A\; € {a1,...,a,} for all 1 <i < /4(X).

The restricted partition function associated to a is pa : N — N, pa(n) := the
number of integer solutions (z1,...,z,) of Y/, a;x; = n with z; > 0. In other
words, pa(n) counts the number of partitions of n with parts in a.

Note that the generating function of pa(n) is

> 1
"= . 2.1
n/zopa(n)z (1 _ Zal) - (1 _ zar) ( )
Let D be a common multiple of aj, ag,...,a,. Bell [5] proved that pa(n) is a quasi-
polynomial of degree k — 1, with the period D, that is
pa(n) = dag_1(n)nF 1+ + da1(n)n + dapo(n), (2.2)

where dam(n+ D) = dam(n) for 0 <m < k—1and n > 0, and dak—1(n) is not
identically zero. Sylvester [9],[10] decomposed the restricted partition in a sum of
“waves”:

pa(n) = ZWj(nva)’ (2'3)

Jj=1
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where the sum is taken over all distinct divisors j of the components of a and showed
that for each such j, W;(n,a) is the coefficient of t=! i

—vn nt

> ;
_ raj t . _ vap )’
0<v<i, ged(v.j)=1 (1 pj e —ait) ... (1 pj e axt)

where p; = e and ged(0,0) = 1 by convention. Note that Wj;(n,a)’s are quasi-
polynomials of period j. Also, Wi(n,a) is called the polynomial part of pa(n) and
it is denoted by Pa(n).

Theorem 2.1. ([6, Corollary 2.10]) We have
r—1 . .
_ 1 n—aiyjr— - — Qrjr
e D DU | { = +1).

0Sh§£—1,...,ogjr§£_1 =1
a1j1+--+arjr=n( mod D)

The unsigned Stirling numbers are defined by

<nji11>:Mn():m<{:]n—l+[;]n+[:]> (2.4)

Theorem 2.2. ([7, Proposition 4.2]) For any positive integer j with jla; for some
1 <1¢<r, we have that

Wy(n,a) = ,Zzpj :; i 1>X

'mlfl

X E D ayji + -+ +arje) "0
. D ] D
0<j1 < B —1,0 0<Gr < 21
ayji+--+arjr=¢( mod j)

Theorem 2.3. ([6, Corollary 3.6]) For the polynomial part Pa(n) of the quasi-
polynomial pa(n) we have

r—1

1 n—ayji — - — apjr
Pa(n):m Z H( 1J1 - J +€>.

D . D =
0<j1 < 2 1, 0<, < 2~ 1 E=1

The Bernoulli numbers By’s are defined by the identity

t =t

et — 1 4

£=0
Bozl,Blz—%,BQ:%,B4:——andBn—Olsnlsoddandn>1

Theorem 2.4. ([6, Corollary 3.11] or [4, page 2])
The polynomial part of pa(n) is

L 1 - (_l)u BllBlr i1 iy, r—1—u
Faln) := a1-~-aruz_:(r—1—u)!, Z_ g, oL '
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3. New formulas for the number of d-ary partitions

We fix d > 2 an integer. We denote P, the set of integer partitions, and Py,
the set of d-ary partitions. Given a positive integer n, we denote pg(n), the number
of d-ary partitions of n.

Definition 3.1. Let A = (A1,...,\¢) € P be a partition. The d-exponential of \ is
the d-ary partition:

Expy(\) := (@M1, ... dMh).
Definition 3.2. Let A = (A1,...,\¢) € Py be a d-ary partition. The d-logarithm of
A s the partition:
Logy(A\) := (logg(A1) +1,...,logg(Ae) + 1).

Proposition 3.3. The maps Exp, : P — Py and Log, : Pg — P are bijective and
inverse of each other.

Proof. Let A = (\1,...,\) € P. We have Expy(\) = (@~ 1,... d 1), Since
logg(d D +1=X\—1+1=\foralll<i<{,

it follows that Log,(Expg(\)) = A. Similary, if u € Py is a d-ary partition, then it
is easy to see that Exp,(Log,(n)) = p. Hence, the proof is complete. O

Lemma 3.4. Let n and k be two positive integers such that n < d**1. The number
of d-ary partitions of n is

pa(n) = p(l,d,...,dk)(”)-
In particular, the polynomial part of pa(n) is Pa(n) = Py q.._qr)(n).

Proof. Let A = (A1,...,A¢) be a d-ary partition of n, that is n = |A|. It follows that
A\ = d% with 0 < ¢; and d < n for all 1 <i < /. Since A\; = d° < |\| < d**! and
AL > Ao > - > Ny, it follows that

k>c1>2co>-2>2¢ 20,

and, therefore, A\ is a partition with parts in (1,d,... 7d’“). On the other hand,
any partition with parts in (1,d, ... 7dk) is a d-ary partition. Hence, the proof is
complete. ]

Theorem 3.5. Let n and k be two positive integers such that n < d**1. The number
of d-ary partitions of n is

k . .
1 n—ji — jod —--- — jpd"!
pa(n) = Pl Z H ( " +7].

C0<i<db—1, 0<ja<dF T —1, . 0<x<d—1 (=1
j1+jad+-4jrd®* =n( mod d*)

Proof. According to Lemma 3.4, we have pg(n) = p(1 4, q»)(n), where k = |logg(n)].
Hence, the conclusion follows from Theorem 2.1, taking » = k+ 1 and D =
lem(1,d,...,d*) = d*. O

From Lemma 3.4 and (2.3) we can write

pd(n) = ZW](da ’I’L), where Wj(d7 n) = W](n’ (17d7 s 7dk))7
Jj=1
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and k = |log;(n)|. In particular, the polynomial part of pg(n) is
Pi(n) = Wi(d,n).

Theorem 3.6. Let n and k be two positive integers such that n < d**1. We have

that
E+1 j k
_ 1 ¢ k+1 s—m+1( S
Wit = 1 3300 3 [F e (0 )
m=1 /(=1 s=m—1
% Z d—ks(jl + d]Q NN dk_ljk_l)s_m+1nm_1-
0<j1<dF—1,...,0<, <d—1
Jrtdjate+d g1 =£( mod j)
Proof. The conclusion follows from Lemma 3.4 and Theorem 2.2. g

Theorem 3.7. Let n and k be two positive integers such that n < dFt'. The
polynomial part of pg(n) is
k

1 n—j1— jod — -+ — jrd*1
Paln) = 1 Z H( e L

0<j1<db—1, 0<ja<dk—1 -1, ...,0< ) <d—1 £=1

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.3. O
Theorem 3.8. Let n and k be two positive integers such that n < dFt'. The
polynomial part of pa(n) is

k’ u
1 (-1) Biy - Binis iy t2ig 4 thingr ku
Paln) =~y 2 E T e
a5 = et k41

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.4. O
Example 3.9. Let n = 8 and d = 3. Since n < d'*!, Theorem 3.5 implies

1 8 — ji 8—2
ps(8) = 5 > ( 3 +> s +t1=3

0<j1<2, j1=8( mod 3)

Also, from Theorem 3.7 it follows that the polynomial part of p3(8) is

2 . 2
1 8—j) | 1141049 10
Jj1=0 j1=0

4. An application to elementary symmetric partitions

Given n > 2 an integer, we denote by {e1,...,e,}, the standard basis of the
vector space R", i.e. e; is the vector with 1 in the ¢-th position and zeros everywhere
else.

Let 1 < j <n—1 be an integer. We consider the vectors:

e1 et +e, i=1
ci=Qe+e+--+epr—eq, 2<i1<j+1
€i—j+1t+ei—jrat+--t+e;, Jj+2<i<n

Let C be the n x n matrix whose columns are ci,ca, ..., Cy.
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To better illustrate the structure of the matrix C, we present the case n = 6
and j = 3:

1 01100
110100
111010
C_Olllll
0 00O0T1T1
0 00 O0O0T1

Lemma 4.1. With the above notations, we have that det(C) = j.
Proof. From the definition of C, we easily note that det(C) = det(A), where

101 --- 1
110 --- 1
A=1: 1
111 -0
o011 --- 1

isa (j+1)x (54 1) circulant matrix with the associated polynomial
fx)=14242°+ - +277L,
For more details on circulant matrices, we refer the reader to [8].

271
Let w = ei+1 be a primitive (j + 1)-th root of unity. Using a basic result on
circulant matrices, we have that

J
det(A) = [T £().
k=0

It is clear that f(w®) = f(1) = j. On the other hand, for 1 < k < j, we have that
F@) =14wk 4+ 4 whUD = ki,
Therefore, it follows that

323G+1)

det(A) = (1) jw’ 2

If j is even, then

On the other hand, if j is odd, then
wj%é“) _ (w(j;w )jz _ (_1)j2 _ 1
Hence, in both cases, we have that det(A) = j. Thus, the proof is complete. O

Theorem 4.2. Let A and p be two d-ary partitions with £ parts and let 1 < j < /£—1
be an integer. If pre;(A) = pre;(u) then A = p.

Proof. Since A is a d-ary partition, it follows that A = (A1, Aa,..., A¢) such that
Ai=d% foralll <i</{ and ¢; >cg > -+ > ¢p. Similarly, u = (u1,. .., pe) with
ui:dcé,foralllgigﬁ, and cg > ¢ > -+ > ¢y.
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From the definition, pre;()) is the partition whose parts are:
{dcil-‘rciz—‘r...—‘rcij -1 < 7;1 < 7;2 < & 'Lj < e}
Similarly, pre;(u) is the partition whose parts are:
{dci1+ci2+...+cij 1<ip<ig<---< ’ij < f}
Since pre; () = pre;(u) it follows that
C{il —|—c§2+--~—|—cgj :cil—}—ciZ—i—---—{—cZ-j,for all 1 <y <ig <--- < <AL
For convenience, we denote

Ciyyij = Ciy —|—Ci2—+—---—|—cij,for all 1 <ip <ig < --- <ij <.

From Proposition 3.3, in order to prove that A\ = pu, it suffices to show that

(c1,...,¢0) = (c},...,¢). In order to do that, it is enough to prove that the linear
system

{IL‘il T Ty Ty = Gy ,where 1 < iy < ig < - <ij </, (4.1)
has a unique solution. Since (cy,...,c,) is already a solution of (4.1), it is enough to

prove that the matrix associated to (4.1) has the rank n. We consider the following
subsystem of (4.1):

(214 22+ a5 =c12..
To+ a3+ -+ Tjp1 =C2.. j+1
1+ X3+ -+ Tj41 = C13,.,5+1

T14 o+ T+ g = Cl-14 (4.2)
T3+ Ta+ -+ X420 =0C3,. 542
Ta+ o5+ +Xj43 =C4,..5+3

Tp—jp1+ -+ Tp=Co—jy1,..0

Note that the matrix associated to (4.2) is CT, where C was defined at the beginning
of this section.

According to Lemma 4.1 we have det(CT) = det(C) = j # 0. Hence, (4.2)
has a unique solution. Thus (4.1) has also a unique solution, as required. O

5. Conclusions

Let n > 1 and d > 2 be two integers. We proved new formulas for p;(n), the
number of d-ary partitions of n, and, also, for Py(n), its polynomial part.

Given A a partition of length ¢ and 1 < j < £ — 1, we denote pre;()), its
associated j-th elementary symmetric partition; see [2, 3]. Given A and u two d-ary
partitions of length £ and 1 < j < ¢ — 1, we proved that if pre;(\) = pre;(u) then
A = u, thus giving a partial positive answer to a problem raised in [2].
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