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A FULL-COLOR SHARPENING METHOD FOR SPECTRAL 

FEATURE EXTRACTION WITH DYNAMIC SPATIAL 

FEATURE GUIDANCE 

Beiyi WANG1, Bo WANG2* 

Remote sensing satellites are generally limited to capturing either high-

resolution panchromatic images (PAN) or low-resolution multispectral images 

(LRMS). To integrate the benefits of both high resolution and multispectral data, 

this study introduces a novel full-color sharpening technique that employs dynamic 

spatial feature guidance for spectral feature extraction. This technique utilizes a 

dynamic convolutional approach between the full-color and low-resolution 

panchromatic images, effectively guiding the feature extraction process and 

enhancing the spatial detail in the low-resolution panchromatic image. Additionally, 

a cross-guided fusion module has been crafted, harnessing the power of cross-

attention mechanisms to enrich the fusion of features from different sources, thereby 

elevating the fusion quality, The proposed method in this study adeptly mitigates the 

adverse effects of blurred spatial information inherent in low-resolution 

panchromatic images, culminating in the production of high-resolution 

panchromatic images that boast remarkable spatial clarity. 

Keywords: Remote sensing satellites, panchromatic images, low-resolution 

multispectral images, full-color sharpening technique, spectral feature 

extraction, cross-guided fusion module. 

1. Introduction 

Remote sensing technology detects electromagnetic waves of different 

wavelengths by reflecting, absorbing, and emitting spectral information of ground 

objects, in order to obtain remote sensing images [1]. Remote sensing satellites 

typically can only obtain high-resolution panchromatic images (PAN) or low 

resolution multispectral images (LRMS). High resolution panchromatic images 

are single band gray images with high spatial resolution, containing edge details 

of scenery, but lacking color information of the scenery. Other then, a low-

resolution multispectral image is a color image encompassing multiple spectral 

bands, providing rich spectral information that aids in differentiating the colors of 

various objects. However, its spatial resolution is low and it cannot clearly 
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identify edge information of objects. To merge the benefits of two distinct image 

types, panchromatic sharpening technology has been developed [2]. 

Initial techniques for panchromatic sharpening encompass component 

substitution [3-7], multi-resolution analysis [8-12], and variational optimization 

[13-15]. The advent of deep learning has introduced numerous innovative 

approaches, notably those utilizing convolutional neural networks (CNNs), which 

have demonstrated encouraging outcomes. However, achieving more precise 

spectral and spatial information is still a challenge. GAN-based methods produce 

high-quality high-resolution multispectral (HRMS) images but suffer from 

unstable training, complex model and parameter configurations, and the need for 

extensive training datasets. The transformer-based approach, meanwhile, adapts 

the Transformer model to image processing. Wang et al. [16] enhanced this by 

integrating CNN’s flexible position encoding into the Transformer framework, 

effectively extracting both local and global image features and enhancing overall 

task performance. 

The PAN and LRMS images, possessing unique and complementary 

characteristics, substantially influence the enhancement of spatial details in 

HRMS images, with the PAN image playing a pivotal role [17]. The ongoing 

exploration of deep learning in full-color sharpening has made strides in 

addressing the limitations of traditional methods when dealing with nonlinear 

tasks. Nonetheless, the LRMS image, while offering rich spectral data, also brings 

in some spatial blurriness that can degrade the quality of the HRMS image. 

Consequently, crafting an algorithm capable of reducing or eliminating this 

blurriness from the LRMS images is of paramount importance. 

To address the issue of blurred spatial information inherent in low-

resolution multispectral (LRMS) images, our research delves into the 

development of a full-color sharpening technique that leverages dynamic spatial 

feature guidance for spectral feature extraction. Recognizing that traditional 

sharpening approaches often fail to effectively distinguish between spectral and 

spatial information, leading to compromised image quality, we have devised a 

new method aimed at overcoming this challenge. We begin by elucidating the 

fundamental principles of the algorithms under discussion and providing an 

overview of the datasets employed, laying the groundwork for our subsequent 

analysis. Following this, we introduce an innovative full-color sharpening 

approach, specifically engineered to mitigate the interference caused by the 

blurred spatial details in LRMS images. This method not only enhances the spatial 

clarity of the images but also preserves the accuracy of the spectral features. The 

effectiveness of our technique is rigorously tested and confirmed through a series 

of experiments, thereby solidifying the paper's contribution to the field. 
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2. Dataset and evaluation criteria 

2.1. Dataset selection 

In the current field of panchromatic sharpening, common datasets can be 

divided into private datasets and public datasets, among which public datasets 

have made important contributions to the development of algorithms. Therefore, 

this study chose WorldView-3 (WV-3) and Gaofen-2 (GF-2) in the PanCollection 

dataset for research. Among them, the WV-3 dataset contains 9714 pairs of 

training data, with LRMS image size of 16 × 16 × 8 and PAN image size of 64 × 

64 × 1. The GF-2 dataset contains 19809 pairs of training data, with LRMS image 

size of 16 × 16 × 4 and PAN image size of 64 × 64 × 1. To assess the performance 

of the proposed method on both low resolution and full resolution images, two test 

sets were established for each dataset: one consisting of 20 pairs of 256 × 256 

spatial resolution PAN images, and another with 20 pairs of PAN images at 512 × 

512 spatial resolution. 

The presentation will be straightforward and succinct, with any symbols 

utilized detailed in a legend if required. International System measurement units 

will be employed throughout the paper. Descriptions of equipment or setups will 

not be included in the document. 

2.2. Quality evaluation criteria for full-color sharpening 

We mainly evaluate the correlation between the panchromatic sharpening 

results generated from full resolution image data and the input source image, and 

usually use Quality with No Reference (QNR) for quantitative analysis. The 

greater the QNR, the lesser the total distortion of the image, resulting in superior 

image quality. The formal definition of QNR is:  

( )( )sD1D1QNR −−=                                              (1) 

where Dλ and Ds represent the spectral and the spatial distortion 

coefficient, respectively. Each of them has a lower value indicating less image 

distortion. The detail definition of Dλ and Ds are described as follows: 
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where p and l are the original PAN and LRMS images, respectively. p  is 

the downsampled version of the original PAN image, and Q() represents the 

image quality index (IQI) [16], which can be described as follows. 

Q(Iref, Itest)=α×PSNR(Iref, Itest)+(1−α)×SSIM(Iref, Itest)            (4) 

where Iref is the reference image, Itest is the test image, and α is a 

weighting coefficient between 0 and 1, used to balance the importance of PSNR 

and SSIM. A higher PSNR value indicates better image quality, and an SSIM value 

closer to 1 suggests a higher structural similarity between the test image and the 

reference image. 

3. Method 

3.1. Overall framework 

In this study, we propose a panchromatic sharpening method for spectral 

feature extraction guided by spatial feature dynamics. Fig. 1 shows the overall 

network architecture of our method. The principal constituents of the network 

comprise the PAN Feature Extraction Sub-Network, the LRMS Feature Extraction 

Sub-Network, the Dynamic Weight Generation Module (DWGM), the Cross-

Guided Fusion Module (CGFM), and the Reconstruction Module (RM). 

 

 

Fig. 1. The overall network architecture of our method 

3.2. PAN image feature extraction 

The objective of the PAN image feature extraction is to capture the spatial 

features of the PAN image, which are essential for the subsequent generation of 

dynamic weights and the reconstruction and restoration of the HRMS image. 
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Comprising two principal elements, this sub-network includes a shallow feature 

extraction layer and a series of L cascaded Multi-scale Dense Feature Extraction 

Modules (MDFEM). Fig. 2 shows the architecture of MDFEM. 

 

Fig. 2. Network structure of multi-scale dense feature extraction module 

 

For the input PAN image Ip, shallow image features are extracted using the 

“3×3 convolution ReLU activation function to 3×3 convolution” method: 

           (ReLU( ( , 3), 3)s

p pF Conv Conv I k k= = =                              (5) 

where Conv() represents the convolution operation, k is the size of the 

convolution kernel, and 
s

pF is the shallow features of the PAN image.  

Let 
1i

P FEMF −

− (
0

P FEMF − =
s

pF ) be the input of the i-th (i=1, 2, 3... L) MDFEM, 

and 
i

P FEMF − be the output. 
1i

P FEMF −

−  extract multi-scale features through 1×1, 5×5, 

and 7×7 convolutions, output features through ReLU activation function are: 

1Re LU( ( , )), 1,5,7i i

convk P FEMF Conv F k k−

−= =                     (6) 

For dense spatial features, we extract them through four consecutive 3×3 

convolutions and output the features using the ReLU activation function: 

4 1

3 ReLU( ( , 3))i i

conv P FEMF Conv F k−

−= =                                (7) 

where Conv4 () represents four consecutive convolutional layers. In order 

to aggregate multi-scale features and dense features, we concatenate multiple sets 

of features together using feature concatenation, perform dimensionality reduction 

through 1×1 convolution, and finally add them element by element to the input 

features using skip connections to obtain the output feature of the i-th MDFEM: 
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1

1 5 7 3([ , ], 1)i i i i i i

P FEM conv conv conv conv P FEMF Conv F F F F k F −

− −= = +                 (8) 

where [] represents the splicing operation. 

 

3.3. Dynamic weight generation 

In this study, we designed a method for applying dynamic convolution to 

feature enhancement of cross modal images. Firstly, a set of weights w0∈ 
2

in outK C C k
R

    is initialized, where K is the number of control weights, Cin, Cout, and 

k represent the number of input channels, the number of output channels, and the 

size of the convolution kernel, respectively. For extracting complete PAN image 

features 
L

P FEMF − , we convert it into a guiding weight wP∈ 1 KR  , which includes an 

average pooling layer followed by a fully connected layer featuring two non-

shared parameters, a ReLU activation function, and softmax. The formula is as 

follows: 

softmax( (ReLU( ( ( )))))L

p P FEMw F FC Avepool F −=                     (9) 

where FC() represents a fully connected layer. 

Perform matrix multiplication operation between wp and w0, and perform 

Reshape operation to obtain the required dynamic convolution kernel weights wd 

∈
2

in outK C C k
R

   : 

0Reshape( )d pw w w=                                           (10) 

3.4. Feature extraction of LRMS image 

The goal of extracting features from the LRMS image is to isolate its 

spectral characteristics, while also leveraging the convolutional kernel weights 

provided by the DWGM to dynamically guide the feature extraction process. This 

guidance is crucial for minimizing the interference caused by blurred spatial 

information. The sub-network is structured around two core components: a 

shallow feature extraction layer and a series of L cascaded Dynamic Convolution-

Guided Feature Extraction Modules (DCGFEM). Fig. 3 shows the pipeline of the 

DCGFEM. 
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Fig. 3. The pipeline of dynamic convolution guided feature extraction module 

The method of extracting shallow features is the same as that of the PAN 

image feature extraction. In the DCGFEM, a combination of CNN and 

Transformer is used for feature extraction. Specifically, for the input LRMS 

image, we firstly extract the shallow image features. Let 
S

MF be the shallow 

features of LRMS images, the detail definition can be described as follows: 

4(ReLU( ( , 3)), 3)S

M MF Conv Conv I k k=  = =                        (12) 

where 4  represents a upscaling process with a scaling ratio of 4. In 

DCGFEM, we define the dynamic convolution operation of applying the dynamic 

weight wd output by DWGM as “P-Conv”. In order to better extract local features 

of the image guided by “P-Conv”, we introduce a deformable convolution 

operation after “P-Conv”. Deformable convolution can achieve more precise 

modeling of local regions of the target by introducing learnable deformation 

parameters into the convolution kernel, allowing the network to learn the features 

of the target with greater precision. Let 1

i

M FEMF − −  be the intermediate feature of 

the i-th DCGFEM, then the detail process is: 

1 ReLU( ( ( , 3), 3))i S

M FEM MF DeConv P Conv F k k− − = − = =              (13) 

where DeConv() represents deformable convolution operation. To extract 

global spectral information, we adopted Swin Transformer [18]. 

Finally, the features of the i-th DCGFEM, denoted as
i

M FEMF − , are obtained 

through a 3×3 convolution and ReLU activation function. The detail process is: 

2

1ReLU( ( ( ), 3))i i

M FEM M FEMF Conv Swin F k− − −= =                      (14) 

where Swin2() represents two cascaded Swin layers, and each Swin layer 

contains two cascaded Swin Transformers. 
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Fig. 4 shows the structure of a single Swin Transformer. The network 

architecture primarily consists of normalization layers, multi-head self-attention 

mechanisms, and multi-layer perceptrons. 

 

 

 

Fig. 4. The structure of a single Swin Transformer 

3.5. Cross guidance fusion 

In order to achieve effective fusion of PAN and LRMS image features, we 

designed CGFM. Fig. 5 shows the network structure of CGFM. This module 

mainly enhances two types of image features through cross attention. 

 

 

Fig. 5. Network structure of cross-guided fusion module 

 

Specifically, for PAN image features 
L

P FEMF −  and LRMS image 

features
L

M FEMF − , we first perform a channel rearrangement (CR) operation to cross 

arrange and combine the two image features in the channel dimension, generating 

a preliminary fusion feature
1

fuseF , which contains comprehensive information from 
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both modalities. Meanwhile, we aggregate the feature information of 
1

fuseF in the 

channel dimension through a 1 × 1 convolution to enhance the comprehensive 

features of different modal features, and then highlight the spectral and the spatial 

information in 
1

fuseF  through cascaded channel attention [19] and spatial attention 

[20] operations. The detail process can be described as follows: 

 
2 1( ( ( , 1)))fuse fuseF SA CA Conv F k= =                                  (15) 

where SA() and CA() represent spatial and channel attention operation, 

respectively. The purpose of this operation is to obtain Q, K, and V related to 

attention operations. The formulas are expressed as follows: 

 

, ( ( , 1), 3)L

P P P FEMK V DWConv Conv F k k−= = =                      (16) 

, ( ( , 1), 3)L

M M M FEMK V DWConv Conv F k k−= = =                     (17) 
2( ( , 1), 3)f fuseQ DWConv Conv F k k= = =                         (18) 

where DWConv() represents depthwise separable convolution operations, 

the purpose of which is to use the generated query feature Qf containing 

comprehensive information to perform cross attention operations with [KP, VP], 

[KM, VM]. The formulas are expressed as follows: 

 

' ( )
softmax{ }

T

pf L

P fuse p P FEM

Q K
F V F

t
− −= +                             (19) 

' ( )
softmax{ }

T

Mf L

M fuse M M FEM

Q K
F V F

t
− −= +                           (20)  

where ()T represents the matrix transpose operation, and t is the control 

coefficient. P fuseF −  and M fuseF − represent the enhanced features of PAN and LRMS 

images. Finally, generate the output features of the module through another CR 

operation. The detail process can be described as follows: 
 

( , )Fin P fuse M fuseF CR F F− −=                                           (21) 

3.6. Reconstruction module 

The reconstruction module mainly achieves the reconstruction of HRMS 

images through 5 cascaded residual blocks and a 1 × 1 convolution, as shown in 

Fig. 6. 



204                                                             Beiyi Wang, Bo Wang 

 

Fig. 6. The network structure of reconstruction module 

The detail process can be described as follows: 

5( ( ), 1)H FinI Conv RBs F k= =                              (22) 

where RBs5() represents five cascaded residual blocks. 

4. Experiments 

In this section, we initially outline the experimental setup, delineate the 

assessment metrics, and identify the comparative methods. Subsequently, we 

showcase the comparative outcomes against extant techniques, utilizing various 

datasets. 

4.1. Experimental setup 

In this study, we use the WV-3 and GF-2 from PanCollection as the 

experimental datasets. Fig. 7 shows test samples from the WV-3 and GF-2 

datasets. 

To substantiate the preeminence of our methodology, we juxtaposed it 

against conventional approaches alongside several deep learning-oriented 

techniques. The conventional methods encompass BT-H, BDSD-PC, MTF-GLP-

HPM-R, MTF-GLP-FS, and TV. Meanwhile, the deep learning methods involve 

PNN, PanNet, MSDCNN, DiCNN, BDPN, FusionNet, LAGConv, and S2DBPN 

(Spatial Dual Back Projection Network). All traditional methods were tested and 

validated on the Matlab based ToolBox proposed by Vivone et al [21]. 
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Fig. 7. Test samples from different datasets 

All deep learning based methods followed the original author’s parameter 

settings and were retrained and tested on the WV-3 and GF-2 datasets. In 

addition, we use QNR, Ds, and Dλ as the evaluation criteria for full resolution 

scale image data. 

The experimental method was completed within a unified code framework 

based on Pytorch. Throughout the training phase, the Adam optimizer was utilized 

to adjust the network parameters, with the learning rate fixed at 0.0002 and a 

batch size established at 16. The complete network model underwent training on a 

GeForce RTX 3090 GPU for a total of 150 epochs. 

4.2. Comparative experimental results 

Fig. 8 shows the outcomes of various methodologies applied to the WV-3 

full resolution test dataset.  
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Fig. 8. The outcomes of various methodologies applied to the WV-3 full resolution test dataset 

Table 1 shows the performance metrics of various methods evaluated on 

the WV-3 test set. 
Table 1 

Performance metrics of various methods evaluated on the WV-3 test set 

Methods QNR Ds Dλ 

BT-H[6] 0.7568 0.1214 0.1493 

BDSD-PC[7] 0.7901 0.0862 0.1464 

MTF-GLP-HPM-R[10] 0.7870 0.1006 0.1370 

MTF-GLP-FS[11] 0.7833 0.1031 0.1390 

TV[14] 0.7992 0.0943 0.1323 

PNN[22] 0.8650 0.0840 0.0582 

PanNet[23] 0.8332 0.0852 0.0979 

MSDCNN[24] 0.8509 0.0838 0.0762 

DiCNN[25] 0.8437 0.0960 0.0714 

BDPN[26] 0.7845 0.1067 0.1280 

FusionNet[27] 0.8514 0.0984 0.0594 

LAGConv[28] 0.8576 0.0930 0.0595 

S2DBPN[29] 0.8502 0.0948 0.0676 

Ours 0.8565 0.0953 0.0567 

Note: Bold values in each column of the table indicate optimal values, while underlined values 

indicate suboptimal values. 
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From the analysis of Fig. 8 and Table 1, it becomes evident that our 

approach surpasses all competing methods numerically on the low-resolution test 

set, showcasing commendable performance. On the full-resolution test set, our 

method ranks second-best and best in terms of the QNR and Ds metrics, 

respectively. When contrasted with alternative methods, ours demonstrates 

superior overall performance, signifying that the technique presented herein yields 

outstanding results in panchromatic sharpening tasks across varying scales. 

Fig. 9 shows the outcomes of various methods tested on the GF-2 full 

resolution dataset. 

 

 

Fig. 9. The outcomes of various methods tested on the GF-2 full resolution dataset 

As depicted in Fig. 9, BT-H fails to align with the original image 

regarding spectral information. Meanwhile, BDSD-PC, MTF-GLP-HPM-R, MTF-

GLP-FS, and TV have varying degrees of loss in preserving spectral information 

and are also not ideal in preserving spatial details. In deep learning based 

methods, MSDCNN generated incorrect color blocks, BDPN showed severe 

spectral distortion, and S2DBPN exhibited color confusion in the overall visual 

effect. Compared to other methods, our approach shows the best visual 

performance. 

Table 2 shows the quantitative comparison results on the GF-2 dataset. 
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Table 2 

Quantitative comparison results on the GF-2 dataset 

Methods QNR Ds Dλ 

BT-H[6] 0.7568 0.1214 0.1493 

BDSD-PC[7] 0.7901 0.0862 0.1464 

MTF-GLP-HPM-R[10] 0.7870 0.1006 0.1370 

MTF-GLP-FS[11] 0.7833 0.1031 0.1390 

TV[14] 0.7992 0.0943 0.1323 

PNN[22] 0.8650 0.0840 0.0582 

PanNet[23] 0.8332 0.0852 0.0979 

MSDCNN[24] 0.8509 0.0838 0.0762 

DiCNN[25] 0.8437 0.0960 0.0714 

BDPN[26] 0.7845 0.1067 0.1280 

FusionNet[27] 0.8514 0.0984 0.0594 

LAGConv[28] 0.8576 0.0930 0.0595 

S2DBPN[29] 0.8502 0.0948 0.0676 

Ours 0.8565 0.0953 0.0567 

Note: Bold values in each column of the table indicate optimal values, while underlined values 

indicate suboptimal values. 

As evidenced in Table 2, our method attained the highest scores across all 

four assessment metrics for the low resolution test set. Regarding the full 

resolution test set, our method is slightly lower than S2DBPN in terms of QNR, 

Ds, and Dλ, but the difference is not significant and is at a suboptimal level. This 

indicates that our method has demonstrated strong competitiveness on two 

different scale test sets, and also validates the superiority of our proposed method. 

5. Conclusions 

In conclusion, our research introduces a novel approach for panchromatic 

image sharpening that innovatively integrates spatial features into the dynamic 

guidance of spectral feature extraction. The method dynamically aligns 

panchromatic and low-resolution counterparts, thereby guiding the feature 

extraction and significantly enhancing the spatial detail of the latter. Additionally, 

a cross-guided fusion module, powered by a cross-attention mechanism, has been 

developed to refine the feature fusion across different modalities, leading to a 

more comprehensive and higher quality fusion. The empirical evidence from our 

experiments confirms that our proposed method not only mitigates the adverse 

effects of blurred spatial information on the sharpening of low-resolution 

panchromatic images but also successfully produces high-resolution images with 

superior spatial clarity. This advancement holds promise for applications requiring 

the enhancement of low-resolution multispectral imagery. 
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