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A FULL-COLOR SHARPENING METHOD FOR SPECTRAL
FEATURE EXTRACTION WITH DYNAMIC SPATIAL
FEATURE GUIDANCE

Beiyi WANG!, Bo WANG?*

Remote sensing satellites are generally limited to capturing either high-
resolution panchromatic images (PAN) or low-resolution multispectral images
(LRMS). To integrate the benefits of both high resolution and multispectral data,
this study introduces a novel full-color sharpening technique that employs dynamic
spatial feature guidance for spectral feature extraction. This technique utilizes a
dynamic convolutional approach between the full-color and low-resolution
panchromatic images, effectively guiding the feature extraction process and
enhancing the spatial detail in the low-resolution panchromatic image. Additionally,
a cross-guided fusion module has been crafted, harnessing the power of cross-
attention mechanisms to enrich the fusion of features from different sources, thereby
elevating the fusion quality, The proposed method in this study adeptly mitigates the
adverse effects of blurred spatial information inherent in low-resolution
panchromatic images, culminating in the production of high-resolution
panchromatic images that boast remarkable spatial clarity.

Keywords: Remote sensing satellites, panchromatic images, low-resolution
multispectral images, full-color sharpening technique, spectral feature
extraction, cross-guided fusion module.

1. Introduction

Remote sensing technology detects electromagnetic waves of different
wavelengths by reflecting, absorbing, and emitting spectral information of ground
objects, in order to obtain remote sensing images [1]. Remote sensing satellites
typically can only obtain high-resolution panchromatic images (PAN) or low
resolution multispectral images (LRMS). High resolution panchromatic images
are single band gray images with high spatial resolution, containing edge details
of scenery, but lacking color information of the scenery. Other then, a low-
resolution multispectral image is a color image encompassing multiple spectral
bands, providing rich spectral information that aids in differentiating the colors of
various objects. However, its spatial resolution is low and it cannot clearly
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identify edge information of objects. To merge the benefits of two distinct image
types, panchromatic sharpening technology has been developed [2].

Initial techniques for panchromatic sharpening encompass component
substitution [3-7], multi-resolution analysis [8-12], and variational optimization
[13-15]. The advent of deep learning has introduced numerous innovative
approaches, notably those utilizing convolutional neural networks (CNNSs), which
have demonstrated encouraging outcomes. However, achieving more precise
spectral and spatial information is still a challenge. GAN-based methods produce
high-quality high-resolution multispectral (HRMS) images but suffer from
unstable training, complex model and parameter configurations, and the need for
extensive training datasets. The transformer-based approach, meanwhile, adapts
the Transformer model to image processing. Wang et al. [16] enhanced this by
integrating CNN’s flexible position encoding into the Transformer framework,
effectively extracting both local and global image features and enhancing overall
task performance.

The PAN and LRMS images, possessing unique and complementary
characteristics, substantially influence the enhancement of spatial details in
HRMS images, with the PAN image playing a pivotal role [17]. The ongoing
exploration of deep learning in full-color sharpening has made strides in
addressing the limitations of traditional methods when dealing with nonlinear
tasks. Nonetheless, the LRMS image, while offering rich spectral data, also brings
in some spatial blurriness that can degrade the quality of the HRMS image.
Consequently, crafting an algorithm capable of reducing or eliminating this
blurriness from the LRMS images is of paramount importance.

To address the issue of blurred spatial information inherent in low-
resolution multispectral (LRMS) images, our research delves into the
development of a full-color sharpening technique that leverages dynamic spatial
feature guidance for spectral feature extraction. Recognizing that traditional
sharpening approaches often fail to effectively distinguish between spectral and
spatial information, leading to compromised image quality, we have devised a
new method aimed at overcoming this challenge. We begin by elucidating the
fundamental principles of the algorithms under discussion and providing an
overview of the datasets employed, laying the groundwork for our subsequent
analysis. Following this, we introduce an innovative full-color sharpening
approach, specifically engineered to mitigate the interference caused by the
blurred spatial details in LRMS images. This method not only enhances the spatial
clarity of the images but also preserves the accuracy of the spectral features. The
effectiveness of our technique is rigorously tested and confirmed through a series
of experiments, thereby solidifying the paper's contribution to the field.
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2. Dataset and evaluation criteria
2.1. Dataset selection

In the current field of panchromatic sharpening, common datasets can be
divided into private datasets and public datasets, among which public datasets
have made important contributions to the development of algorithms. Therefore,
this study chose WorldView-3 (WV-3) and Gaofen-2 (GF-2) in the PanCollection
dataset for research. Among them, the WV-3 dataset contains 9714 pairs of
training data, with LRMS image size of 16 x 16 x 8 and PAN image size of 64 x
64 x 1. The GF-2 dataset contains 19809 pairs of training data, with LRMS image
size of 16 x 16 x 4 and PAN image size of 64 x 64 x 1. To assess the performance
of the proposed method on both low resolution and full resolution images, two test
sets were established for each dataset: one consisting of 20 pairs of 256 x 256
spatial resolution PAN images, and another with 20 pairs of PAN images at 512 x
512 spatial resolution.

The presentation will be straightforward and succinct, with any symbols
utilized detailed in a legend if required. International System measurement units
will be employed throughout the paper. Descriptions of equipment or setups will
not be included in the document.

2.2. Quality evaluation criteria for full-color sharpening

We mainly evaluate the correlation between the panchromatic sharpening
results generated from full resolution image data and the input source image, and
usually use Quality with No Reference (QNR) for quantitative analysis. The
greater the QNR, the lesser the total distortion of the image, resulting in superior
image quality. The formal definition of QNR is:

QNR =(1-D, )1-D,) (1)
where D, and Ds represent the spectral and the spatial distortion

coefficient, respectively. Each of them has a lower value indicating less image
distortion. The detail definition of D, and Dsare described as follows:

0, = |5 1)1;2 Q(X,, X )= QU 1) @)
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where p and | are the original PAN and LRMS images, respectively. p is

the downsampled version of the original PAN image, and Q(*) represents the
image quality index (IQI) [16], which can be described as follows.
Q(lref, Itest)=a x PSNR(Iref, Itest)+(1—a) x SSIM(Iref, Itest) 4)
where Iref is the reference image, Itest is the test image, and « is a
weighting coefficient between 0 and 1, used to balance the importance of PSNR
and SSIM. A higher PSNR value indicates better image quality, and an SSIM value
closer to 1 suggests a higher structural similarity between the test image and the
reference image.

3. Method
3.1. Overall framework

In this study, we propose a panchromatic sharpening method for spectral
feature extraction guided by spatial feature dynamics. Fig. 1 shows the overall
network architecture of our method. The principal constituents of the network
comprise the PAN Feature Extraction Sub-Network, the LRMS Feature Extraction
Sub-Network, the Dynamic Weight Generation Module (DWGM), the Cross-
Guided Fusion Module (CGFM), and the Reconstruction Module (RM).
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Fig. 1. The overall network architecture of our method

3.2. PAN image feature extraction

The objective of the PAN image feature extraction is to capture the spatial
features of the PAN image, which are essential for the subsequent generation of
dynamic weights and the reconstruction and restoration of the HRMS image.
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Comprising two principal elements, this sub-network includes a shallow feature
extraction layer and a series of L cascaded Multi-scale Dense Feature Extraction
Modules (MDFEM). Fig. 2 shows the architecture of MDFEM.
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Fig. 2. Network structure of multi-scale dense feature extraction module

For the input PAN image I, shallow image features are extracted using the
3 X3 convolution ReLU activation function to 3X 3 convolution” method:

F, =Conv(ReLU(Conv(l ,k =3),k =3) (5)
where Conv(e) represents the convolution operation, k is the size of the
convolution kernel, and F; is the shallow features of the PAN image.

Let Fatew (Fo rew = F, ) be the input of the i-th (i=1, 2, 3... L) MDFEM,
and F._..,, be the output. Fo ., extract multi-scale features through 1 X1, 5X5,
and 7 X 7 convolutions, output features through ReLU activation function are:

Fi

convk — Re LU(CO”V( FF::lFEM ,k)), k=157 (6)

For dense spatial features, we extract them through four consecutive 3x3
convolutions and output the features using the ReLLU activation function:

Fis = RELU(CONV* (Fi ey k =3)) (7)

where Conv* (¢) represents four consecutive convolutional layers. In order
to aggregate multi-scale features and dense features, we concatenate multiple sets
of features together using feature concatenation, perform dimensionality reduction
through 1X1 convolution, and finally add them element by element to the input

features using skip connections to obtain the output feature of the i-th MDFEM:
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FFE,FEM :Conv([lzi Foonvs Foone7 P Lk=D+ FFi’ilFEM (8)

convl? © conv5® conv7® conv3

where [] represents the splicing operation.

3.3. Dynamic weight generation

In this study, we designed a method for applying dynamic convolution to
feature enhancement of cross modal images. Firstly, a set of weights wo€E

RK*CaxCok® s initialized, where K is the number of control weights, Cin, Cout, and

k represent the number of input channels, the number of output channels, and the
size of the convolution kernel, respectively. For extracting complete PAN image

features Fo ¢, , We convert it into a guiding weight we € R>¥ , which includes an

average pooling layer followed by a fully connected layer featuring two non-
shared parameters, a ReLU activation function, and softmax. The formula is as
follows:

w, = softmax(F (ReLU(FC(Avepool (F -, ))))) (9)

where FC(*) represents a fully connected layer.

Perform matrix multiplication operation between w, and wg, and perform
Reshape operation to obtain the required dynamic convolution kernel weights wy
[ RKXCinXCouthZ :

w, = Reshape(w, x w,) (10)

3.4. Feature extraction of LRMS image

The goal of extracting features from the LRMS image is to isolate its
spectral characteristics, while also leveraging the convolutional kernel weights
provided by the DWGM to dynamically guide the feature extraction process. This
guidance is crucial for minimizing the interference caused by blurred spatial
information. The sub-network is structured around two core components: a
shallow feature extraction layer and a series of L cascaded Dynamic Convolution-
Guided Feature Extraction Modules (DCGFEM). Fig. 3 shows the pipeline of the
DCGFEM.



A full-color sharpening method for spectral feature extraction with dynamic spatial feature... 201

Dynamic weight

Input Output
Feature GB Feature

' e & = &= [
| 3x3 Conv P-Conv Deformable Swin Layer ReLU |
| Conv - |

Fig. 3. The pipeline of dynamic convolution guided feature extraction module

The method of extracting shallow features is the same as that of the PAN
image feature extraction. In the DCGFEM, a combination of CNN and
Transformer is used for feature extraction. Specifically, for the input LRMS
image, we firstly extract the shallow image features. Let F, be the shallow

features of LRMS images, the detail definition can be described as follows:
F. = Conv(ReLU(Conv(l,, T,,k =3)),k =3) (12)

where T, represents a upscaling process with a scaling ratio of 4. In

DCGFEM, we define the dynamic convolution operation of applying the dynamic
weight wg output by DWGM as “P-Conv”. In order to better extract local features
of the image guided by “P-Conv”, we introduce a deformable convolution
operation after “P-Conv”. Deformable convolution can achieve more precise
modeling of local regions of the target by introducing learnable deformation
parameters into the convolution kernel, allowing the network to learn the features

of the target with greater precision. Let F, .., be the intermediate feature of
the i-th DCGFEM, then the detail process is:

F_rev_, = ReLU(DeConv(P —Conv(F, ,k =3),k =3)) (13)

where DeConv(e) represents deformable convolution operation. To extract
global spectral information, we adopted Swin Transformer [18].

Finally, the features of the i-th DCGFEM, denoted as F,, ., , are obtained
through a 3X 3 convolution and ReLU activation function. The detail process is:

Fy ey = ReLU(Conv(Swin?(F), ey 1),k =3)) (14)

where Swin?(*) represents two cascaded Swin layers, and each Swin layer
contains two cascaded Swin Transformers.
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Fig. 4 shows the structure of a single Swin Transformer. The network
architecture primarily consists of normalization layers, multi-head self-attention
mechanisms, and multi-layer perceptrons.
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Fig. 4. The structure of a single Swin Transformer
3.5. Cross guidance fusion

In order to achieve effective fusion of PAN and LRMS image features, we
designed CGFM. Fig. 5 shows the network structure of CGFM. This module
mainly enhances two types of image features through cross attention.
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Fig. 5. Network structure of cross-guided fusion module

Specifically, for PAN image features F. ., and LRMS image

features Fy;_rey , We first perform a channel rearrangement (CR) operation to cross
arrange and combine the two image features in the channel dimension, generating
a preliminary fusion feature F: .., which contains comprehensive information from
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both modalities. Meanwhile, we aggregate the feature information of Fi.in the
channel dimension through a 1 x 1 convolution to enhance the comprehensive
features of different modal features, and then highlight the spectral and the spatial
information in F;., through cascaded channel attention [19] and spatial attention
[20] operations. The detail process can be described as follows:

F2

fuse

where SA(®) and CA(*) represent spatial and channel attention operation,
respectively. The purpose of this operation is to obtain Q, K, and V related to
attention operations. The formulas are expressed as follows:

= SA(CA(Conv(F~_ k =1))) (15)

fuse ?

K,,V, = DWConv(Conv(Fy (¢, , Kk =1),k = 3) (16)
Ky V,, =DWConv(Conv(Fy; re, k =1),k =3) (7)
Q, = DWConv(Conv(F. k =1),k =3) (18)

where DWConv(*) represents depthwise separable convolution operations,
the purpose of which is to use the generated query feature Qf containing
comprehensive information to perform cross attention operations with [Kp, Vp],
[Km, Vm]. The formulas are expressed as follows:

Q. (K,)'

FP—fuse = SOﬂmaX{%}Vp + FPL,FEM (19)
Q. (Ky)'

Fo e = softmax{%}vw, +ES (20)

where (*) represents the matrix transpose operation, and t is the control
coefficient. Fo_q and Fy_qs represent the enhanced features of PAN and LRMS

images. Finally, generate the output features of the module through another CR
operation. The detail process can be described as follows:

FFin = CR(FP—fuse’ FM—fuse) (21)

3.6. Reconstruction module

The reconstruction module mainly achieves the reconstruction of HRMS
images through 5 cascaded residual blocks and a 1 x 1 convolution, as shown in
Fig. 6.
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Fig. 6. The network structure of reconstruction module

The detail process can be described as follows:

I, = Conv(RBs®(F-, ),k =1) (22)
where RBs®(*) represents five cascaded residual blocks.

4. Experiments

In this section, we initially outline the experimental setup, delineate the
assessment metrics, and identify the comparative methods. Subsequently, we
showcase the comparative outcomes against extant techniques, utilizing various
datasets.

4.1. Experimental setup

In this study, we use the WV-3 and GF-2 from PanCollection as the
experimental datasets. Fig. 7 shows test samples from the WV-3 and GF-2
datasets.

To substantiate the preeminence of our methodology, we juxtaposed it
against conventional approaches alongside several deep learning-oriented
techniques. The conventional methods encompass BT-H, BDSD-PC, MTF-GLP-
HPM-R, MTF-GLP-FS, and TV. Meanwhile, the deep learning methods involve
PNN, PanNet, MSDCNN, DiCNN, BDPN, FusionNet, LAGConv, and S2DBPN
(Spatial Dual Back Projection Network). All traditional methods were tested and
validated on the Matlab based ToolBox proposed by Vivone et al [21].
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Fig. 7. Test samples from different datasets

All deep learning based methods followed the original author’s parameter
settings and were retrained and tested on the WV-3 and GF-2 datasets. In
addition, we use QNR, Ds, and D, as the evaluation criteria for full resolution
scale image data.

The experimental method was completed within a unified code framework
based on Pytorch. Throughout the training phase, the Adam optimizer was utilized
to adjust the network parameters, with the learning rate fixed at 0.0002 and a
batch size established at 16. The complete network model underwent training on a
GeForce RTX 3090 GPU for a total of 150 epochs.

4.2. Comparative experimental results

Fig. 8 shows the outcomes of various methodologies applied to the WV-3
full resolution test dataset.
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Fig. 8. The outcomes of various methodologies applied to the WV-3 full resolution test dataset

Table 1 shows the performance metrics of various methods evaluated on
the WV-3 test set.

Table 1
Performance metrics of various methods evaluated on the WV-3 test set

Methods QNR Ds D,
BT-H® 0.7568 0.1214 0.1493
BDSD-PC! 0.7901 0.0862 0.1464
MTF-GLP-HPM-R[1] 0.7870 0.1006 0.1370
MTF-GLP-FSit 0.7833 0.1031 0.1390
TV 0.7992 0.0943 0.1323
PNN[22 0.8650 0.0840 0.0582
PanNet[] 0.8332 0.0852 0.0979
MSDCNN[ 0.8509 0.0838 0.0762
DiCNN[I 0.8437 0.0960 0.0714
BDPNI28] 0.7845 0.1067 0.1280
FusionNet!?" 0.8514 0.0984 0.0594
LAGConv!2] 0.8576 0.0930 0.0595
S2DBPNI2] 0.8502 0.0948 0.0676
Ours 0.8565 0.0953 0.0567

Note: Bold values in each column of the table indicate optimal values, while underlined values
indicate suboptimal values.
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From the analysis of Fig. 8 and Table 1, it becomes evident that our
approach surpasses all competing methods numerically on the low-resolution test
set, showcasing commendable performance. On the full-resolution test set, our
method ranks second-best and best in terms of the QNR and Ds metrics,
respectively. When contrasted with alternative methods, ours demonstrates
superior overall performance, signifying that the technique presented herein yields
outstanding results in panchromatic sharpening tasks across varying scales.

Fig. 9 shows the outcomes of various methods tested on the GF-2 full
resolution dataset.

Not Exist

FusionNet LAGConv S2DBPN Ours GT

Fig. 9. The outcomes of various methods tested on the GF-2 full resolution dataset

As depicted in Fig. 9, BT-H fails to align with the original image
regarding spectral information. Meanwhile, BDSD-PC, MTF-GLP-HPM-R, MTF-
GLP-FS, and TV have varying degrees of loss in preserving spectral information
and are also not ideal in preserving spatial details. In deep learning based
methods, MSDCNN generated incorrect color blocks, BDPN showed severe
spectral distortion, and S2DBPN exhibited color confusion in the overall visual
effect. Compared to other methods, our approach shows the best visual
performance.

Table 2 shows the quantitative comparison results on the GF-2 dataset.
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Table 2
Quantitative comparison results on the GF-2 dataset

Methods QNR Ds D;
BT-HIS] 0.7568 0.1214 0.1493
BDSD-PCl] 0.7901 0.0862 0.1464
MTF-GLP-HPM-R[ 0.7870 0.1006 0.1370
MTF-GLP-FSI 0.7833 0.1031 0.1390
TV 0.7992 0.0943 0.1323
PNN[Z 0.8650 0.0840 0.0582
PanNet!?l 0.8332 0.0852 0.0979
MSDCNNI?4 0.8509 0.0838 0.0762
DiCNN] 0.8437 0.0960 0.0714
BDPN[2] 0.7845 0.1067 0.1280
FusionNet?7] 0.8514 0.0984 0.0594
LAGConv!? 0.8576 0.0930 0.0595
S2DBPN[I 0.8502 0.0948 0.0676
Ours 0.8565 0.0953 0.0567

Note: Bold values in each column of the table indicate optimal values, while underlined values
indicate suboptimal values.

As evidenced in Table 2, our method attained the highest scores across all
four assessment metrics for the low resolution test set. Regarding the full
resolution test set, our method is slightly lower than S2DBPN in terms of QNR,
Ds, and D;, but the difference is not significant and is at a suboptimal level. This
indicates that our method has demonstrated strong competitiveness on two
different scale test sets, and also validates the superiority of our proposed method.

5. Conclusions

In conclusion, our research introduces a novel approach for panchromatic
image sharpening that innovatively integrates spatial features into the dynamic
guidance of spectral feature extraction. The method dynamically aligns
panchromatic and low-resolution counterparts, thereby guiding the feature
extraction and significantly enhancing the spatial detail of the latter. Additionally,
a cross-guided fusion module, powered by a cross-attention mechanism, has been
developed to refine the feature fusion across different modalities, leading to a
more comprehensive and higher quality fusion. The empirical evidence from our
experiments confirms that our proposed method not only mitigates the adverse
effects of blurred spatial information on the sharpening of low-resolution
panchromatic images but also successfully produces high-resolution images with
superior spatial clarity. This advancement holds promise for applications requiring
the enhancement of low-resolution multispectral imagery.
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