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PHASE RETRIEVAL FOR OPTICAL BEAMS WITH
1-DIMENSIONAL TRANSVERSE DOMAIN

Victor-Cristian Palea1 and Liliana Preda1

We propose a method of computing the phase function for opti-
cal beams with 1-dimensional transverse space using amplitude data defined
on multiple steps along the propagation axis. The computation is based on
the propagation model of the wave equation in the paraxial approximation.

Keywords: phase retrieval, wave equation, paraxial approximation, am-
plitude profile, phase profile

1. Introduction

The computation of the phase function for optical beams is known as
the phase retrieval problem[1] and has been addressed under various forms.
Probably one of the most well known solutions to it is the Gerchberg-Saxton
algorithm[2] which computes the phase corresponding to two amplitude pro-
files. Other similar algorithms have also been developed[3, 4], including exten-
sions to three planes[5]. From an experimental perspective Shack-Hartmann
sensors can be used to characterize an optical profile in terms of its phase[6,
7, 8], along with interferometric methods[9, 10] and aperture arrays[11].

Other methods that are more focused on the propagation model have
also been proposed, as is the case of using the transport-of-intensity equation
(TIE)[12, 13]. Solutions for the phase retrieval problem using TIE consist of
using Zernike polynomials[14, 15] or Green’s functions[13, 16]. These methods
address the retrieval of the phase function on a transverse plane at a given
position on the propagation axis, using measured amplitude data. This raised
the possibility of extending the TIE approach from one profile to a finite prop-
agation distance on which the amplitude is known.

We propose a solution for this phase retrieval problem, which in the
following will be referred to as WBPR (whole beam phase retrieval). The
method addresses the advantages and limitations of retrieving the phase func-
tion given amplitude data at multiple positions along the propagation axis
for 1-dimensional transverse beams. The differences between TIE and WBPR
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Fig. 1. Flow charts for the comparison between the TIE and
WBPR methods for phase retrieval. ψ is the solution to the
propagation equation, z is the propagation axis, x and y rep-
resent transverse axes, k is the wavenumber, ∇⊥ = (∂x, ∂y),
∇ = (∂x, ∂z) for the WBPR case, F is a function that is pre-
sented in section 2.2 and ϕ is the retrieved phase function.

are condensed in figure 1. Both TIE and WBPR aim at retrieving the phase
function in order to obtain the complex valued solution of the propagation
equation. The TIE method is usually considered for a two dimensional trans-
verse domain (x, y), although Teague offered a solution of the 1-dimensional
case also[12]. The intensity data is measured around the position of interest
along the propagation axis, usually at two transverse planes z1 and z2 in order
to numerically evaluate the term ∂zI from the retrieval step. This allows for
the computation of the phase function ϕ(x, y) at z = (z1+ z2)/2 under various
assumptions regarding the boundary conditions [17].

WBPR considers only a 1-dimensional transverse domains and uses am-
plitude data at multiple points (more than two) along the propagation axis.
In short, while TIE uses the amplitude data in two planes in order to compute
one in-between transverse phase profile, the WBPR approach uses multiple
planes in order to compute multiple phase profiles for each plane at which
amplitude data has been collected. The phase retrieval is done by inverting
a Poisson type partial differential equation (PDE), thus generating the phase
for the entire optical beam.

In this article we present the theoretical result on which WBPR is based,
two implementations for solving the Poisson PDE from figure 1, and three nu-
merical case studies, followed by an analysis of the advantages and limitations
of the method.
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2. Mathematical background for WBPR

In this section we present the derivation of the PDE used for retrieving
the phase function and the two scenarios on which the retrieval is applied.

2.1. Deriving the retrieval PDE

The PDE that models the paraxial wave equation for the transverse 1-
dimensional case is

∂zψ =
i

2k
∂2xψ (1)

where k is the wavenumber and ψ : R2 → C represents the slowly varying
envelope of the electric field.

By substitution ψ = A exp(iϕ) equation (1) becomes

(∂zA+ iA∂zϕ) =
i

2k
(∂2xA+ 2i∂xA∂xϕ+ iA∂2xϕ− A(∂xϕ)

2) (2)

which can be split in two equations by identifying the real and imaginary parts
of equation (2)

∂zA = − 1

2k
(2∂xA∂xϕ+ A∂2xϕ) (3)

A∂zϕ =
1

2k
(∂2xA− A(∂xϕ)

2). (4)

Solving for ∂xϕ in equation (3) we get

∂xϕ = − k

A2
∂z

∫ x

x0

A2dx′ +
(A2∂xϕ)|x=x0

A2
. (5)

Introducing ∂xϕ from (5) in (4) gives

∂zϕ =
1

2kA

(
∂2xA− A

(
k

A2
∂z

∫ x

x0

A2dx′ +
(A2∂xϕ)|x=x0

A2

)2
)

(6)

Theoretically, by solving equations (5) and (6) one can retrieve the phase
function for the given amplitude function.

Equations (5-6) can be rewritten for simplicity as

∇ϕ = F. (7)

where F : R2 → R2 is given by the right-hand side terms.
Since ϕ is a phase function, it is described by a scalar field. Then it is

true that ∇ × (∇ϕ) = 0, which should be equivalent to ∇ × F = 0. This
could be expected when the amplitude function is known to correspond to an
actual optical beam, but it might not necessarily be the case if numerical or
measurement errors exist in the amplitude data, so it is probable that for some
cases ∇× F ̸= 0.

The implication is that the function F from equation (7) has a curl-free
component and a divergence-free component such that
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F = ∇φdiv +∇×φcurl (8)

according to the Helmholtz decomposition.
Since the desired phase function has to be a scalar field, based on equation

(8) we assume that ∇×φcurl has to be excluded from the computation. This
can be achieved by applying the divergence ∇· operator on equation (8) which
gives

∇ · F = ∆φdiv +∇ · (∇×φcurl) = ∆φdiv. (9)

because by definition ∇ · (∇×φcurl) = 0.
From equation (9) the term φdiv can be considered to be the desired

phase function ϕ, such that equation (9) can be expressed as

∆ϕ = ∇ · F (10)

which is a Poisson equation and can be inverted formally[18] giving the solution

ϕ = ∆−1(∇ · F). (11)

2.2. Existence of background

A particular scenario related to solving for the phase function can be
obtained starting from equations (5-6). In the general case of equations (5-6)
it is required that both ∂xϕ(x0) is known and that A ̸= 0. If however a spread
out beam passes through a material that slightly changes the phase function,
both issues can be avoided by considering solutions with a background level
for which the amplitude function is given by Ā = |A exp(iϕ)+ c| where c ∈ R∗

+

is a constant, such that Ā > 0. In this case we can compute a vector field F
given by equations (5) and (6) such that

F =

 − k
Ā2∂z

∫ x

x0
Ā2dx′

1
2kĀ

(
∂2xĀ− Ā

(
k
Ā2∂z

∫ x

x0
Ā2dx′

)2) . (12)

where the term ∂xϕ(x0) has been neglected. The addition of constant c implies
that the function ψ = R+ iI, where R is the real part and I is the imaginary
part, becomes ψ̄ = (R+ c) + iI which translates to having the new amplitude
function

Ā =
√

(R + c)2 + I2 =
√
R2 + I2 + c2 + 2Rc =

√
A2 + c2 + 2Rc (13)

where A2 = R2 + I2 = |ψ|2, while the new phase function becomes

ϕ̄ = atan

(
I

R + c

)
. (14)

We notice that if c ≫ max(R), equations (13-14) can be approximated
to Ā → c and ϕ̄ → 0 which implies that the magnitude of the phase function
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and its change along each variable is diminished

lim
c→∞

∂xϕ̄ = lim
c→∞

1

1 +
(

I
R+c

)2 ·
(

∂xI

R + c
− I∂xR

(R + c)2

)
= 0. (15)

We however are interested in the regions where the initial amplitude would
have tended to 0, i.e. the boundaries of the transverse spatial domain. The
effect of having a background here assures that ∂xϕ(x0) → 0 if x0 is at the
boundary of the domain.

This implies that from a practical perspective the background can be
c ≈ max(A) and the effect of reducing the influence of the initial condition is
still satisfied, since in (15) c ≫ R and c ≫ I because R → 0 and I → 0 as
x→ x0.

3. Numerical implementation

Two methods have been used to solve equations (10-11) in order to ex-
clude possible numerical artifacts due to a specific implementation of the nu-
meric schemes.

3.1. Fourier Transform (FT)

The first method uses the Fourier Transform (FT with F symbol) of
equation (11) which gave

ϕ̃ =
−1

4π2(ξ2 + η2)
F [∇ · F] (16)

where ξ and η are the spatial frequencies associated with the x and z axes.
Check the appendix for a complete derivation of 16.

Equation (16) can be evaluated numerically for a discrete amplitude func-
tion that is used to compute ∇ · F. The FT is handled by the Fast Fourier
Transform algorithm. The problem of dividing by zero in the fraction when
ξ = η = 0 can be excluded by simply considering the FT at that point to be
equal to zero. This is motivated by the fact that the contribution of the zero
frequencies consists of adding a constant to the inverse FT which does not
affect the phase of the solution.

3.2. Inversion of linear system (LS)

The second method consists of writing the Laplace operator ∆ from
equation (10) by approximating the derivatives using finite differences e.g.

∂2xϕ(zi, xi) ≈
ϕ(zi, xi+1)− 2ϕ(zi, xi) + ϕ(zi, xi−1)

∆x2
. (17)
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This way the ∂2x and ∂2z operators become tridiagonal matrices

Mx =
1

∆x2


−2 1 0 0 · · · 0 0 0
1 −2 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1
0 0 0 0 · · · 0 1 −2

 (18)

Mz =
1

∆z2


−2 1 0 0 · · · 0 0 0
1 −2 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1
0 0 0 0 · · · 0 1 −2

 (19)

that can be used to compute the matrix for the Laplace operator ∆ as

∆ =Mz ⊗ I + I ⊗Mx (20)

where ⊗ is the Kronecker product and I is the identity matrix. Using (20)
transforms the PDE (10) into a system of linear equations which can be solved
for ϕ.

4. Numerical validation

The retrieval in this section has been achieved following the diagram
from figure 2. Simulated amplitude data is used to compute ∇ϕ = F using
eq. (12) using finite differences and some given numeric parameters. Next
∆ϕ is computed and the two solving procedures FT and LS are applied. The
results are analyzed using a cross-correlation based method. A correction to
the retrieved phase is applied on the cases that do not have a background.

The numeric parameters used for the simulations are ∆x = 2µm, ∆z =
0.1mm, a spatial grid (z, x) with shape 800×2400 pixels respectively, following
a crop along the x axis to keep data only from the center in-between pixels
800 and 1600.

The retrieved phase is compared using the following approach. The re-
trieved phase is applied to the amplitude data in order to generate the re-
constructed beam ψretrieved, which will be compared with the original numeric
solution of the propagation equation ψnumeric. First the discrete beams are
normalized with the L2 norm

ψnumeric →
ψnumeric√∑

n,m |ψnumeric[n,m]|2

ψretrieved →
ψretrieved√∑

n,m |ψretrieved[n,m]|2



Phase retrieval for optical beams with 1-dimensional transverse domain 219

Known A[i, j]

Compute ∇ϕ using F

Compute ∆ϕ from ∇ϕ

Compute ϕ using FT Compute ϕ using LS

Analysis

Correction

Num. Param.Finite Diff.

Fig. 2. Flow charts for the numeric phase retrieval.

and then their cross-correlation is computed using formula

(ψnumeric ⋆ ψretrieved)[l, k] =
∑
n,m

ψnumeric[n,m]ψ∗
retrieved[n+ l,m+ k] (21)

The ideal match between two functions corresponds to a peak of the
cross-correlation absolute value of 1 when the shifts between the two functions
are l = 0, k = 0.

We have tested the method on numerically generated amplitude profiles
corresponding to a superposition of three Gaussian beams, an Airy beam,
and the interference of two Gaussian beams. Out of all the cases, we present
in greater detail only the later since it encompasses all the aspects that are
relevant to the previously discussed theoretical aspects. The initial conditions
used for computing the numerical data in each case that has been used for the
retrieval are plotted in figure 3.

4.1. Interference pattern with background

For the numeric validation we have used the numerically simulated in-
terference of two Gaussian beams with initial condition

ψ0(x) =
1

σ
√
2π

[
exp

(
−(x− µ)2

2σ2

)
+ exp

(
−(x+ µ)2

2σ2

)]
+ c

with σ = 10µm, µ = 0.2mm (figure 3.A) and background of c = 100a.u.. The
width of each Gaussian beam has been chosen via the σ parameter in order to
generate a spread beam after a short propagation distance, which was required
in order to obtain the interference, without introducing numerical artifacts due
to the step on the transverse domain. The numerical solution for this initial
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(a) Interference (b) Airy

(c) Gaussian super-
position

Fig. 3. Initial conditions used for the computation of the nu-
merical data used in testing the method.

conditions has been computed in order to generate the amplitude data from
figure 4.A which will be used in the following to test WBPR. The phase of
the solution (figure 4.B) is used for comparison with the retrieved phase from
WBPR.

For the comparison with the initial phase function, the retrieved one is
processed using

ϕFT := arg(|ψ + c| exp(iϕFT )− c)

and ϕLS similarly for the LS method, where ψ is the computed numerical so-
lution for the interference pattern. The cross-correlation comparison using the
reconstructed complex functions ψFT = |ψ| exp(iϕFT ) and ψLS = |ψ| exp(iϕLS)
returns non-shifted peaks of 0.988 for FT and 0.995 for LS which indicates the
similitude between the reference and the reconstructed beams.

4.2. Interference pattern without background

Here we use the interference pattern from subsection 4.1 with the implicit
exception of not adding the background for the retrieval. During the numerical
computation of the term ∇·F a threshold criterion is introduced by setting the
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(c) FT method.

0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0

z[mm]

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

x[
m
m
]

−3

−2

−1

0

1

2

3

(d) LS method.

Fig. 4. Results of computing the phase for the amplitude func-
tions of the interference given by two Gaussian beams using the
FT and LS methods.

amplitude function to zero whenever its values are less than 1% of the global
peak.

The retrieved phase functions have a piston term ϕ0(z)[12] that varies
along the propagation axis as it can be seen in figure 5. Due to the piston term,
by comparing cases 4.C and 4.D to 5.A and 5.B respectively it can be easily
noticed that the retrieved phases are different. Other differences between the
reference phase and the retrieved one include the existence of slow varying
terms. The most common types are linear and quadratic, which have the
effect of tilting the propagation direction of the beam, and adding a lens effect
respectively.

In order to correct for the existence of the piston and slow varying terms
the following correction has been applied on both FT and LS methods. The
retrieved phase is applied to the input amplitude data, generating an inter-
mediary beam function. The intermediary beam function consists of multiple
equally spaced complex profiles. Each such profile is used to compute a re-
constructed beam by forward and backward propagating it until the entire
propagation domain is covered. The amplitude of the reconstructed beam is
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(a) Phase FT.
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(b) Phase LS.

Fig. 5. The phase functions retrieved for the interference pat-
tern without background.

compared with the initial amplitude data using cross-correlation as in the pre-
vious case. The maximum value of the cross-correlation for each reconstructed
beam is stored in order to identify the best reconstructed beam.

For both FT and LS methods during this example, the non-shifted cross-
correlation amplitude peaks range from 0.74 and 0.9994 for all the recon-
structed beams, with the best reconstructed beams having values of 0.9994
for LS and 0.9993 for FT. For a visual comparison, the phases of the best
reconstructed cases are shown in figure 6. It should be mentioned that the
visible differences between figure 6 compared with figure 4 are due to a global
phase constant.

5. Further discussions

The two cases that have been presented, although treated differently in
terms of the existence of background, address the same problem regarding the
phase retrieval. The background case has the advantage of not requiring to
know the initial condition. The case without background ignores the initial
condition term, but requires additional corrections because of it. Both methods
can then be regarded as trying to eliminate the existence of either piston or
slow varying terms.

In the case of having a background, the piston term is corrected due
to not having the influence of the initial condition term near the boundary
of the transverse domain. The slowly varying terms can still appear due to
the numerical implementation of the retrieval, which in turn can be corrected
following the same procedure as for the case with background. For the case
of having a background, the correction is necessary since the piston term can
appear due to ignoring the initial condition term. The slow varying terms
are avoided by searching for the profile that best reconstructs the amplitude
profile. Thus from a computational perspective, the background case is faster
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(a) Phase FT.
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(b) Phase LS.

Fig. 6. Results of computing the reconstructed amplitude and
phase functions from amplitude data without background.
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(a) Phase
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(b) LS
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(c) FT

Fig. 7. Phase (left) and retrieved phases with LS (center) and
FT (right) for a Gaussian superposition beam.

but less general, while the no background case is slower due to the required
correction but is more general.

In order to apply the method, amplitude data can be acquired from
intensity measurements using a basic CCD camera at equally spaced intervals
along the propagation axis. Since the method is only 1-dimensional in the
transverse plane, the cases that can be investigated must be ideally constant
along one transverse axis, which usually is the case for interference. Due to
the use of ca camera that records the images in a digital format, the intensity
values are discrete due to recording the intensity levels using a given number
of bits, usually 8. Thus, the introduction of the threshold value from the case
without background is motivated by the discrete nature of the recorded images.

As mentioned previously, the phase retrieval method has also been tested
on other scenarios. The results are presented in figure 7 for Gaussian superpo-
sition beam with background with 0.99 values for both LS and FT, and figure
8 for Airy beam without background with 0.98 for LS and 0.99 for FT.
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Fig. 8. Phase (left) and retrieved phases with LS (center) and
FT (right) for an Airy beam without background.

6. Conclusion

A method of computing the phase function from the amplitude of a
1-dimensional transverse optical beam for a finite propagation interval has
been presented. The method is applied on amplitude data with and without
background, with an additional correction being applied on the later case. The
results indicate that the method can be applied on amplitude data that contain
points where the amplitude is zero although the computation time is increased.

APPENDIX

Solving equation (3)

Equation (3) can be identified with a non-homogeneous first order differ-
ential equation with variable coefficients

A∂2xϕ+ 2∂xA∂xϕ = −2k∂zA (22)

where the variable is ∂xϕ. For solving (22) we use multiply equation (22) by
A which gives

A2∂2xϕ+ 2A∂xA∂xϕ = −2kA∂zA (23)

which can be written as

∂x(A
2∂xϕ) = −k∂zA2. (24)

Integrating equation (24) by
∫ x

0
dx′ gives

A2∂xϕ = −k
∫ x

0

∂zA
2dx′ (25)

which gives the solution for ∂xϕ as

∂xϕ = − k

A2

∫ x

0

∂zA
2dx′ +

(A2∂xϕ)|x=0

A2
(26)
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Deriving equation (16)

Equation (16) can be derived by using the property of the Fourier Trans-
form

F [∂xf(x)] = 2πiξF [f(x)] (27)

where ξ is the frequency associated with the x variable. Equation (16) is
derived from equation (10)

∆ϕ = ∂2xϕ+ ∂2zϕ = ∇ · F (28)

on which the Fourier Transform is applied

F [∂2xϕ+ ∂2zϕ] = F [∇ · F]. (29)

Each derivative in the left-hand side of equation (31) becomes

− (4π2ξ2 + 4π2η2)ϕ̃ = F [∇ · F] (30)

according to equation (27), where F [ϕ] = ϕ̃, and η is the frequency associated
with the z variable. By rewriting equation (30) we get

ϕ̃ = − 1

4π2(ξ2 + η2)
F [∇ · F] (31)

which is the same as equation (16).
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