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RESEARCH ON BEARING SURFACE DEFECT DETECTION 

BASED ON IMPROVING YOLOV5S 

Changli ZHA*1,Shining TANG2,Jianglin CHENG3,Tao CHENG4 

Deep learning has advanced intelligent defect detection in bearing 
manufacturing. This research introduces an improved algorithm to address YOLOv5s 
network limitations in identifying minor defects in micro bearings. The original 
backbone network is replaced by the innovative PoolFormer module, while the 
lightweight CARAFE upsampler substitutes the initial feature sampler, reducing 
computational complexity and enhancing token feature aggregation. Additionally, a 
specialized detection layer is integrated into the feature fusion network of the 
YOLOv5s model to improve small target identification. Modifications to the loss 
function include the incorporation of WIoU loss, confidence scaling loss, and 
classification Bce loss. Experimental results demonstrate that the enhanced YOLOv5s 
network model achieves a 93.7% accuracy rate on a unique bearing defect dataset. 
In platform-based detection, the updated YOLOv5s model surpasses the original by 
18% in defect detection accuracy, showcasing significant improvements in accuracy 
and reliability. 

Keywords: Deep learning; YOLOv5s; Bearing defect; Machine vision; Small 
object detection  

1. Introduction 

The identification of surface defects on bearings has been a long-standing 
area of study. Besides manual examination, common methods include eddy current 
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[1] and magnetic flux leakage inspections [2]. The primary challenge is detecting 
defects efficiently and effectively while minimizing manual labor and inspection 
expenses. In response, researchers have explored traditional image processing 
techniques like scale-invariant feature transformation [3], oriented gradient 
histograms [4], and local binary patterns [5]. However, these methods face 
drawbacks in terms of subjectivity and cost, particularly when identifying small 
targets and irregular defects. The advent of convolutional neural networks (CNN) 
has shifted the focus from traditional feature extraction algorithms to neural 
network technology for target recognition. Currently, the leading deep learning 
algorithms for object recognition include the two-stage framework based on the 
region-CNN (R-CNN) [6-8] series and the single-stage algorithm, which treats 
target detection as a regression issue. The R-CNN framework uses a selective 
search algorithm to generate proposals, which are then input into a CNN model for 
feature extraction. A support vector machine uses the extracted features for object 
prediction and classification. Although this framework offers high object detection 
accuracy, it operates slowly. In contrast, single-stage algorithms such as the YOLO 
[9] series and SSD [10] directly determine the category and location of targets from 
input images. These methods offer rapid processing speed but have lower target 
detection accuracy. 

The utilization of advanced deep learning models for target detection has 
revolutionized the field of object surface defect identification. Chen Qi [11] used 
local topography and image subtraction to extract defect characteristics on the inner 
surface of bearings, employing a support vector machine (SVM) classifier for 
defect categorization. Kunakornvong et al. [12] detected air bearing defects by 
analyzing variations in brightness. They used a co-occurrence matrix to mitigate 
the impact of brightness alterations on air bearing images, defining characteristic 
parameters based on four distinguishing features and utilizing the Euclidean 
distance method to determine defect identification thresholds. Deng et al. [13] 
employed fitting techniques and circular scanning to delineate the detection area of 
bearings, enhancing image quality through contrast enhancement and low-pass 
filtering methods. Feng et al. [14] proposed a defect detection network based on a 
priori models to detect pit defects at different scales on the bearing surface. 
Experimental results show that the accuracy of this method for detecting pit defects 
of different sizes reaches 99.3%, which surpasses other existing methods by 2 to 
5%. Gao et al. [15] improved Faster R-CNN method for image detection of surface 
defects. The outcomes showcased an enhancement in the detection accuracy of 
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surface defects in insulating bearings to 91.2%, which is 4.8% higher than the 
original Faster R-CNN method. 

Advancements have been made in detecting defects on bearing surfaces, yet 
limitations persist in key areas such as accuracy and speed for identifying small 
targets. This research project employs the YOLOv5s algorithm as the base for 
detecting bearing surface defects, substituting the original backbone network with 
the PoolFormer module. Additionally, the lightweight CARAFE upsampler 
replaces the original sampler for feature maps, reducing computational complexity 
and improving feature aggregation. Moreover, a layer for detecting small targets is 
integrated into the feature fusion network based on YOLOv5s to enhance small 
target identification. The implementation of a new loss function, which includes 
WIoU for localization, confidence scaling, and Bce for classification, further boosts 
detection capabilities. The study concludes with an experimental setup to validate 
the theoretical findings. 

2. YOLOv5 

The YOLO series has revolutionized object detection with its innovative 
algorithm that combines a region of interest (ROI) module and a detection stage to 
increase detection speed. In 2020, the release of YOLOv5 [16], the fifth generation, 
marked a significant advancement in deep learning algorithms for target detection. 
Building on the success of YOLOv4, YOLOv5 further improves detection 
accuracy. Despite its compact size of just 28 MB, YOLOv5's weight files are highly 
effective, making it an ideal starting model. The impressive performance of 
YOLOv5 is evident in its results on the COCO dataset. The YOLOv5 model 
comprises four main elements: Input, Backbone, Neck, and Head.  

3. Algorithm improvement 

3.1 Algorithm framework  
This study introduces a suggested framework for identifying surface defects 

on bearings employing a Transformer model structure and merging features at 
multiple scales. The procedural framework includes the following steps: (1) 
Capture images of flawed bearings using a camera, then filter, label, augment, and 
segment the images to create the dataset. (2) Enhance the YOLOv5s network by 
replacing the convolutional and C3 modules of the foundational network with the 
Poolformer module. Add a layer for detecting small targets in the YOLOv5s feature 
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fusion network to enable multi-scale feature fusion. (3) Train the model using the 
training dataset and evaluate its performance with the test set images from the 
dataset. 

3.2 Poolformer 
The PoolFormer [17] approach, developed by Yan Shuicheng's research 

team, validates the effectiveness of the Transformer model's structure. Within this 
design, the token mixer merges information across tokens, while the channel MLP 
consists of two MLP layers and non-linear activation functions. PoolFormer 
replaces the Transformer's attention module with a non-parametric spatial average 
pooling layer known as Pooling. Unlike the attention module, Pooling lacks 
trainable parameters, reducing computational complexity and improving the 
aggregation of neighboring token attributes. Additionally, the model features four 
stages with embedding dimensions of 64, 128, 320, and 512. Assuming a total of L 
blocks in the PoolFormer model, stages 1, 2, 3, and 4 contain L/6, L/6, L/2, and L/6 
blocks, respectively. 

3.3 Upsampling operators: CARAFE 
Upsampling is used in modern convolutional network designs for object 

detection, instance segmentation, and scene resolution enhancement. Wang et al. 
introduced a CARAFE[18] upsampling operator that implements content-aware 
feature rearrangement. CARAFE predicts the recombined kernel and reorganizes 
features within a specified neighborhood based on the content at each location. This 
operator achieves significant improvements with minimal additional parameters 
and computational workload. CARAFE surpasses traditional upsampling operators 
like interpolation or deconvolution by using adaptive and optimized recombined 
kernels at different positions.  

3.4 Adding the small size detection module 
The initial YOLOv5 model uses feature maps of different sizes to detect 

targets of varying scales within an image. The shallow network feature map 
provides detailed location information, while the deep network feature map offers 
more semantic details. Larger targets are identified using an 80×80 feature map, 
medium-sized targets with a 40×40 feature map, and smaller targets with a 20×20 
feature map. In images depicting bearing defects, most defects are considered small 
targets, representing only a small portion of the overall image. The original network 
might overlook positional details from the shallow network when detecting these 
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small targets, potentially impacting the detection process. To address this issue, an 
additional small-scale detection layer has been incorporated into the YOLOv5 
network structure, increasing the number of detection layers from 3 to 4. This 
addition introduces minimal parameters, reducing the risk of losing important 
feature information and enhancing the model's ability to detect small targets. 

3.5 Loss Function Improvements 
1) Optimize the regression box loss function 

The IoU loss is calculated by determining the Intersection over Union (IoU) 
between the real and predicted boxes. Fig. 1 illustrates the plot of IoU loss.  

 
(a) Intersection      (b) Union 

Fig. 1. The plot of IoU loss. 
Box C is the smallest box that can enclose both the real box A and the 

predicted box B. Equation 1 defines the IoU loss. 
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In YOLOv5s, Complete IoU (CIoU) is used to calculate the localization 
loss, and the calculation formula is shown in Equation 2. 
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Among them: bA and bB represent the centroid points of the prediction box 
and the real box respectively. The Euclidean distance between the two points is 
denoted as ρ. The diagonal length of the minimum circumscribed rectangle of the 
prediction box and the real box is represented by c. Parameter α indicates the 
balance between these distances, while parameter v evaluates the aspect ratio 
consistency between the predicted frame and the target frame. 

The CIoU algorithm considers overlapping areas, center point distances, 
and aspect ratio consistencies in boundary regression to enhance the convergence 
accuracy of the detection frame and stabilize the regression process. However, the 
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variable v in Equation 3 may not accurately reflect the height-width difference and 
confidence, limiting the model's ability to optimize similarity. CIoU relies on high-
quality examples in the training data to improve bounding box loss fitting through 
a monotonic focusing mechanism. Yet, blindly reinforcing boundaries can reduce 
detection performance if the target detection dataset includes low-quality examples. 
To address this issue, the article suggests using WIoU (Wise-IoU) [19] as the border 
regression loss function, calculated as follows. 
 WIOU WIoU IoUL L= R  (3) 
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Among them: WIoUR is the distance metric; gW and gH are the width and height 
of the minimum bounding box; gtx and gty are the center points of the real box.

[1, )WIoU e∈R , significantly amplify the IOUL of the ordinary mass anchor box. [0,1]IoUL ∈

, significantly reduce the WIoUR of the high-quality anchor box and its attention to the 
distance of the center point when the anchor box coincides well with the target box. 

Based on the distance metric, WioU develops a distance attention 
mechanism that reduces the geometric metric's impact on the model training 
without significantly hindering the overlapping of the anchor frame and target 
frame. 

2) Adding Varifocal loss confidence loss function 
To address the issue of dense targets and uneven positive and negative 

samples in the dataset, this article introduces the varifocal loss function. The 
varifocal loss function enhances the confidence loss function by ensuring equal 
treatment of positive and negative samples and mitigating category imbalance 
during training. This is defined as shown in Equation 5. 
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In the context of the equation, p represents the forecasted classification 
score, while q represents the desired score. For positive instances, q corresponds to 
the Intersection over Union (IoU) value, comparing the actual frame to the predicted 
frame, and for negative instances, q indicates a target score of 0. The varifocal loss 
formula incorporates a parameter that regulates scaling by reducing the loss 
associated with negative instances while maintaining the loss for positive instances. 
This approach enhances the overall training effectiveness and model performance. 
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3) The improved loss function 
This paper introduces a novel loss function that integrates the WIoU loss 

function for localization, the varifocal loss function for confidence, and the BCE 
(Binary Cross Entropy) loss function for classification. The improved loss function 
addresses specific categories and the overall loss function in detail, 
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Among the variables listed, N represents the number of samples determined 
by the batch size. The positioning loss function, reliability loss function, 
classification loss function, and overall batch size loss function are denoted by 

IOULoss , objLoss , clsLoss , and Loss , respectively, during the training process. Each 
step employs a global loss function for back propagation and weight adjustments. 

3.6 Improved YOLOv5s Network Structure 
The YOLOv5s algorithm network exhibited reduced detection accuracy on 

the selected dataset, with instances of false positives and missed detections. To 
address this issue. Initially, the convolution module and C3 module of the backbone 
network are replaced with the Poolformer module. The original sampler for feature 
map sampling is also swapped with the lightweight CARAFE upsampler. These 
modifications aim to reduce computational complexity and improve the 
approximation of token feature combinations. A 160×160 small target detection 
layer is incorporated into the feature fusion network to improve the model's 
detection performance on small target samples. Subsequently, a new loss function 
is introduced, combining the WIoU loss function for positioning, the varifocal loss 
function for confidence, and the Bce loss function for classification. The enhanced 
YOLOv5s network model is depicted in Fig. 2. 
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Fig. 2. Improved YOLOv5s Network Structure. 

4 Experiment 

The study described in this manuscript employed the PyTorch 1.7.1 
framework for deep learning. The hardware setup included an Intel i5-12400F CPU 
running at 2.50 GHz and an NVIDIA GeForce RTX 3060 GPU with 12GB of 
VRAM.  

4.1 Dataset 
Data collection was conducted in real-time at the workbench, categorizing 

surface imperfections into bruises, scratches, and grooves. A total of 600 images 
were collected for each type of imperfection, resulting in a dataset of 1,800 images. 
Some images were randomly rotated and scaled, increasing the dataset size to 5,800 
images. Flawed regions were annotated using Labelme software to label rectangular 
boxes of various dimensions. Fig. 3 showcases the three defect classifications. 

  

 
(a)           (b)                (c)                 (d) 
Fig. 3. Types of defects. (a) All three defects, (b) Grooves, (c) Bruised and (d) Scratched. 
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4.2 Model training  
The input image size was to 640 × 640 pixels during model training. An 

IOU threshold of 0.5 was used. The network model underwent 300 training 
iterations with a batch size of 8, using the SGD optimizer and a linear decay learning 
rate scheduling strategy. The initial learning rate was set to 0.01 and gradually 
decreased to 0.0001. The momentum parameter was set to 0.937, and the weight 
decay coefficient to 0.0005. All models were trained with these specified 
parameters.  

4.3 Evaluation index 
To objectively assess the proposed detection method, this study utilizes 

evaluation criteria consistent with MS COCO. The model accuracy evaluation 
criteria include precision (P), recall (R), average precision (AP), and mean average 
precision (mAP). Detection speed is assessed using frames per second (FPS) as the 
performance index. To compare the computational burden of different networks, 
computational time complexity (FLOPs) is selected for method differentiation.  

4.4 Loss function curve 
Fig. 4 illustrates the training loss function curve for the target detection 

algorithm. It reveals that the loss values of the YOLOv5s_improved model 
consistently remain lower than those of the YOLOv5s model. These findings 
demonstrate that the YOLOv5s_improved model proposed in this study converges 
more rapidly during training. Moreover, the loss curve for the YOLOv5s_improved 
model shows smoother fluctuations and reduced numerical deviations, indicating 
that the proposed model exhibits improved stability during the training process. 

 
Fig. 4. Comparison of YOLOv5s and improved YOLOv5s loss function cu 

 
rves. 
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5 Results 

5.1 Ablation experiment 
1) WioU 

Experiments were conducted to determine the most effective model for 
dataset detection, comparing the three models. Fig. 5 presents the PR curve analysis 
of the YOLOv5s_WIoU model using different WIoU versions. The analysis shows 
that the WIoUv1 loss function, incorporating the attention mechanism, yielded the 
best detection results. Consequently, WIoUv1 was chosen as the final model for the 
experiment. 

 

Fig. 5. Comparison PR curve of detection performance under different WIoU models. 
2) Loss weight optimization 
To detect bearing defects effectively, this study aimed to reduce background 

interference and enhance the recognition of target regions by adjusting the weights 
of the loss function components. Initially, equal importance was assigned to 

localization, objectness, and classification tasks, with weights set to IOU 1Loss = , 

obj 1Loss = , and cls 1Loss = . Systematic adjustments were then made to explore 

different task priorities. Increasing the IoU loss weight to 1.5 while reducing the 
objectness and classification weights to 0.75 improved bounding box localization 
precision. Similarly, increasing the objectness loss weight to 1.5 enhanced the 
model's ability to identify target regions, and increasing the classification loss 
weight to 1.5 improved the recognition of defect categories. To balance localization 

precision and target presence detection, a configuration with IOU 1.1Loss = , 
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obj 1.1Loss = , and cls 0.8Loss =  was selected as achieving optimal overall 

performance. The experimental results are shown in Table 1. 
Table 1 

Performance Comparison Under Different Loss Weight Configurations 

IoUλ  objλ  clsλ  mAP50 (%) mAP50:95 (%) 

1 1 1 87.5 43.3 
1.5 0.75 0.75 88.3 45.3 

0.75 1.5 0.75 88.1 44.9 
0.75 0.75 1.5 87.0 42.8 
1.1 1.1 0.8 88.7 45.8 

Table 1 presents the impact of different loss weight configurations on bearing 
defect detection performance. Based on the comparison of experimental results, the 

weight configuration IOU 1.1Loss = , obj 1.1Loss = , and cls 0.8Loss =  was ultimately 

determined as the final parameter setting. Under this configuration, mAP50 reached 
88.7% and mAP50:95 reached 45.8%, achieving the best detection performance. 
Therefore, this configuration is adopted as the final parameter indicator in this 
study. 

3) Upsampling operators: CARAFE 
The precision and speed of the upsampling technique CARAFE can be 

affected by the hyperparameters encoderk upk . To find the right balance between 
precision and speed, this study experiments on these two parameters are conducted. 
The outcomes of these experiments are highlighted in Table 2. 

Table 2 
Comparison of model checking performance of CARAFE with different parameters 

encoderk  upk  mAP50 (%) mAP50:95 (%) GFLOPs(G) 
1 3 89.3 44.0 15.8 
1 5 89.4 44.2 15.8 
3 3 89.4 44.6 15.9 
3 5 90.9 46.8 16.0 
3 7 90.2 46 16.3 
5 5 90.5 45.5 16.5 
5 7 91.2 47.9 17.1 
7 7 90.8 47.3 17.3 
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Table 2 shows that enhancing encoderk and upk  can improve the model's 
performance. However, boosting one parameter alone does not significantly impact 
the model's performance. The findings suggest that higher values for both 
parameters improve performance, but increasing the parameters also increases the 
model's computational complexity. To achieve a balance between precision and 
efficiency, 3encoderk = and 5upk = were chosen as the optimal parameter values for the 
experiment. 

4) The detection effect of the improved model  
The loss weight configuration in this experiment is IOU 1.1Loss = , 

obj 1.1Loss =  and cls 0.8Loss = . Abilative experiments were conducted to assess the 

impact of six integrated modules in the YOLOv5s network model. The results from 
the experiments are outlined in Table 3. The incorporation of the small target 
detection layer significantly enhances accuracy, leading to a 4.8% increase in mAP. 
While WIoUV1 and Varifocal loss modules improve detection accuracy, they also 
introduce additional parameters that marginally affect detection speed. In contrast, 
the CARAFE upsampling operator and Poolformer module are streamlined models 
that enhance network speed. Combining these modules results in a 6.2% increase 
in mAP, demonstrating enhanced detection accuracy. Despite a slight decrease in 
detection speed, the model remains viable for real-time bearing defect detection.  

Table 3  
Ablation experiment 

Number WIoU vfloss CARAFE 
New 

detection 
layer 

Poolformer mAP50 
(%) 

mAP50:95 
(%) FPS 

1      88.7 45.8 114 
2 √     90.6 46.4 108 
3  √    89.9 45.6 110 
4   √   91.7 47.8 118 
5    √  92.8 51.5 94 
6     √ 91.6 48.8 112 
7 √ √    91.3 47.9 98 
8 √ √ √   92.1 51.2 112 
9 √ √ √ √  92.8 51.8 93 

10 √ √ √ √ √ 94.4. 57.6 104 
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5.2 Comparative experiment 
The effectiveness of the proposed algorithm in detecting bearing defects 

was thoroughly assessed through comparisons with various other algorithms, 
including YOLOv5s, YOLOv3, YOLOv3-tiny, SSD, and Faster R-CNN. The 
results of these experiments are presented in Table 4. The proposed approach 
outperforms SSD and YOLOv3 by 21.1% and 10.2% in terms of mAP, respectively. 
It also surpasses Faster R-CNN by 8.4%, indicating superior performance over 
single-stage and two-stage detection models. Although there is a decrease in 
detection speed compared to the original YOLOv5s model, the improved model 
still shows potential for real-time detection. Additionally, detection accuracy 
increased from 87.5% to 93.7%, significantly enhancing precision in detecting 
bearing defects and meeting industry standards for production. 

Table 4  
Comparison of detection performance of different models 

Method mAP50 (%) mAP50:95 (%) FPS 
SSD300 72.6 37.1 77 

Faster R-CNN 85.3 42.4 56 
YOLOv3 83.5 41.3 83 

YOLOv3-tiny 69.6 35.9 125 
YOLOv5s 87.5 43.3 111 

YOLOv5s_improved 94.4 57.6 104 
5.3 Bearing defect detection results 

To evaluate the effectiveness of the improved YOLOv5s algorithm, surface 
defect detection was performed on 50 small bearings with grooves, scratches, and 
abrasions using a visual inspection platform. The results were then compared with 
those obtained using the original YOLOv5s algorithm, as presented in Fig 6 and 
Table 5. 

Table 5  
Comparison of defect detection accuracy 

Method False (EA) Missed (EA) Accuracy rate (%) 

Yolov5s 11 5 68 

YOLOv5s_improved 3 4 86 
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(a)           (b)           (c)           (d) 
Fig. 6. Bearing defect detection effect diagram and Grad-CAM. (a) using the original YOLOv5s 

network model, (b) Grad-CAM, (c) improved YOLOv5s network model and (d) Grad-CAM  
 

The research revealed that the initial YOLOv5s network structure had 
limitations in precisely identifying minor defects on bearing surfaces. However, 
after enhancements were made, there was a notable 18% improvement in accuracy. 
Results for defect identification with the basic model are shown in Fig. 6(a) and 
6(b), while the outcomes with the upgraded model are displayed in Fig. 6(c) and 
6(d). Fig. 6(a) illustrates instances where the original model failed to identify 
certain defects, while Fig. 6(b) utilizes Grad-CAM to pinpoint areas requiring 
attention. In contrast, the improved model effectively identified either deeper or less 
conspicuous defects, as shown in Fig. 6(c) and 6(d). These results validate the 
efficacy of the proposed approach in enhancing defect detection accuracy. 

6. Conclusions 

The YOLOv5s model demonstrates poor detection accuracy on the specific 
dataset. To address this issue, an upgraded algorithm based on the YOLOv5s design 
is proposed in this study. The Backbone network is replaced by the Poolformer 
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module, which incorporates the CARAFE upsampler instead of the original sampler 
for sampling feature maps. These modifications aim to decrease computational 
complexity and improve the aggregation of token features. A multi-scale detection 
strategy is employed to enhance the detection of small surface defects in real-world 
scenarios. A specialized 160x160 layer for small targets is integrated to improve 
the extraction of small targets and features. Utilizing shallow layers for feature 
fusion enhances the model's ability to extract spatial information. Furthermore, the 
loss function is fine-tuned to boost network convergence and regression 
performance during training. Results from experiments indicate that the advanced 
YOLOv5s model achieved a detection accuracy of 93.7% on the custom surface 
defect dataset and in platform-based detection, the upgraded YOLOv5s showed an 
18% improvement in accuracy compared to the original YOLOv5s model. 
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