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RESEARCH ON BEARING SURFACE DEFECT DETECTION

BASED ON IMPROVING YOLOVSS
Changli ZHA*! Shining TANG? Jianglin CHENG?,Tao CHENG*

Deep learning has advanced intelligent defect detection in bearing
manufacturing. This research introduces an improved algorithm to address YOLOvSs
network limitations in identifying minor defects in micro bearings. The original
backbone network is replaced by the innovative PoolFormer module, while the
lightweight CARAFE upsampler substitutes the initial feature sampler, reducing
computational complexity and enhancing token feature aggregation. Additionally, a
specialized detection layer is integrated into the feature fusion network of the
YOLOv5s model to improve small target identification. Modifications to the loss
function include the incorporation of WIoU loss, confidence scaling loss, and
classification Bce loss. Experimental results demonstrate that the enhanced YOLOvSs
network model achieves a 93.7% accuracy rate on a unique bearing defect dataset.
In platform-based detection, the updated YOLOvSs model surpasses the original by
18% in defect detection accuracy, showcasing significant improvements in accuracy
and reliability.

Keywords: Deep learning; YOLOVSs; Bearing defect; Machine vision; Small
object detection

1. Introduction

The identification of surface defects on bearings has been a long-standing
area of study. Besides manual examination, common methods include eddy current
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[1] and magnetic flux leakage inspections [2]. The primary challenge is detecting
defects efficiently and effectively while minimizing manual labor and inspection
expenses. In response, researchers have explored traditional image processing
techniques like scale-invariant feature transformation [3], oriented gradient
histograms [4], and local binary patterns [5]. However, these methods face
drawbacks in terms of subjectivity and cost, particularly when identifying small
targets and irregular defects. The advent of convolutional neural networks (CNN)
has shifted the focus from traditional feature extraction algorithms to neural
network technology for target recognition. Currently, the leading deep learning
algorithms for object recognition include the two-stage framework based on the
region-CNN (R-CNN) [6-8] series and the single-stage algorithm, which treats
target detection as a regression issue. The R-CNN framework uses a selective
search algorithm to generate proposals, which are then input into a CNN model for
feature extraction. A support vector machine uses the extracted features for object
prediction and classification. Although this framework offers high object detection
accuracy, it operates slowly. In contrast, single-stage algorithms such as the YOLO
[9] series and SSD [10] directly determine the category and location of targets from
input images. These methods offer rapid processing speed but have lower target
detection accuracy.

The utilization of advanced deep learning models for target detection has
revolutionized the field of object surface defect identification. Chen Qi [11] used
local topography and image subtraction to extract defect characteristics on the inner
surface of bearings, employing a support vector machine (SVM) classifier for
defect categorization. Kunakornvong et al. [12] detected air bearing defects by
analyzing variations in brightness. They used a co-occurrence matrix to mitigate
the impact of brightness alterations on air bearing images, defining characteristic
parameters based on four distinguishing features and utilizing the Euclidean
distance method to determine defect identification thresholds. Deng et al. [13]
employed fitting techniques and circular scanning to delineate the detection area of
bearings, enhancing image quality through contrast enhancement and low-pass
filtering methods. Feng et al. [14] proposed a defect detection network based on a
priori models to detect pit defects at different scales on the bearing surface.
Experimental results show that the accuracy of this method for detecting pit defects
of different sizes reaches 99.3%, which surpasses other existing methods by 2 to
5%. Gao et al. [15] improved Faster R-CNN method for image detection of surface
defects. The outcomes showcased an enhancement in the detection accuracy of
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surface defects in insulating bearings to 91.2%, which is 4.8% higher than the
original Faster R-CNN method.

Advancements have been made in detecting defects on bearing surfaces, yet
limitations persist in key areas such as accuracy and speed for identifying small
targets. This research project employs the YOLOvSs algorithm as the base for
detecting bearing surface defects, substituting the original backbone network with
the PoolFormer module. Additionally, the lightweight CARAFE upsampler
replaces the original sampler for feature maps, reducing computational complexity
and improving feature aggregation. Moreover, a layer for detecting small targets is
integrated into the feature fusion network based on YOLOvSs to enhance small
target identification. The implementation of a new loss function, which includes
WIoU for localization, confidence scaling, and Bce for classification, further boosts
detection capabilities. The study concludes with an experimental setup to validate
the theoretical findings.

2. YOLOvVS

The YOLO series has revolutionized object detection with its innovative
algorithm that combines a region of interest (ROI) module and a detection stage to
increase detection speed. In 2020, the release of YOLOVS [16], the fifth generation,
marked a significant advancement in deep learning algorithms for target detection.
Building on the success of YOLOv4, YOLOvS further improves detection
accuracy. Despite its compact size of just 28 MB, YOLOvS5's weight files are highly
effective, making it an ideal starting model. The impressive performance of
YOLOVS is evident in its results on the COCO dataset. The YOLOvS model
comprises four main elements: Input, Backbone, Neck, and Head.

3. Algorithm improvement

3.1 Algorithm framework

This study introduces a suggested framework for identifying surface defects
on bearings employing a Transformer model structure and merging features at
multiple scales. The procedural framework includes the following steps: (1)
Capture images of flawed bearings using a camera, then filter, label, augment, and
segment the images to create the dataset. (2) Enhance the YOLOvS5s network by
replacing the convolutional and C3 modules of the foundational network with the
Poolformer module. Add a layer for detecting small targets in the YOLOVS5s feature
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fusion network to enable multi-scale feature fusion. (3) Train the model using the
training dataset and evaluate its performance with the test set images from the
dataset.

3.2 Poolformer

The PoolFormer [17] approach, developed by Yan Shuicheng's research
team, validates the effectiveness of the Transformer model's structure. Within this
design, the token mixer merges information across tokens, while the channel MLP
consists of two MLP layers and non-linear activation functions. PoolFormer
replaces the Transformer's attention module with a non-parametric spatial average
pooling layer known as Pooling. Unlike the attention module, Pooling lacks
trainable parameters, reducing computational complexity and improving the
aggregation of neighboring token attributes. Additionally, the model features four
stages with embedding dimensions of 64, 128, 320, and 512. Assuming a total of L
blocks in the PoolFormer model, stages 1, 2, 3, and 4 contain L/6, L/6, L/2, and L/6
blocks, respectively.

3.3 Upsampling operators: CARAFE

Upsampling is used in modern convolutional network designs for object
detection, instance segmentation, and scene resolution enhancement. Wang et al.
introduced a CARAFE[18] upsampling operator that implements content-aware
feature rearrangement. CARAFE predicts the recombined kernel and reorganizes
features within a specified neighborhood based on the content at each location. This
operator achieves significant improvements with minimal additional parameters
and computational workload. CARAFE surpasses traditional upsampling operators
like interpolation or deconvolution by using adaptive and optimized recombined
kernels at different positions.

3.4 Adding the small size detection module

The initial YOLOvVS model uses feature maps of different sizes to detect
targets of varying scales within an image. The shallow network feature map
provides detailed location information, while the deep network feature map offers
more semantic details. Larger targets are identified using an 80x80 feature map,
medium-sized targets with a 40x40 feature map, and smaller targets with a 20x20
feature map. In images depicting bearing defects, most defects are considered small
targets, representing only a small portion of the overall image. The original network
might overlook positional details from the shallow network when detecting these
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small targets, potentially impacting the detection process. To address this issue, an
additional small-scale detection layer has been incorporated into the YOLOvS
network structure, increasing the number of detection layers from 3 to 4. This
addition introduces minimal parameters, reducing the risk of losing important
feature information and enhancing the model's ability to detect small targets.

3.5 Loss Function Improvements
1) Optimize the regression box loss function
The IoU loss is calculated by determining the Intersection over Union (IoU)
between the real and predicted boxes. Fig. 1 illustrates the plot of IoU loss.
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Fig. 1. The plot of IoU loss.
Box C is the smallest box that can enclose both the real box A and the
predicted box B. Equation 1 defines the IoU loss.
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In YOLOvVSs, Complete IoU (CloU) is used to calculate the localization
loss, and the calculation formula is shown in Equation 2.
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Among them: b? and b® represent the centroid points of the prediction box
and the real box respectively. The Euclidean distance between the two points is
denoted as p. The diagonal length of the minimum circumscribed rectangle of the
prediction box and the real box is represented by c¢. Parameter o indicates the
balance between these distances, while parameter v evaluates the aspect ratio
consistency between the predicted frame and the target frame.

The CloU algorithm considers overlapping areas, center point distances,
and aspect ratio consistencies in boundary regression to enhance the convergence
accuracy of the detection frame and stabilize the regression process. However, the
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variable v in Equation 3 may not accurately reflect the height-width difference and
confidence, limiting the model's ability to optimize similarity. CloU relies on high-
quality examples in the training data to improve bounding box loss fitting through
a monotonic focusing mechanism. Yet, blindly reinforcing boundaries can reduce
detection performance if the target detection dataset includes low-quality examples.
To address this issue, the article suggests using WloU (Wise-IoU) [19] as the border
regression loss function, calculated as follows.

L =R, L

wiou WioU ~1oU (3)

R, = €Xp (x_xgt )2 +(y_*ygt )2
(w7 +H)

(4)

Among them: Ry.y is the distance metric; 7, and 7, are the width and height
of the minimum bounding box; . and v, are the center points of the real box.
Ry €ll.€) , significantly amplify the Liov of the ordinary mass anchor box. Ly €[0.1]
, significantly reduce the Ry.u of the high-quality anchor box and its attention to the
distance of the center point when the anchor box coincides well with the target box.

Based on the distance metric, WioU develops a distance attention
mechanism that reduces the geometric metric's impact on the model training
without significantly hindering the overlapping of the anchor frame and target
frame.

2) Adding Varifocal loss confidence loss function

To address the issue of dense targets and uneven positive and negative
samples in the dataset, this article introduces the varifocal loss function. The
varifocal loss function enhances the confidence loss function by ensuring equal
treatment of positive and negative samples and mitigating category imbalance
during training. This is defined as shown in Equation 5.

—q(qlog(p)+(1—-g)log(1-p)),  ¢>0

5
—ap” log(1- p), q=0 ©)

VFL(p,q) = {

In the context of the equation, p represents the forecasted classification

score, while g represents the desired score. For positive instances, g corresponds to
the Intersection over Union (IoU) value, comparing the actual frame to the predicted
frame, and for negative instances, ¢ indicates a target score of 0. The varifocal loss
formula incorporates a parameter that regulates scaling by reducing the loss
associated with negative instances while maintaining the loss for positive instances.
This approach enhances the overall training effectiveness and model performance.
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3) The improved loss function
This paper introduces a novel loss function that integrates the WloU loss
function for localization, the varifocal loss function for confidence, and the BCE
(Binary Cross Entropy) loss function for classification. The improved loss function
addresses specific categories and the overall loss function in detail,

(x _ xgt) i (y _*ygt ) LIoU (6)
(w; +H})

Loss,,, = exp{

I _|—q(qlog(p)+(1-q)log(1-p)),  ¢>0
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N
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Among the variables listed, N represents the number of samples determined
by the batch size. The positioning loss function, reliability loss function,
classification loss function, and overall batch size loss function are denoted by
Loss,oy, Lossy;, Loss,, and Loss , respectively, during the training process. Each
step employs a global loss function for back propagation and weight adjustments.

3.6 Improved YOLOVSs Network Structure

The YOLOVS5s algorithm network exhibited reduced detection accuracy on
the selected dataset, with instances of false positives and missed detections. To
address this issue. Initially, the convolution module and C3 module of the backbone
network are replaced with the Poolformer module. The original sampler for feature
map sampling is also swapped with the lightweight CARAFE upsampler. These
modifications aim to reduce computational complexity and improve the
approximation of token feature combinations. A 160x160 small target detection
layer is incorporated into the feature fusion network to improve the model's
detection performance on small target samples. Subsequently, a new loss function
is introduced, combining the WloU loss function for positioning, the varifocal loss
function for confidence, and the Bce loss function for classification. The enhanced
YOLOvS5s network model is depicted in Fig. 2.
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Fig. 2. Improved YOLOv5s Network Structure.

4 Experiment

The study described in this manuscript employed the PyTorch 1.7.1
framework for deep learning. The hardware setup included an Intel 15-12400F CPU
running at 2.50 GHz and an NVIDIA GeForce RTX 3060 GPU with 12GB of
VRAM.

4.1 Dataset

Data collection was conducted in real-time at the workbench, categorizing
surface imperfections into bruises, scratches, and grooves. A total of 600 images
were collected for each type of imperfection, resulting in a dataset of 1,800 images.
Some images were randomly rotated and scaled, increasing the dataset size to 5,800
images. Flawed regions were annotated using Labelme software to label rectangular
boxes of various dimensions. Fig. 3 showcases the three defect classifications.

(a) (b) (d)
Fig. 3. Types of defects. (a) All three defects, (b) Grooves, (c) Bruised and (d) Scratched.
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4.2 Model training

The input image size was to 640 x 640 pixels during model training. An
IOU threshold of 0.5 was used. The network model underwent 300 training
iterations with a batch size of 8, using the SGD optimizer and a linear decay learning
rate scheduling strategy. The initial learning rate was set to 0.01 and gradually
decreased to 0.0001. The momentum parameter was set to 0.937, and the weight
decay coefficient to 0.0005. All models were trained with these specified
parameters.

4.3 Evaluation index

To objectively assess the proposed detection method, this study utilizes
evaluation criteria consistent with MS COCO. The model accuracy evaluation
criteria include precision (P), recall (R), average precision (AP), and mean average
precision (mAP). Detection speed is assessed using frames per second (FPS) as the
performance index. To compare the computational burden of different networks,
computational time complexity (FLOPs) is selected for method differentiation.

4.4 Loss function curve

Fig. 4 illustrates the training loss function curve for the target detection
algorithm. It reveals that the loss values of the YOLOvSs improved model
consistently remain lower than those of the YOLOvSs model. These findings
demonstrate that the YOLOvS5s improved model proposed in this study converges
more rapidly during training. Moreover, the loss curve for the YOLOvSs_improved
model shows smoother fluctuations and reduced numerical deviations, indicating
that the proposed model exhibits improved stability during the training process.

10 — YOLOVSs
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Fig. 4. Comparison of YOLOVS5s and improved YOLOVS5s loss function cu

Irves.
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5 Results

5.1 Ablation experiment
1) WioU
Experiments were conducted to determine the most effective model for
dataset detection, comparing the three models. Fig. 5 presents the PR curve analysis
of the YOLOv5s_ WIoU model using different WIoU versions. The analysis shows
that the WIoUv1 loss function, incorporating the attention mechanism, yielded the
best detection results. Consequently, WIoUv1 was chosen as the final model for the
experiment.

—— YOLOVSs
YOLOVSs_WioUvl

—— YOLOV5s_WloUv2

—— YOLOv5s_WloUv3
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Fig. 5. Comparison PR curve of detection performance under different WloU models.
2) Loss weight optimization
To detect bearing defects effectively, this study aimed to reduce background
interference and enhance the recognition of target regions by adjusting the weights
of the loss function components. Initially, equal importance was assigned to

localization, objectness, and classification tasks, with weights set to Loss,, =1,

Lossy; =1, and  Loss, =1 . Systematic adjustments were then made to explore

different task priorities. Increasing the IoU loss weight to 1.5 while reducing the
objectness and classification weights to 0.75 improved bounding box localization
precision. Similarly, increasing the objectness loss weight to 1.5 enhanced the
model's ability to identify target regions, and increasing the classification loss
weight to 1.5 improved the recognition of defect categories. To balance localization

precision and target presence detection, a configuration with Loss,, =1.1 ,
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Loss,; =1.1 , and Loss, =08 was selected as achieving optimal overall

performance. The experimental results are shown in Table 1.
Table 1

Performance Comparison Under Different Loss Weight Configurations

Ay Awj A MAP50 (%) mAP50:95 (%)

1 1 1 87.5 433
1.5 075 0.75 88.3 45.3
075 1.5 0.75 88.1 44.9
0.75 075 1.5 87.0 42.8
.1 1.1 08 88.7 45.8

Table 1 presents the impact of different loss weight configurations on bearing
defect detection performance. Based on the comparison of experimental results, the

weight configuration Loss,,, =1.1, Loss, =1.1, and Loss, =0.8 was ultimately

determined as the final parameter setting. Under this configuration, mAP50 reached
88.7% and mAP50:95 reached 45.8%, achieving the best detection performance.
Therefore, this configuration is adopted as the final parameter indicator in this
study.
3) Upsampling operators: CARAFE

The precision and speed of the upsampling technique CARAFE can be
affected by the hyperparameters £ K, . To find the right balance between
precision and speed, this study experiments on these two parameters are conducted.
The outcomes of these experiments are highlighted in Table 2.

Table 2
Comparison of model checking performance of CARAFE with different parameters
encoder wp mAP50 (%) mAP50:95 (%) GFLOPs(G)
1 3 89.3 44.0 15.8
1 5 89.4 44.2 15.8
3 3 89.4 44.6 15.9
3 5 90.9 46.8 16.0
3 7 90.2 46 16.3
5 5 90.5 45.5 16.5
5 7 91.2 47.9 17.1
7 7 90.8 473 17.3
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Table 2 shows that enhancing k... and £, can improve the model's
performance. However, boosting one parameter alone does not significantly impact
the model's performance. The findings suggest that higher values for both
parameters improve performance, but increasing the parameters also increases the
model's computational complexity. To achieve a balance between precision and
efficiency, k..... =3andk, =5 were chosen as the optimal parameter values for the
experiment.

4) The detection effect of the improved model
The loss weight configuration in this experiment is Lossg, =1.1 |

Lossy, =1.1 and Loss,, =0.8. Abilative experiments were conducted to assess the

impact of six integrated modules in the YOLOvVSs network model. The results from
the experiments are outlined in Table 3. The incorporation of the small target
detection layer significantly enhances accuracy, leading to a 4.8% increase in mAP.
While WIoUV1 and Varifocal loss modules improve detection accuracy, they also
introduce additional parameters that marginally affect detection speed. In contrast,
the CARAFE upsampling operator and Poolformer module are streamlined models
that enhance network speed. Combining these modules results in a 6.2% increase
in mAP, demonstrating enhanced detection accuracy. Despite a slight decrease in
detection speed, the model remains viable for real-time bearing defect detection.

Table 3
Ablation experiment
Number | WIoU | vfloss | CARAFE de?igon Poolformer m‘(ﬁ/l:)so mA(If,/Sog):% FPS
ayer

1 88.7 45.8 114
2 \ 90.6 46.4 108
3 \ 89.9 45.6 110
4 \ 91.7 47.8 118
5 \ 92.8 51.5 94
6 \ 91.6 48.8 112
7 \ \ 91.3 47.9 98
8 \ \ \ 92.1 51.2 112
9 \ \ \ \ 92.8 51.8 93
10 \ \ \ \ \ 94.4. 57.6 104
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5.2 Comparative experiment

The effectiveness of the proposed algorithm in detecting bearing defects
was thoroughly assessed through comparisons with various other algorithms,
including YOLOv5s, YOLOv3, YOLOv3-tiny, SSD, and Faster R-CNN. The
results of these experiments are presented in Table 4. The proposed approach
outperforms SSD and YOLOV3 by 21.1% and 10.2% in terms of mAP, respectively.
It also surpasses Faster R-CNN by 8.4%, indicating superior performance over
single-stage and two-stage detection models. Although there is a decrease in
detection speed compared to the original YOLOvVS5s model, the improved model
still shows potential for real-time detection. Additionally, detection accuracy
increased from 87.5% to 93.7%, significantly enhancing precision in detecting
bearing defects and meeting industry standards for production.

Table 4
Comparison of detection performance of different models
Method mAP50 (%) mAP50:95 (%) FPS
SSD300 72.6 37.1 77
Faster R-CNN 85.3 424 56
YOLOv3 83.5 41.3 83
YOLOvV3-tiny 69.6 359 125
YOLOvVSs 87.5 433 111
YOLOvVSs_improved 94.4 57.6 104

5.3 Bearing defect detection results
To evaluate the effectiveness of the improved YOLOVSs algorithm, surface
defect detection was performed on 50 small bearings with grooves, scratches, and
abrasions using a visual inspection platform. The results were then compared with
those obtained using the original YOLOVSs algorithm, as presented in Fig 6 and
Table 5.
Table 5
Comparison of defect detection accuracy

Method False (EA) Missed (EA) Accuracy rate (%)

Yolov5s 11 5 68

YOLOv5s_improved 3 4 86
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(a) (b) () (d)
Fig. 6. Bearing defect detection effect diagram and Grad-CAM. (a) using the original YOLOv5s
network model, (b) Grad-CAM, (c) improved YOLOvVS5s network model and (d) Grad-CAM

The research revealed that the initial YOLOvS5s network structure had
limitations in precisely identifying minor defects on bearing surfaces. However,
after enhancements were made, there was a notable 18% improvement in accuracy.
Results for defect identification with the basic model are shown in Fig. 6(a) and
6(b), while the outcomes with the upgraded model are displayed in Fig. 6(c) and
6(d). Fig. 6(a) illustrates instances where the original model failed to identify
certain defects, while Fig. 6(b) utilizes Grad-CAM to pinpoint areas requiring
attention. In contrast, the improved model effectively identified either deeper or less
conspicuous defects, as shown in Fig. 6(c) and 6(d). These results validate the
efficacy of the proposed approach in enhancing defect detection accuracy.

6. Conclusions

The YOLOVS5s model demonstrates poor detection accuracy on the specific
dataset. To address this issue, an upgraded algorithm based on the YOLOvVS5s design
is proposed in this study. The Backbone network is replaced by the Poolformer
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module, which incorporates the CARAFE upsampler instead of the original sampler
for sampling feature maps. These modifications aim to decrease computational
complexity and improve the aggregation of token features. A multi-scale detection
strategy is employed to enhance the detection of small surface defects in real-world
scenarios. A specialized 160x160 layer for small targets is integrated to improve
the extraction of small targets and features. Utilizing shallow layers for feature
fusion enhances the model's ability to extract spatial information. Furthermore, the
loss function is fine-tuned to boost network convergence and regression
performance during training. Results from experiments indicate that the advanced
YOLOVS5s model achieved a detection accuracy of 93.7% on the custom surface
defect dataset and in platform-based detection, the upgraded YOLOvS5s showed an
18% improvement in accuracy compared to the original YOLOv5s model.
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