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CONSTITUTIVE MATERIAL LAWS FROM 
MULTIFRACTAL PERSPECTIVE OF MOTION 

 Cristina-Marcela RUSU1*, Luminița BIBIRE2, Monica MOLCĂLUȚ3, Anișoara 
CORĂBIERU4, Raluca GIURMĂ-HANDLEY5*, Ștefana AGOP6 

Multifractal constitutive relations for ideal isotropic material structures in the 
framework of Multifractal Theory of Motion are build assuming that any material 
structures are assimilated to the multifractals and that multifractal scalar potentials, 
specified by means of Madelung type scenario motion functions as a multifractal 
elastic potential. Finaly, standard results from the classical deformation theories as 
Lode’s parameter and Hook’s law for an ideal, isotropic material structure are 
obtained from the present model considering only dynamics on Peano type curves (i.e 
mono-fractal case in the fractal dimension DF≡2. 

 

Keywords: multifractal, isotropic material structures, multifractal stress tensor, 
multifractal scalar potential, continuous and non-differentiable curves. 

1. Introduction 

Fractal/multifractal theory is a new method of approaching the dynamics of 
complex systems both at small scale resolutions and at large scale resolutions.  

The multifractal theory of motion in the form of the theory of scale relativity 
allows multiple approaches in describing the dynamics of complex systems [1-3].  

From such a perspective, two scenarios are possible: Schrodinger's 
multifractal theory and Madelung's multifractal theory. 
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2. Theory 

In the Multifractal Theory of Motion [1,2] two scenarios have been outlined in 
describing the dynamics of any material structures: 

a. The multifractal Schrödinger type scenario explained by the differential 
equation: 

𝜆𝜆2(𝑑𝑑𝑑𝑑)[ 4
𝑓𝑓(𝛼𝛼)−2]𝜕𝜕𝑙𝑙𝜕𝜕𝑒𝑒𝛹𝛹 + 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�

2
𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑡𝑡𝛹𝛹 − 𝑈𝑈𝑈𝑈 = 0, 𝑖𝑖 = √−1              (1) 

b. The multifractal Madelung type scenario explained by the system of 
differential equations: 
 

𝜕𝜕𝑒𝑒𝑉𝑉𝐷𝐷𝑖𝑖 + (𝑉𝑉𝐷𝐷𝑒𝑒𝜕𝜕𝑒𝑒)𝑉𝑉𝐷𝐷𝑖𝑖 = −𝜌𝜌−1𝜕𝜕𝑒𝑒𝜎𝜎�𝑖𝑖𝑖𝑖 + 𝜕𝜕𝑖𝑖𝑈𝑈                          (2) 

𝜕𝜕𝑡𝑡𝜌𝜌 + 𝜕𝜕𝑖𝑖�𝜌𝜌𝑉𝑉𝐷𝐷𝑖𝑖 � = 0                                         (3) 

where 

𝜕𝜕𝑙𝑙 = 𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

,𝜕𝜕𝑒𝑒𝜕𝜕𝑒𝑒 = 𝜕𝜕2

𝜕𝜕𝑥𝑥𝑒𝑒2
, 𝜕𝜕𝑡𝑡 = 𝜕𝜕

𝜕𝜕𝜕𝜕
, 𝑖𝑖, 𝑒𝑒 = 1,2,3                      (4) 

In relations (1)-(3) the quantities have the following physical meanings: Ψ is the 
multifractal state function, ρ=ΨΨ ̅ with Ψ ̅ the complex conjugate of Ψ is the density 
of multifractal states, U is the external scalar potential, x^e is the multifractal spatial 
coordinate, t is the non-multifractal temporal coordinate, 

𝑉𝑉𝐷𝐷𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)[ 2
𝑓𝑓(𝛼𝛼)−1]𝜕𝜕𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙                                    (5) 

is the non-multifractal speed, 

𝜎𝜎𝑖𝑖𝑖𝑖 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)−2�𝜌𝜌𝜕𝜕𝑖𝑖𝜕𝜕𝑒𝑒 𝑙𝑙𝑙𝑙 𝜌𝜌                               (6) 

is the multifractal stress tensor, 𝜆𝜆 is the parameter associated with the multifractal-
non-multifractal scale transition, dt is the scale resolution and f(𝛼𝛼) is the singularity 
spectrum of order 𝛼𝛼 = 𝛼𝛼(𝐷𝐷𝐹𝐹), where 𝐷𝐷𝐹𝐹 is the fractal dimension of the motion 
curves. Recall that in Multifractal Theory of Motion the dynamics of any material 
structure are described by continuous and non-differentiable curves (fractal 
curves/multifractal curves). For more details see references [1-3]. Note that the two 
scenarios for describing the dynamics of material structures are not disjoint, but 
complementary. They allow, by an appropriate choice of scale resolution, either 
local or global descriptions, or specific local-global transition descriptions. In such 
a context in references [4,5] we have shown that the presence of a multifractal stress 
tensor can be correlated by means of the relation 

𝜕𝜕𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 + 𝜌𝜌𝜕𝜕𝑒𝑒𝑄𝑄 = 0                                             (7) 

with the multifractal scalar potential: 
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𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)−2� 𝜕𝜕
𝑒𝑒𝜕𝜕𝑒𝑒�𝜌𝜌
�𝜌𝜌

= 𝑉𝑉𝐹𝐹𝑒𝑒𝑉𝑉𝐹𝐹𝑒𝑒 − 𝜆𝜆(𝑑𝑑𝑑𝑑)[ 2
𝑓𝑓(𝛼𝛼)−1]𝜕𝜕𝑖𝑖𝑉𝑉𝐹𝐹𝑖𝑖            (8) 

where 

𝑉𝑉𝐹𝐹𝑖𝑖 = 𝜆𝜆(𝑑𝑑𝑑𝑑)[ 2
𝑓𝑓(𝛼𝛼)−1]𝜕𝜕𝑖𝑖 𝑙𝑙𝑙𝑙 𝜌𝜌                                        (9) 

is the multifractal velocity. 
Therefore, taking into account our previous results, a correlation between 

the multifractal stress tensor, 𝜎𝜎𝑖𝑖𝑖𝑖 and the multifractal scalar potential, Q, becomes 
functional. In a such perspective, assuming that any material structure can be 
assimilated to multifractal (we note that a such hypothesis confers holographic 
behaviors on the dynamics of the material structures [2,3]) and considering the 
multifractal scalar potential, Q functions as a multifractal elastic potential, in the 
present paper multifractal constitutive relations for any ideal isotropic material 
structures are obtained. 

 
3. Multifractal cubic equations associated to the multifractal stress and 

deformation tensors 
Both the multifractal stress tensor, 𝜎𝜎𝑖𝑖𝑖𝑖 , and the multifractal deformation 

tensor,𝜀𝜀𝑖𝑖𝑖𝑖, can be associated to the multifractal matrix 3x3. In such a framework let 
us consider the multifractal generic matrix (𝑎𝑎𝑖𝑖𝑖𝑖). Then the eigen values of the 
multifractal matrix (𝑎𝑎𝑖𝑖𝑖𝑖) is the multifractal cubic: 

𝑥𝑥3 − 𝐼𝐼1𝑥𝑥2 + 𝐼𝐼2𝑥𝑥 − 𝐼𝐼3 = 0                                   (10) 

where we used the following notations: 
 
                                    𝐼𝐼1 = 𝑇𝑇𝑇𝑇(𝑎𝑎) = 𝑎𝑎11 + 𝑎𝑎22 + 𝑎𝑎33   

𝐼𝐼2 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� + �

𝑎𝑎11 𝑎𝑎13
𝑎𝑎31 𝑎𝑎33� + �

𝑎𝑎22 𝑎𝑎23
𝑎𝑎32 𝑎𝑎33�            (11 a-c) 

𝐼𝐼3 = 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑎𝑎𝑖𝑖𝑖𝑖) 
 

Admitting that the multifractal cubic (10) has distinct solutions, the 
Tartaglia- Cartan procedure allows to make them explicit in the form 
                                     𝑥𝑥1 = 2

√3 √𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠 3𝜃𝜃 + 1
3
𝑎𝑎1  

𝑥𝑥2 = 2
√3√𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠(3𝜃𝜃 + 2𝜋𝜋

3
) + 1

3
𝑎𝑎1                             (12 a-c) 

𝑥𝑥3 =
2
√3

�𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠(3𝜃𝜃 +
4𝜋𝜋
3

) +
1
3
𝑎𝑎1 

where 
   𝑠𝑠𝑠𝑠𝑠𝑠 3𝜃𝜃 = √3

2
𝑎𝑎3

𝑎𝑎2
3
2�
                                                           (13) 
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and 
                                       𝑎𝑎1 = 𝐼𝐼1 
𝑎𝑎2 = 1

6
�(𝑎𝑎22−𝑎𝑎33)2 + (𝑎𝑎33−𝑎𝑎11)2 + (𝑎𝑎11 − 𝑎𝑎22)2 + 3

2
(𝑎𝑎12𝑎𝑎21 + 𝑎𝑎13𝑎𝑎31 +

𝑎𝑎12𝑎𝑎32)�                                                                            
 (14 a-c) 

                                      𝑎𝑎3 = 3 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑 (1
3
𝑎𝑎1𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖) 

 
where θ is the representation angle of matrix (𝑎𝑎) [6,7]. 

We note that in the monofractal case 𝑓𝑓((𝛼𝛼) ≡ 𝐷𝐷𝐹𝐹 = 2  , for dynamics on 
Peano type curves [2,3], i.e. in the standard deformation theory, 𝜃𝜃 it is connected 
to the ratio of radii of Mohr’s circles, expressing either deformations or stress, 
being characterized by the Lode’s parameter 𝜇𝜇𝛼𝛼[ 6,7]: 

 
𝜇𝜇𝛼𝛼 = 2𝑥𝑥1−𝑥𝑥2−𝑥𝑥3

𝑥𝑥2−𝑥𝑥3
= √3 𝑡𝑡𝑡𝑡𝑡𝑡 3𝜃𝜃                              (15) 

4. Multifractal constitutive relations for any ideal isotropic material 
structures 

  
For any of the multifractal matrices 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜎𝜎𝑖𝑖𝑖𝑖  an analogous theory to that 

developed in the previous paragraph one can construct. 
 Thus, let us consider 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3  the invariants of the multifractal matrix 𝜀𝜀𝑖𝑖𝑖𝑖 and 

𝛹𝛹 the representation angle of this multifractal matrix. Also, let us consider 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 
the invariants of the multifractal matrix 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜉𝜉 the representation angle of this 
multifractal matrix. 

 The fundament of multifractal constitutive relation for an ideal isotropic 
material structure can be related to the multifractal elastic potential (8), considered 
as a function of the multifractal deformation invariants 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3 i.e 
 

𝑄𝑄 ≡ 𝑄𝑄(𝐸𝐸1,𝐸𝐸2,𝐸𝐸3), (𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑖𝑖(𝜌𝜌), 𝑖𝑖 = 1,2,3                    (16) 

Then we will have: 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀𝑖𝑖𝑖𝑖

                                                    (17) 

or: 

𝜎𝜎𝑖𝑖𝑖𝑖 = ∑  3
𝑘𝑘=1  

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑘𝑘

𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝜀𝜀𝑖𝑖𝑖𝑖

                                        (18) 
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The derivatives 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑘𝑘

 can play the role of some multifractal elastic moduli: 
for example, the multifractal volume modulus K, the multifractal shear modulus 
G, etc. But first let us explain (18). It results: 

𝜎𝜎11 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸1

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

(𝜀𝜀22 + 𝜀𝜀33) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�𝜀𝜀22𝜀𝜀33 −
1
4
𝜀𝜀232 � 

𝜎𝜎22 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸1

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

(𝜀𝜀11 + 𝜀𝜀22) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�𝜀𝜀11𝜀𝜀33 −
1
4
𝜀𝜀132 � 

𝜎𝜎33 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸1

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

(𝜀𝜀11 + 𝜀𝜀22) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�𝜀𝜀11𝜀𝜀22 −
1
4
𝜀𝜀122 � 

𝜎𝜎12 = −
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

𝜀𝜀12 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�
1
2
𝜀𝜀13𝜀𝜀23 − 𝜀𝜀33𝜀𝜀12�� 

𝜎𝜎13 = −
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

𝜀𝜀13 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�
1
2
𝜀𝜀23𝜀𝜀12 − 𝜀𝜀22𝜀𝜀13�� 

𝜎𝜎23 = −1
2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

𝜀𝜀23 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�1
2
𝜀𝜀12𝜀𝜀13 − 𝜀𝜀11𝜀𝜀23��                     (19 a-f) 

Let us rewrite  𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 in terms of 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3. For this, it is necessary to express 
𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 by means of 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3. It results: 

𝑠𝑠1= 3 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸1

+ 2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

𝐸𝐸1 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

𝐸𝐸2,

𝑠𝑠2= 1
3
�(𝐸𝐸32 − 2𝐸𝐸2) � 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸2
�
2

+ (𝐸𝐸1𝐸𝐸2 − 9𝐸𝐸3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

+

𝑠𝑠3= 1
9
�(2𝐸𝐸13 − 9𝐸𝐸1𝐸𝐸2 + 27𝐸𝐸3) � 𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸2
�
2

+

 +(2𝐸𝐸12𝐸𝐸2 − 18𝐸𝐸22 + 27𝐸𝐸1𝐸𝐸3) � 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

�
2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

+

 +(18𝐸𝐸12𝐸𝐸3 − 3𝐸𝐸1𝐸𝐸22 − 27𝐸𝐸2𝐸𝐸3) � 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�
2 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

+

 +(−2𝐸𝐸23 + 9𝐸𝐸1𝐸𝐸2𝐸𝐸3 − 27𝐸𝐸32) � 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

�
2
�

              (20 a-c) 

If we replace the derivatives with respect to 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3 with the derivatives with 
respect to 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3 we obtain: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸1

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒1

+
2
3
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

𝐸𝐸1 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

�𝐸𝐸2 −
2
3
𝐸𝐸12� 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

= − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

𝐸𝐸1                                                     (21 a-c) 

                                 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

= −3 𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

             

Substituting (20 a-c) into (19 a-f) the result is: 

                                      𝑠𝑠1 = 3 𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒1

                          

𝑠𝑠2 = 𝑒𝑒2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2
�
2

+ 3𝑒𝑒3 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

) ∙ (𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3
� + 3𝑒𝑒22 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3
�
2
                         (22 a-c) 

 

𝑠𝑠3 = 𝑒𝑒3 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

�
2

+ 6𝑒𝑒22 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

�
2

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

� + 9𝑒𝑒2𝑒𝑒3 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

� �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

�
2

+ 3(3𝑒𝑒32 − 2𝑒𝑒23) �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

�
2

 

The relations (22 a-c) can be expressed in terms of 𝑒𝑒1, 𝑒𝑒2,𝜓𝜓, taking into account 
that: 

𝑠𝑠𝑠𝑠𝑠𝑠 3𝜓𝜓 =
√3
2

𝑒𝑒3
𝑒𝑒2
3/2 ≡ 𝛽𝛽 

We obtain: 

𝑠𝑠1= 3 𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒1

,

𝑠𝑠2= 𝑒𝑒2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2
�
2

+ 9
4
1−𝛽𝛽2

𝑒𝑒2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

,

𝑠𝑠3= 2
√3
𝑒𝑒2
3/2 �𝛽𝛽 �𝜕𝜕𝜕𝜕

𝜕𝜕𝑒𝑒2
�
2

+ 9
2
�1−𝛽𝛽2�
𝑒𝑒2

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2
�
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� −

 −27
4
∙ 𝛽𝛽�1−𝛽𝛽

2�
𝑒𝑒22

∙ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2
− 27

8
∙ 1−𝛼𝛼

2

𝑒𝑒2
3 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
3
�

                  (23 a-c) 

or, in terms of 𝜓𝜓, 

𝑠𝑠1 = 3
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒1
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𝑠𝑠2 = 𝑒𝑒2 ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2
�
2

+ 1
4𝑒𝑒22

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
�                              (24 a-c) 

𝑠𝑠3 =
2
√3

𝑒𝑒2
3/2 ��

𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

� 𝑠𝑠𝑠𝑠𝑠𝑠 3𝜓𝜓 +
3
2

1
𝑒𝑒2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

� �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓

−
3
4

1
𝑒𝑒22
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

� �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
2

𝑠𝑠𝑠𝑠𝑠𝑠 3𝜓𝜓0 −
1
8

1
𝑒𝑒23
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
3

𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓� 

Denoting: 

𝜒𝜒 =
1

2𝑒𝑒2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

/
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

(25) 

the relations of (24 b,c) allow to construct 𝑠𝑠𝑠𝑠𝑠𝑠 3𝜉𝜉 

𝑠𝑠𝑠𝑠𝑠𝑠 3𝜉𝜉 =
(1 − 3𝜒𝜒2)𝑠𝑠𝑠𝑠𝑠𝑠 3𝜓𝜓 + (−𝜒𝜒 + 3)𝜒𝜒𝜒𝜒𝜒𝜒𝜒𝜒 3𝜓𝜓

(1 + 𝜒𝜒2)3/2  

(26) 

For  𝜒𝜒 = 𝑡𝑡𝑡𝑡𝑡𝑡 𝜔𝜔 in (26), it results: 

𝑠𝑠𝑠𝑠𝑠𝑠 3𝜉𝜉 = 𝑠𝑠𝑠𝑠𝑠𝑠 3(𝜓𝜓 + 𝜔𝜔)                                      (27) 

with the solution: 

𝜔𝜔 = 𝜉𝜉 − 2𝜓𝜓 +
2𝑛𝑛𝑛𝑛

3
 

where 𝑛𝑛 ∈ 𝑁𝑁. Taking 𝑛𝑛 = 0, we have:  

𝜔𝜔 = 𝜉𝜉 − 2𝜓𝜓                                                 (28) 

and relationship between 𝜔𝜔, 𝜉𝜉 and 𝜓𝜓 becomes univocal.  
Introducing 𝜒𝜒 = 𝑡𝑡𝑡𝑡𝑡𝑡 𝜔𝜔 into (24 a-c), these relations become: 

𝑠𝑠1 = 3
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒1

 

𝑠𝑠2 =
𝑒𝑒2

𝑐𝑐𝑐𝑐𝑐𝑐2𝜔𝜔
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

�
2

 

𝑠𝑠3 = 2
√3
𝑒𝑒2
3/2 𝑠𝑠𝑠𝑠𝑠𝑠 3(𝜓𝜓+𝜔𝜔)

𝑐𝑐𝑐𝑐𝑐𝑐2 𝜔𝜔
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2
�
2
                                  (29 a-c) 

Now, it is useful to define the multifractal quantities: 
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𝐾𝐾 = 1
3
𝑠𝑠1
𝑒𝑒1

,𝐺𝐺 = 1
2�

𝑠𝑠2
𝑒𝑒2

                                          (30) 

and so, (22 a-c) becomes:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒1

= 𝐾𝐾𝑒𝑒1, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒2

= 2𝐺𝐺 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒3

= 4𝐺𝐺𝑒𝑒2 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔                                    (31 a-c) 

With these observations, (22 a-c) write: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸1

= 𝐾𝐾𝑒𝑒1 +
4
3
𝐺𝐺𝑒𝑒1

𝑐𝑐𝑐𝑐𝑐𝑐(3𝜓𝜓 + 𝜔𝜔)
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓

− 2𝐺𝐺
𝑒𝑒2 + 1

3 𝑒𝑒1
2

�3𝑒𝑒2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸2

= −2𝐺𝐺 �
𝑐𝑐𝑐𝑐𝑐𝑐(3𝜓𝜓 + 𝜔𝜔)

𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓
−

𝑒𝑒1
�3𝑒𝑒2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜔𝜔

� 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸3

= −2𝐺𝐺�3
𝑒𝑒2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓

                                                      (32 a-c) 

In view of (32 a-c), (20 a-c) receive the following multifractal tensor form: 

𝐷𝐷�𝜎𝜎 = 2𝐺𝐺 �𝑐𝑐𝑐𝑐𝑐𝑐 (3𝜓𝜓+𝜔𝜔)
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓

𝐷𝐷�𝜀𝜀 − �3
𝑒𝑒2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜓𝜓

�𝐷𝐷�𝜀𝜀2 −
2
3
𝑒𝑒2𝐼𝐼��             (33) 

where 𝐷𝐷� denotes the multifractal deviator of the respective multifractal matrix, and 
𝐼𝐼 the unit multifractal matrix.  
The multifractal matrix (33) stands for the most general multifractal constitutive 
relation for the multifractal ideal isotropic elastic material structure, but only for 
this one. 

Since the multifractal potential Q also functions for multifractal reversible 
transformations, 𝐷𝐷�𝜀𝜀 can be expressed in terms of  𝐷𝐷�𝜎𝜎. Indeed, taking into account 
the operational procedures from [2] it results: 

 

𝐷𝐷�𝜀𝜀 = 1
2𝐺𝐺
�𝑐𝑐𝑐𝑐𝑐𝑐 (3𝜉𝜉−𝜔𝜔)

𝑐𝑐𝑐𝑐𝑐𝑐 3𝜉𝜉
𝐷𝐷�𝜎𝜎 + �3

𝑠𝑠2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔
𝑐𝑐𝑐𝑐𝑐𝑐 3𝜉𝜉

�𝐷𝐷�𝜎𝜎2 −
2
3
𝑠𝑠2𝐼𝐼��                    (34) 

We note that in the mono-fractal case 𝑓𝑓(𝛼𝛼) → 𝐷𝐷𝐹𝐹 ≡ 2  i.e for dynamics on Peano 
type curves [2,3,8,9] and for 𝜔𝜔 ≡ 0, (33) yields the Hook's law for a perfectly 
isotropic material, 
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𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐸𝐸 �
1

1 + 𝜇𝜇
𝜀𝜀𝑖𝑖𝑖𝑖 +

𝜇𝜇
(1 + 𝜇𝜇)(1− 2𝜇𝜇)

(𝜀𝜀11 + 𝜀𝜀22 + 𝜀𝜀33)� 

 by means of the usual identifications: 

2𝐺𝐺 =
𝐸𝐸

1 + 𝜇𝜇
,𝐾𝐾 =

𝐸𝐸
1 − 2𝜇𝜇

, 

where 𝜇𝜇 is Poisson's coefficient. 

5. Conclusions 

The main conclusions of the present paper are the following: 
1. In the Multifractal Theory of Motion two scenarios have obtained in describing 
the dynamics of material structures: the multifractal Schrödinger type scenario and 
the multifractal Madelung type scenario; 
2. In the multifractal Madelung type scenario correlations between the multifractal 
stress tensor and the multifractal scalar potential are obtained; 
3. Assuming that any material structure can be assimilated to a multifractal and that, 
the multifractal scalar potential functions as a multifractal elastic potential, the 
constitutive material laws for the multifractal ideal isotropic elastic material 
structures are obtained; 
4. Standards results from classical deformation theories as Lode’s parameter, 
Hook’s law for a ideal isotropic material structure are obtained using the present 
model considering only dynamics on Peano type curves (i.e the monofractal case 
𝑓𝑓(𝛼𝛼) → 𝐷𝐷𝐹𝐹 ≡ 2); 
5. The present model uses fractal/multifractal curves to describe the dynamics of 
material structures. Since fractal/multifractal curves have the property of self-
similarity (the part reflects the whole and vice versa), such dynamics mimic 
holographic behavior. Moreover, as any hologram works "as a deep learning [10]", 
such a model could be useful in the analysis of some "dynamics" in the medical 
field [11-13]. 
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