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CONSTITUTIVE MATERIAL LAWS FROM
MULTIFRACTAL PERSPECTIVE OF MOTION

Cristina-Marcela RUSU'*, Luminita BIPIREZ, Monica MOLCALUT?, Anisoara
CORABIERU*, Raluca GIURMA-HANDLEY>*, Stefana AGOP®

Multifractal constitutive relations for ideal isotropic material structures in the
framework of Multifractal Theory of Motion are build assuming that any material
structures are assimilated to the multifractals and that multifractal scalar potentials,
specified by means of Madelung type scenario motion functions as a multifractal
elastic potential. Finaly, standard results from the classical deformation theories as
Lode’s parameter and Hook’s law for an ideal, isotropic material structure are
obtained from the present model considering only dynamics on Peano type curves (i.e
mono-fractal case in the fractal dimension Dr=2.

Keywords: multifractal, isotropic material structures, multifractal stress tensor,
multifractal scalar potential, continuous and non-differentiable curves.

1. Introduction

Fractal/multifractal theory is a new method of approaching the dynamics of
complex systems both at small scale resolutions and at large scale resolutions.

The multifractal theory of motion in the form of the theory of scale relativity
allows multiple approaches in describing the dynamics of complex systems [1-3].

From such a perspective, two scenarios are possible: Schrodinger's
multifractal theory and Madelung's multifractal theory.
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2. Theory

In the Multifractal Theory of Motion [1,2] two scenarios have been outlined in
describing the dynamics of any material structures:
a. The multifractal Schrodinger type scenario explained by the differential
equation:

4 2
22(dt)T@ Ao, v + iA(de) @, — uw = 0,1 = V=1 (1)

b. The multifractal Madelung type scenario explained by the system of
differential equations:

0:Vh + (VEBIVS = —p 10,6 + 8'U 2)
dep +8;(pV) = 0 (3)
where
9 92 0 .
61 = a_xll aeae = 0_965' at = a' L,e= 1;2:3 (4)

In relations (1)-(3) the quantities have the following physical meanings: WV is the
multifractal state function, p=F¥ with ¥ the complex conjugate of ¥ is the density
of multifractal states, U is the external scalar potential, x"e is the multifractal spatial
coordinate, t is the non-multifractal temporal coordinate,

2
Vi = 2A(dt) 7@ Haimy (5)

is the non-multifractal speed,

4
ole = —222(dt) [m’z] p0;0, Inp (6)

is the multifractal stress tensor, A is the parameter associated with the multifractal-
non-multifractal scale transition, dt is the scale resolution and f(«) is the singularity
spectrum of order &« = a(Dr), where Dy is the fractal dimension of the motion
curves. Recall that in Multifractal Theory of Motion the dynamics of any material
structure are described by continuous and non-differentiable curves (fractal
curves/multifractal curves). For more details see references [1-3]. Note that the two
scenarios for describing the dynamics of material structures are not disjoint, but
complementary. They allow, by an appropriate choice of scale resolution, either
local or global descriptions, or specific local-global transition descriptions. In such
a context in references [4,5] we have shown that the presence of a multifractal stress
tensor can be correlated by means of the relation

aio-ie +p0.Q0 =0 (7)

with the multifractal scalar potential:
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4 e 2 ,
0 = —222@olr@ 2R < yeve —aanT@ ot @
where
. [L—l] .
Vi =A(dt) 7@ “dtlnp 9)

is the multifractal velocity.

Therefore, taking into account our previous results, a correlation between
the multifractal stress tensor, o;, and the multifractal scalar potential, O, becomes
functional. In a such perspective, assuming that any material structure can be
assimilated to multifractal (we note that a such hypothesis confers holographic
behaviors on the dynamics of the material structures [2,3]) and considering the
multifractal scalar potential, Q functions as a multifractal elastic potential, in the
present paper multifractal constitutive relations for any ideal isotropic material
structures are obtained.

3. Multifractal cubic equations associated to the multifractal stress and
deformation tensors
Both the multifractal stress tensor, o€, and the multifractal deformation
tensor,&%€, can be associated to the multifractal matrix 3x3. In such a framework let
us consider the multifractal generic matrix (a;.). Then the eigen values of the
multifractal matrix (a;;) is the multifractal cubic:
X3 —-Lx*+Lx—13=0 (10)

where we used the following notations:

11 = TR(a) = aqq + az, + ass3

_ |a11 a12| |a11 a13| |a22 a23|
27 lay; ay az; dass a3z dsz
I3 = det (aj)

(11 a-c)

Admitting that the multifractal cubic (10) has distinct solutions, the
Tartaglia- Cartan procedure allows to make them explicit in the form

X, = %\/az sin360 + %al

2 . 2 1
Xy = ﬁ\/a_zsm(BH + ?ﬂ) +ia (12 a-c)
2 _ a1
X3 = ﬁ\/a_zsm(%? + ?) + 3%
where
sin30 = L% (13)

3
2 /2
a,
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and
al == Il

1 3
a, = g{(azz_a%)z + (a33—a11)2 + (a1 — azz)2 + ;(a12a21 + aq3a31 +

a12a32)}
(14 a-c)
1
a; =3-det (; a10ie — Qje)

where 0 is the representation angle of matrix (a) [6,7].

We note that in the monofractal case f((a) = Dy = 2 , for dynamics on
Peano type curves [2,3], i.e. in the standard deformation theory, 0 it is connected
to the ratio of radii of Mohr’s circles, expressing either deformations or stress,
being characterized by the Lode’s parameter p,[ 6,7]:

1y =%=\/§mn36 (15)
4. Multifractal constitutive relations for any ideal isotropic material
structures

For any of the multifractal matrices £ and ¢'¢ an analogous theory to that
developed in the previous paragraph one can construct.

Thus, let us consider ey, e,, e; the invariants of the multifractal matrix £¢ and
¥ the representation angle of this multifractal matrix. Also, let us consider s, S5, S3
the invariants of the multifractal matrix 0% and & the representation angle of this
multifractal matrix.

The fundament of multifractal constitutive relation for an ideal isotropic
material structure can be related to the multifractal elastic potential (8), considered
as a function of the multifractal deformation invariants E;, E,, E5 i.e

Q = Q(EliEZ'E3)' (El = El(p)'l = ],2,3 (16)
Then we will have:
0Q
% = 3, (17)
or:
4Q 9E
o = Y- _Q_k (18)
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. .0 . . .
The derivatives % can play the role of some multifractal elastic moduli:
k

for example, the multifractal volume modulus K, the multifractal shear modulus
G, etc. But first let us explain (18). It results:

aQ aQ aQ 1
011 = 6 OEZ — (&32 + €33) + = 3E, (522333 - 15223)
Q0 0Q aQ 1
Oz = 6_ 3E, —(&11 + &) + == 3, (311333 - 15123)
aQ aQ

1
033 = 3E, aEZ (511 + &22) + 51 3E, (511522 45122)

o ———{a—Qe —a—Q(—e £33 — €33 )}
12 = T 3\9E, ©12 T 9E, \2 1328 T fasfiz

1(0Q aqQ
013 = __{_5 13 — ( €23€12 — 322513>}

2 0E, 6E3
aQ aQ
023 = _‘{aE €23 — 3E; ( €128&13 — 511523)} (19 a-f)

Let us rewrite Sy, Sy, S3 in terms of e4, e, e5. For this, it is necessary to express
S1,S3, S3 by means of Ey, E,, E5. It results:

=3 4% p L Xp

0E; 9E, 9E; 2’

Q 9Q 0Q
o= 183~ 28) (22) + (BB, — 9E) 22 2L

- —{(2151 9E,E, + 27E,) ("Q) +

90 (20 a-c)
+(2E2E, — 18E2 + 27E,E5) (aE ) =
d d
+(18E2E; — 3E,E2 — 27E,E5) (ag) ﬁ

+(—2E3 + 9E,E,E; — 27E2) (:TQ) }
3

If we replace the derivatives with respect to E;, E,, E53 with the derivatives with
respect to e, e,, 3 we obtain:
0 0 20 d 2
0_00,200, 90y 2
JE; Ode; 3de, des
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;T‘i:_j_jz+37‘?3gl (21 a-¢)
35 = ~35a
Substituting (20 a-c) into (19 a-f) the result is:
s = 36—(31
S, = e, (g—i)z + 3e; (g—i) - (:—53) + 3e? (:_53)2 (22 a-c)

90Y 162 (22) (22) 4 0eses (22) (22)

53 = s (Oez de,/ \des
2

+ 3(3eZ — 2e2)( )

The relations (22 a-c) can be expressed in terms of e, e5, Y, taking into account

that:
sin 31/)—\/— 6332_5
We obtain:
1= 32—31
s=e (i) +350 (3
e Rl NG R
—%-’“%f’-(a)(i—i) —%-%(ZZ)}

or, in terms of Y,
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aQ 1
SZ - ez {(632

ok
S3 = %es/z {(25 ) sin3y + 5 ez (6_e2> (—3)) cos 3y

L)) -

(24 a-c)

Denoting:

190 aQ
X= Z_ezﬁ/a_ez (25)

the relations of (24 b,c) allow to construct sin 3¢

(1 —3x?)sin 3y + (—x + 3)xcos 3P

sin 3¢ = ESDEE
(26)
For y = tan w in (26), it results:
sin 3¢ = sin 3(Y + w) (27)
with the solution:
w=&—2Y+ ZnTn

where n € N. Taking n = 0, we have:

w=&-21 (28)

and relationship between w, ¢ and Y becomes univocal.
Introducing y = tan w into (24 a-c), these relations become:

a0
st =3— 9%
1
e (BQ )2
2= Cos2a de,
3/2 sin 3(Y+w) 2
=50 Tt () (29 2-0)

Now, it is useful to define the multifractal quantities:
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Kzge_l'G:E ; (30)
and so, (22 a-c) becomes:
9Q
— =K
ael el)
d
—Q =2G - cosw
de,
9% _ 4Ge, - sinw (31 a-¢)
663

With these observations, (22 a-c) write:

1
aQ _K +4G cos(3y + w) e +§e12 Sin w
J0E; - e 3 “1 cos 3y /332 cos 3y
B_Q: _2G 605(31/)"‘0))_ e, Sinw
OE; cos 3y 3e, COS 3w
0Q _ 3 sinw ]
0E; ZG\/e: cos 3y (32 a-c)
In view of (32 a-c), (20 a-c) receive the following multifractal tensor form:
N — cos@BYP+w)x (3 sinw (m; 2 2
Do =26G { cos 3y D, \/;cos 3 (Ds 3 ezl)} (33)

where D denotes the multifractal deviator of the respective multifractal matrix, and
I the unit multifractal matrix.
The multifractal matrix (33) stands for the most general multifractal constitutive
relation for the multifractal ideal isotropic elastic material structure, but only for
this one.

Since the multifractal potential Q also functions for multifractal reversible
transformations, D, can be expressed in terms of D,. Indeed, taking into account
the operational procedures from [2] it results:

7 1 cos (3¢—w) isinw B2 _ 2.7
D, = ZG{ cos 3¢ Ds + \/s:cos 3¢ (DU 3 521)} (34)
We note that in the mono-fractal case f(a) = Dr = 2 i.e for dynamics on Peano

type curves [2,3,8,9] and for w = 0, (33) yields the Hook's law for a perfectly
isotropic material,
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&+ s
T+p ™ A+wA-2p

by means of the usual identifications:

o;j=E (11 + €22 + €33)

where u is Poisson's coefficient.

5. Conclusions

The main conclusions of the present paper are the following:

1. In the Multifractal Theory of Motion two scenarios have obtained in describing
the dynamics of material structures: the multifractal Schrodinger type scenario and
the multifractal Madelung type scenario;

2. In the multifractal Madelung type scenario correlations between the multifractal
stress tensor and the multifractal scalar potential are obtained;

3. Assuming that any material structure can be assimilated to a multifractal and that,
the multifractal scalar potential functions as a multifractal elastic potential, the
constitutive material laws for the multifractal ideal isotropic elastic material
structures are obtained;

4. Standards results from classical deformation theories as Lode’s parameter,
Hook’s law for a ideal isotropic material structure are obtained using the present
model considering only dynamics on Peano type curves (i.e the monofractal case
f(a) » Dp = 2);

5. The present model uses fractal/multifractal curves to describe the dynamics of
material structures. Since fractal/multifractal curves have the property of self-
similarity (the part reflects the whole and vice versa), such dynamics mimic
holographic behavior. Moreover, as any hologram works "as a deep learning [10]",
such a model could be useful in the analysis of some "dynamics" in the medical
field [11-13].
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