
U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 3, 2017                                                      ISSN 1223-7027 

ENERGY LEVELS OF WEAKLY BOUND NUCLEI WITH 

RELATIVISTIC EFFECTS  

Fahime REZVANI1, Mohammad Reza SHOJAEI2 

Relativistic effects are employed to describe the weakly bound nuclei, e.g. 

He, Be, C and O near closed shells. In order to calculate the energy levels of the 

ground states and first excited states for these nuclei, we present a description based 

on the assumption of a two-body system formed by a neutron added to an inert core. 

We adopt the appropriate interaction between neutron and inert core which is a 

modified of Yukawa potential. Then we solve the Dirac equation with pseudospin 

symmetry in the shell model by using the basic concept of the supersymmetric shape-

invariance method. The results obtained from this approach are compared with 

experiments and do not show any inversion in agreement with experiments.  
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1. Introduction 

      A unique feature of nuclear systems along the neutron drip line is the 

concentration of strength at excitation energies just above the continuum 

threshold. This concentration of strength is directly measured in breakup 

reactions. Howevr, it has also strong effects on other processes, such as elastic 

scattering or sub-barrier fusion reactions. It was proved that this peculiar feature 

was associated with the weakly bound nature of most nuclei at the dripline [1]. 

Neutron drip-line nuclei and, in particular, those near the neutron driplines and 

closed shells play an important role in nuclear astrophysics [2].  

     In last few decades, the relativistic mean field theory has been successful in 

describing the nuclear phenomena associated with unstable nuclei as much as 

stable nuclei [3-5]. Thus it is very helpful to use relativistic theories to study 

properties of the weakly bound nuclei near the neutron drip line. Compared to the 

non-relativistic mean field theory, the relativistic mean field theory can explain 

real nuclear saturation features in the nuclear matter and also presents the spin-

orbit coupled potential [6]. The starting point of the relativistic mean field theory 

is the Lagrangian which describes the nucleons as Dirac spinors moving in the 
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mean field. It includes the interaction between nucleons (protons and neutrons), 

mesons (σ, ω, ρ), and also the coulomb field. The main feature of the relativistic 

nuclear dynamics is the appearance of the attractive scalar field S, and the 

repulsive vector field V. As a result, this feature can lead to simultaneous 

integrating attraction and repulsion effects related to long and short distances in 

the nucleon-nucleon interaction. Due to the coupling of lower components in the 

Dirac equation [7], the observed pseudospin symmetry in the mono-particle levels 

of the spherical nuclei is understandable through the relativistic mean field theory.  

        The Dirac equation is one of the most important equations in different 

physics fields [8-14]. The equation is used to solve many nuclear and high energy 

problems [15-17]. Recently, remarkable efforts have been made to study 

relativistic wave equations as well as their relativistic effects, in which solving the 

Dirac equation with spin and pseudospin symmetry was important. Within the 

framework of the Dirac equation, the spin symmetry arises if the magnitude of the 

attractive scalar potential S(r) and repulsive vector potential are nearly equal, S(r) 

~V(r) in the nuclei (i.e., when the potential difference is Δ(r) = V(r) - S(r) = Cs = 

constant). However, the pseudospin symmetry occurs if S(r) ~ -V(r) (i.e., when the 

sum potential is as Σ(r) = V(r) + S(r) = Cps = constant) [18-20]. The cases of Δ(r) 

= 0 and Σ(r) = 0 correspond to SU(2) symmetries in the Dirac Hamiltonian [21-

23]. The spin symmetry is relevant for mesons [24-25]. The pseudospin symmetry 

concept has been applied to many systems in nuclear physics and related areas 

[26-29]. It has also been utilized to explain features of deformed nuclei [28] and 

super-deformation [29] as well as to establish an effective nuclear shell-model 

scheme [26, 30]. 

    The pseudospin symmetry introduced in the nuclear theory refers to a quasi-

degeneracy of the single-nucleon doublets and can be characterized by the non-

relativistic quantum numbers (n, l, j = l+1/2) and (n-1, l+2, j = l+3/2), where n, l, 

and j are the single-nucleon radial, orbital and, total angular momentum quantum 

numbers, respectively, for a single particle [26, 27]. The total angular momentum 

is given by j = l' + s' where l' = l +1 is a pseudo-angular momentum and s' = 1/2 is 

a pseudospin angular momentum. In real nuclei, the pseudospin symmetry is only 

an approximation and the quality of approximation depends on the pseudo-

centrifugal potential and pseudo-spin-orbit potential [31]. 

    Other authors adopted different approaches to solve this equation with different 

potentials [32-39]. Many second order differential equations like Legendre, 

Hermit, and associated equations have supersymmetry properties and invariance 
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form. Hence, we can employ an invariant form and some effective methods in the 

supersymmetry quantum mechanics to solve such equations [40].  

    In this work, we study the relativistic effects in determining energy levels of 

weakly bound isotopes of He, Be, C and O near the closed shells. To do so, we 

describe a two-body system formed through a neutron added to an inert core. We 

employ a proper interaction between the neutron and inert core, which is a 

modifed of Yukawa potential [41]
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Where α is range of the potential, and V0 , V1 are adjustable parameters. Then we 

solve the Dirac equation with pseudospin symmetry in the shell model by using 

the basic concept of the supersymmetric shape-invariance method.  

      The organization of this paper is as follows. In Section 2 we review relativistic 

approach briefly. In Section 3 Discussion and results are presented. Conclusion is 

given in Section 4. 

2. Relativistic Approach 

The Dirac equation for spin-1/2 particles in an attractive scalar S(r), repulsive 

vector V(r) potentials reads as (in atomic units ħ=c=1) [42] 

                      [ .p ( ( ))] ( ) ( ( )) ( )M S r r E V r r   
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Where α and β are the Dirac matrices. For spherical nuclei, the nucleon angular 

momentum J and spin-orbit operator ( . 1)  K L  commute with the Dirac 

Hamiltonian.The eigenvalues of K are ( j 1/ 2)    with minus for the aligned 

spin (s1/2, p3/2, etc.) and plus for the unaligned spin (p1/2, d3/2, etc.). Then, we use 

the quantum number   since it is sufficient to label the orbitals. The wave 

functions can be classified according to their angular momentum j,  , and the 

radial quantum number n. They can be written in the following form 
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Where Fnκ (r) and Gnκ (r) are the upper and lower radial functions, and Y ( , )l

j m    

and 
'

Y ( , )l

j m    are the spinor spherical harmonic functions, respectively. The 

orbital angular-momentum quantum numbers l and l' are the labels of upper and 
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lower components, respectively. We substitute Eq. (3) into Eq. (2) and obtain two 

coupled differential equations for the upper and lower radial wave functions, Fnκ 

(r) and Gnκ (r), respectively:  

( ) ( ) ( ( )) ( )n n n

d
G r M E r F r

dr r
  


   
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By substituting Gnκ (r) (from Eq. (4)) and Fnκ (r) (from Eq. (5)) into Eq. (5) and 

Eq. (4), respectively, two following second-order differential equations for the 

upper and lower components are obtained. 
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Considering pseudospin symmetry, Σ(r) =0, and Δ(r) as the modified potential 

and [18], we can reach Eq. (8) by substituting Eq. (1) into Eq. (7): 
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This equation cannot be solved analytically for 0   with the standard methods 

such as SUSY and NU because from Eq. (9), it is seen that the effective potential 

is a combination of exponential and inverse square potentials. Therefore, 

analytical solutions can be achieved by using an approximation method. We use 

an approximation for the pseudo-centrifugal term similar to the one used by Dong 

et al. [43] 
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This is a good approximation for small values of parameter α, which is shown in 

Fig 1. 

 
Fig 1: A plot of 1/r2 and approximation for various α [44] 

 

Using the approximation given in Eq. (9) and bellow definition, 
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We can write down the Schrӧdinger-like Eq. (8) for the lower spinor component 

as 
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Eq. (11) can be solved by using the basic concept of the supersymmetric 

formalism and supersymmetric shape-invariance method [45]. The ground-state 

lower spinor component G0,κ(r) can be given by 

0, ( ) exp ( ( ) )G r W r d r                                                   
(12) 

Where W(r) is called superpotential in the supersymmetric quantum mechanics 

[46]. Substituting Eq. (12) into Eq. (11) leads to the following equation for W(r)  
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Where W(r) is called a superpotential supersymmetric quantum mechanics. Eq. 

(13) is a non-linear Riccati equation.  By using the proposed supersymmetric 

shape-invariance method in ref. [46], the superpotential in Eq. (13) will be 

rewritten as 
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Which the coefficients are as bellow in Eq. (14) 
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Taking advantage of the basic concept in the six-parameter exponential-type 

potential (SPEP) method [47], we can calculate the energy levels as follows  
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Finally, the ground states and the first excited states in relativistic 

approach (Eq. (16)) are given in Tables 1 and 2 for some light weakly bound 

nuclei near closed shells.  

3. Result and discussion 

The energy levels of the ground states and the first excited states were 

calculated for the light weakly bound nuclei (He, Be, C, and O) near the closed 

shells with spot relativistic effects. The characteristics of these nuclei, which are 

near the closed shells, allowed us to provide a description based on assuming a 

two-body system formed by a neutron added to an inert core. Furthermore, 

relativistic analyses based on the Dirac equation have shown that they can achieve 

better agreement with experimental data than the nonrelativistic analyses based on 

the Schrӧdinger equation. One of the merits of the Dirac approach instead of a 
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nonrelativistic method is that the spin-orbit potential appears inherently in the 

Dirac approach when the Dirac equation is reduced to a Schrӧdinger-like second-

order differential equation, whereas the spin-orbit potential should be manually 

inserted in the nonrelativistic Schrӧdinger approach. 

3.1 The Ground State Energy 

     Numerical results for ground state energy of He, Be, C and O isotopes are 

given in Table 1. Also, calculated results were compared to the experimental data. 

The obtained results are reasonably acceptable because according to the numerical 

results calculated from the ground state energy for these isotopes (Table 1), the 

difference (ΔE) between the experimental and calculated binding energies is less 

than 1.2 MeV for all nuclei, which is less than 0.5% of the experimental values. 

Overall, the relativistic approach using Dirac equation can produce good results 

when calculating the ground state energy of light weakly bound nuclei near closed 

shells. 
Table 1 

The ground state energy of the weakly-bound nuclei. The experimental data are from Ref. 

[48]. 

Isotope    Parameter of  potential  Jπ                Energy (MeV) 

 α V0 V1  Eour Eexp 
5He 0.021 0.431 -112.113 3/2- 

28.015 27.560 
7He 0.023 0.453 -112.455 3/2-

 29.326 28.861 
9Be 0.027 0.525 -112.734 3/2-

 58.752 58.158 
11Be 0.011 0.567 -113.022 1/2+

 66.147 65.472 
13C 0.044 0.589 -113.089 1/2-

 97.786 97.097 
15C 0.047 0.612 -113.253 1/2+

 107.342 106.500 
17O 0.056 0.654 -113.442 5/2+

 132.557 131.750 
19O 0.059 0.676 -113.678 5/2+

 144.648 143.754 

 

3.2 The First Excited-State Energy 

     For the first excited energy level of these nuclei (Table 2), calculations show a 

good agreement with experimental results. According to the numerical results 

calculated from the first excited energy for these isotopes (Table 2), it can is 

found that the difference (ΔE) between experimental and calculated binding 

energies is less than 1.3 MeV for all nuclei. This is less than 0.5% of the 

experimental values. Since 5He isotope doesn’t have any excited state, it was not 

considered in the calculations. 
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Table 2 

The First excited-state energy of the weakly-bound nuclei.The experimental data are from 

Ref. [48]. 
Isotope    Parameter of  potential               Jπ      Energy (MeV) 

    α   V0       V1       Eour      Eexp 
7He 0.023 0.453 -112.455 5/2-

 29.448 28.863 
9Be 0.027 0.525 -112.734 1/2+

 60.276 59.842 
11Be 0.031 0.567 -113.022 1/2-

 66.413 65.792 
13C 0.044 0.589 -113.089 1/2+

 100.994 100.186 
15C 0.047 0.612 -113.253 5/2+

 108.100 107.240 
17O 0.056 0.654 -113.442 1/2+

 133.681 132.620 
19O 0.059 0.676 -113.678 3/2+

 144.897 143.850 

 

To well analyze and compare the obtained results for given nuclei, Figs 2-3 have 

been plotted. On the plot related to isotopes of each element, the ground state and 

the first excited level of each isotope can be seen for experimental data and 

calculated results.  
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Fig 2: Energy levels of ground states and the first excited states for 5He, 7He, 9Be and 11Be 

isotopes. In the (a), the total angular moment (3/2)−  belong to the ground state of 5He and 7He and 

(5/2)- belong to the first excited state of 7He. In the (b), the total angular moment (3/2)−and (1/2)+ 

are for the ground state of 9Be and 11Be, respectively, (1/2)+ and (1/2)- belong to the first excited 

state of 9Be and 11Be, respectively. 
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Fig 3: Energy levels of ground states and the first excited states for 13C, 15C, 17O and 19O isotopes. 

In the (a), the total angular moment (1/2)− and (1/2)+ are for the ground state of 13C and 15C, 

respectively, (1/2)+ and (5/2)+ are for the first excited state of 13C and  15C, respectively. In the (b), 

the total angular moment (5/2)+ is for the ground state of 17O and 19O , (1/2)+ and (3/2)+ are for the 

first excited state of 17O and  19O, respectively. 

 4. Conclusion 

         In the present work, we calculated energy levels of a series of weakly bound 

nuclei, using a relativistic method. For this purpose, Dirac equation with an 

appropriate nuclear potential was solved by a supersymmetric shape-invariance 

method. Then, the energy levels of the ground states and the first excited states 

were calculated for the light weakly bound nuclei (He, Be, C, and O) near the 

closed shells. Results exhibited well matched to the experimental data. Finally, it 

can be concluded that using relativistic approach can be useful to determine 

properties of light weakly bound nuclei near closed shells.    
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