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Fixed point problems of asymptotically pseudocontractive operators and quasi-

monotone variational inequalities have been considered in Hilbert spaces. An iterative
scheme for finding a common point of an asymptotically pseudocontractive operator and

the solution of a quasimonotone variational inequality is presented. Convergence anal-

ysis of the proposed scheme is proved under several additional assumptions.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C
be a nonempty closed and convex subset of H. Let f : C → H be an operator. Recall that
the variational inequality is to find a point û ∈ C such that

〈f(û), u− û〉 ≥ 0, ∀u ∈ C. (1)

Let Sol(C, f) be the solution set of the variational inequality (1).
Variational inequality problems provide a unified mathematical framework for many

practical problems arising in optimization ([12–14, 17, 23, 24, 27, 42, 46, 53, 57]). Variational
inequality problems include transportation networks ([18]), signal processing ([5]), equilib-
rium problems ([47, 58]), fixed point problems ([29–31, 33, 34, 37, 39, 40, 49]), complemen-
tarity problem ([14, 28]), etc. There are numerous iterative algorithms for solving variational
inequalities and related problems, see for examples, [1–4, 7, 11, 21, 25, 36, 41, 43, 44, 48, 50–
52, 54, 57].

For solving (1), one may use projection methods ([15, 16, 22, 26]) that employ the
metric projection onto the feasible set C. The projection-gradient method requires that
f must be strongly (pseudo-) monotone (see [19]) or f is inverse strongly monotone (see
[5]). However, if f is plain monotone, then the projection-gradient method does not nec-
essarily converge. Consequently, many iterative methods have been investigated, such as
proximal point method ([10]), Korpelevich’s extragradient method [20, 35] and its variant
forms ([9, 38]), subgradient extragradient method ([8, 45, 55]), Tseng’s method ([32]) and
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so on. Especially, Bot et al. [6] proposed the following Tseng-type algorithm{
vn = PC(un − λf(un)),

un+1 = µk(vn + λ(f(un)− f(vn)) + (1− µk)un, ∀n ≥ 0.
(2)

Bot et al. ([6]) proved that the sequence {un} generated by (2) converges weakly to an
element in Sol(C, f) provided f is pseudomonotone and sequentially weakly continuous.

In this paper, we present an iterative algorithm for solving fixed point problem of an
asymptotically pseudocontractive operator and a quasimonotone variational inequality in a
real Hilbert space. Our algorithm combines Tseng-type method and self-adaptive method.
We prove that the proposed algorithm converges weakly to a common element of the so-
lution of a quasimonotone variational inequality and the fixed point of an asymptotically
pseudocontractive operator under some additional conditions.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. An operator
f : C → H is said to be

(i) monotone if

〈f(x†)− f(x̂), x† − x̂〉 ≥ 0, ∀x†, x̂ ∈ C.
(ii) strongly monotone if there exists a constant µ > 0 such that

〈f(x†)− f(x̂), x† − x̂〉 ≥ µ‖x† − x̂‖2, ∀x†, x̂ ∈ C.
(iii) inverse-strongly monotone if there exists a constant γ > 0 such that

〈f(x†)− f(x̂), x† − x̂〉 ≥ γ‖f(x†)− f(x̂)‖2, ∀x†, x̂ ∈ C.
(iv) pseudomonotone if for all u, u† ∈ C, we have

〈f(u†), u− u†〉 ≥ 0 implies that 〈f(u), u− u†〉 ≥ 0.

(v) quasimonotone if for all u, u† ∈ C, the following relation holds

〈f(u†), u− u†〉 > 0 implies that 〈f(u), u− u†〉 ≥ 0.

(vi) L-Lipschitz if there exists a constant L > 0 such that

‖f(u)− f(u†)‖ ≤ L‖u− x†‖, ∀u, u† ∈ C.
Let Sold(C, f) be the solution set of the dual variational inequality of (1), that is,

Sold(C, f) := {u ∈ C|〈f(x), x− u〉 ≥ 0, ∀x ∈ C}.
Note that Sold(C, f) is closed convex. If C is convex and f is continuous, then Sold(C, f) ⊂
Sol(C, f). To show the convergence of the sequence {un}, a common condition Sol(C, f) ⊂
Sold(C, f) has been added, that is,

〈f(x), x− u〉 ≥ 0, ∀u ∈ Sol(C, f) and x ∈ C,
which is a direct consequence of the pseudomonotonicity of f . But this conclusion (that is,

Sol(C, f) ⊂ Sold(C, f)) is false, if f is quasimonotone.
Let T : H → H be an operator. Let Fix(T ) be the set of fixed points of T , i.e.,

Fix(T ) := {x ∈ H|x = Tx}. Recall that T is said to be

(i) τn-asymptotically pseudocontractive if for all x, x† ∈ C, we have

〈Tn(x)− Tn(x†), x− x†〉 ≤ τn‖x− x†‖2,∀n ≥ 1, (3)

where {τn} ⊂ [1,∞) satisfies limn→∞ τn = 1.
Note that the definition (3) is equivalent to

‖Tn(x)− Tn(x†)‖2 ≤ (2τn − 1)‖x− x†‖2 + ‖(I − Tn)x− (I − Tn)x†‖2. (4)
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(ii) uniformly L-Lipschitz if there exists a positive constant L such that

‖Tn(x)− Tn(x†)‖ ≤ L‖x− x†‖, ∀n ≥ 1,

for all x, x† ∈ C.

Let x ∈ H be a fixed point. There exists a unique x† ∈ C such that ‖x − x†‖ =
inf{‖x− x̃‖ : x̃ ∈ C}. Denote x† by PC [x]. It is well known that PC satisfies ([47])

x ∈ H, 〈x− PC [x], y − PC [x]〉 ≤ 0, ∀y ∈ C. (5)

By (5), we have

x† ∈ Sol(C, f)⇔ x† = PC [x† − αf(x†)],∀α > 0. (6)

It is well known that in H, we have the following equality

‖ςu+ (1− ς)u†‖2 = ς‖u‖2 + (1− ς)‖u†‖2 − ς(1− ς)‖u− u†‖2, (7)

∀u, u† ∈ H and ∀ς ∈ [0, 1].
In the sequel, we use “ ⇀ ” and “ → ” to denote weak convergence and strong

convergence, respectively. Let {un} be a sequence in H. Let ωw(un) be the set of all weak
cluster points of {un}, i.e., ωw(un) = {u† : ∃{uni} ⊂ {un} such that uni ⇀ u†(i→∞)}.

Lemma 2.1 ([56]). Let H be a real Hilbert space. Let T : H → H be a uniformly L-
Lipschtzian and asymptotically pseudocontractive operator. Then, I − T is demiclosed at
zero.

3. Main results

In this section, we present our main results.
Let H be a real Hilbert space and C ⊂ H be a nonempty closed convex set. Let f

be a quasimonotone and κ1-Lipschitz operator on H. Let T be a uniformly κ2-Lipschitz
and τn-asymptotically pseudocontractive operator on H. Assume that the following two
conditions hold: (C1): Γ := Fix(T ) ∩ Sold(C, f) 6= ∅ and {x ∈ C : f(x) = 0} \ Sold(C, f)
is a finite set; (C2): For any a sequence {xn} in H, if xn ⇀ x† and limn→+∞‖f(xn)‖ = 0,

then f(x†) = 0. Let {%n}, {σn} and {ςn} be three sequences in (0, 1). Let ζ ∈ (0, 1) and
α0 > 0 be two constants.

Now, we introduce an iterative algorithm for solving fixed point problems and varia-
tional inequalities.

Algorithm 3.1. Select an initial point u0 in H and set n = 0.
Step 1. Let the current iterate un be given. Compute{

v̂n = (1− %n)un + %nT
n(un),

vn = (1− σn)un + σnT
n(v̂n).

(8)

Step 2. Let the step-size αn be given. Compute

wn = PC [vn − αnf(vn)], (9)

and the next iterate

un+1 = (1− ςn)vn + ςnwn + ςnαn[f(vn)− f(wn)]. (10)

Step 3. Compute the step-size αn+1 via the following manner

αn+1 =

{
min

{
αn,

ζ‖wn−vn‖
‖f(wn)−f(vn)‖

}
, if f(wn) 6= f(vn),

αn, else.
(11)

Set n := n+ 1 and return to step 1.



38 Haibin Shen, Yasong Chen, Zhangsong Yao

Remark 3.1. (i) With the help of (5), vn = PC [vn −αnf(vn)] implies that vn ∈ Sol(C, f).

(ii) From (11), we can conclude that for all n ≥ 0, αn+1 ≤ αn and αn ≥ min{α0,
ζ
κ1
}. Thus,

limn→∞ αn = α† exists and α† ≥ min{α0,
ζ
κ1
} > 0.

Next, we show the convergence of Algorithm 3.1.

Theorem 3.1. Suppose that the sequences{%n}, {σn} and {ςn} satisfy the following con-
ditions: (C3): 0 < σ < σn < σ < %n ≤ 1

τn+
√
κ2
2+τ

2
n

< 1√
1+κ2

2+1
for all n ≥ 0, (C4):

0 < limn→∞ςn ≤ lim supn→∞ ςn < 1 and (C5):
∑∞
n=1(τn − 1) < +∞. Then the sequence

{un} generated by Algorithm 3.1 converges weakly to some point in Γ.

Proof. Choose any x̃ in Γ. Since x̃ ∈ C, applying inequality (5) and from (9), we have

〈vn − αnf(vn)− wn, wn − x̃〉 ≥ 0.

So,

〈wn − vn, wn − x̃〉+ αn〈f(vn), wn − x̃〉 ≤ 0. (12)

As a result of x̃ ∈ Sold(C, f) and wn ∈ C, we obtain

〈f(wn), wn − x̃〉 ≥ 0. (13)

Combining (12) and (13) to deduce

〈wn − vn, wn − x̃〉+ αn〈f(vn)− f(wn), wn − x̃〉 ≤ 0. (14)

Note that

〈wn − vn, wn − x̃〉 =
1

2
(‖wn − vn‖2 + ‖wn − x̃‖2 − ‖vn − x̃‖2),

which together with (14) implies that

‖wn − vn‖2 + ‖wn − x̃‖2 − ‖vn − x̃‖2 + 2αn〈f(vn)− f(wn), wn − x̃〉 ≤ 0.

Hence,

‖wn − x̃‖2 ≤ ‖vn − x̃‖2 − 2αn〈f(vn)− f(wn), wn − x̃〉 − ‖wn − vn‖2. (15)

From (10), we have

‖un+1 − x̃‖2 = ‖(1− ςn)(vn − x̃) + ςn(wn − x̃) + ςnαn[f(vn)− f(wn)]‖2

= ‖(1− ςn)(vn − x̃) + ςn(wn − x̃)‖2 + ς2nα
2
n‖f(vn)− f(wn)‖2

+ 2ςn(1− ςn)αn〈vn − x̃, f(vn)− f(wn)〉
+ 2ς2nαn〈wn − x̃, f(vn)− f(wn)〉.

(16)

By (7), we get

‖(1− ςn)(vn − x̃) + ςn(wn − x̃)‖2 = (1− ςn)‖vn − x̃‖2 + ςn‖wn − x̃‖2

− ςn(1− ςn)‖vn − wn‖2
(17)

Substituting (17) into (16), we deduce

‖un+1 − x̃‖2 = (1− ςn)‖vn − x̃‖2 + ςn‖wn − x̃‖2 − ςn(1− ςn)‖vn − wn‖2

+ ς2nα
2
n‖f(vn)− f(wn)‖2 + 2ς2nαn〈wn − x̃, f(vn)− f(wn)〉

+ 2ςn(1− ςn)αn〈vn − x̃, f(vn)− f(wn)〉.
(18)
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Taking into account (15) and (18), we obtain

‖un+1 − x̃‖2 ≤ ‖vn − x̃‖2 − ςn(2− ςn)‖vn − wn‖2 + ς2nα
2
n‖f(vn)− f(wn)‖2

+ 2ςn(1− ςn)αn〈vn − wn, f(vn)− f(wn)〉
≤ ‖vn − x̃‖2 − ςn(2− ςn)‖vn − wn‖2 + ς2nα

2
n‖f(vn)− f(wn)‖2

+ 2ςn(1− ςn)αn‖vn − wn‖‖f(vn)− f(wn)‖.

(19)

By (11), ‖f(wn)− f(vn)‖ ≤ ζ‖wn−vn‖
αn+1

. From (19), we achieve

‖un+1 − x̃‖2 ≤ ‖vn − x̃‖2 − ςn(2− ςn)‖vn − wn‖2 + ζ2ς2nα
2
n‖wn − vn‖2/α2

n+1

+ 2ζςn(1− ςn)αn‖vn − wn‖2/αn+1

= ‖vn − x̃‖2 − ςn[2− ςn − ζ2ςnα2
n/α

2
n+1 − 2ζ(1− ςn)αn/αn+1]‖vn − wn‖2.

(20)

According to Remark 3.1 and condition (C4), we have limn→∞ςn
[
2 − ςn − ζ2ςnα2

n/α
2
n+1 −

2ζ(1 − ςn)αn/αn+1

]
> 0. Then, there exists a constant $ > 0 and an integer N > 0 such

that when n ≥ N, ςn[2− ςn − ζ2ςnα2
n/α

2
n+1 − 2ζ(1− ςn)αn/αn+1] ≥ $. This together with

(20) implies that

‖un+1 − x̃‖2 ≤ ‖vn − x̃‖2 −$‖vn − wn‖2. (21)

Based on (7) and (8), we obtain

‖vn − x̃‖2 = ‖(1− σn)(un − x̃) + σn(Tn(v̂n)− x̃)‖2

= (1− σn)‖un − x̃‖2 + σn‖Tn(v̂n)− x̃‖2

− σn(1− σn)‖un − Tn(v̂n)‖2.
(22)

Using the definition (4) of T , we receive

‖Tn(v̂n)− x̃‖2 ≤ (2τn − 1)‖v̂n − x̃‖2 + ‖v̂n − Tn(v̂n)‖2, (23)

and

‖Tn(un)− x̃‖2 ≤ (2τn − 1)‖un − x̃‖2 + ‖un − Tn(un)‖2. (24)

Since T is uniformly κ2-Lipschitz, we obtain

‖Tn(un)− Tn(v̂n)‖ ≤ κ2‖un − v̂n‖ = κ2%n‖un − Tn(un)‖. (25)

Applying (7) to (8), we attain

‖v̂n − x̃‖2 = ‖(1− %n)(un − x̃) + %n(Tn(un)− x̃)‖2

= (1− %n)‖un − x̃‖2 + %n‖Tn(un)− x̃‖2 − %n(1− %n)‖un − Tn(un)‖2.

This together with (24) implies that

‖v̂n − x̃‖2 ≤ (1− %n)‖un − x̃‖2 + %n[(2τn − 1)‖un − x̃‖2 + ‖un − Tn(un)‖2]

− %n(1− %n)‖un − Tn(un)‖2

= [1 + 2(τn − 1)%n]‖un − x̃‖2 + %2n‖un − Tn(un)‖2.
(26)

Taking into account (7), (8) and (25), we derive

‖v̂n − Tn(v̂n)‖2 = ‖(1− %n)(un − Tn(v̂n)) + %n(Tn(un)− Tn(v̂n))‖2

= (1− %n)‖un − Tn(v̂n)‖2 + %n‖Tn(un)− Tn(v̂n)‖2

− %n(1− %n)‖un − Tn(un)‖2

≤ (1− %n)‖un − Tn(v̂n)‖2 − %n(1− %n − κ22%2n)‖un − Tn(un)‖2.

(27)
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In the light of (23), (26) and (27), we have

‖Tn(v̂n)− x̃‖2 ≤ (2τn − 1)[1 + 2(τn − 1)%n]‖un − x̃‖2 + (2τn − 1)%2n‖un − Tn(un)‖2

+ (1− %n)‖un − Tn(v̂n)‖2 − %n(1− %n − κ22%2n)‖un − Tn(un)‖2

= (2τn − 1)[1 + 2(τn − 1)%n]‖un − x̃‖2 + (1− %n)‖un − Tn(v̂n)‖2

− %n(1− 2τn%n − κ22%2n)‖un − Tn(un)‖2.

(28)

Based on condition (C3), %n ≤ 1

τn+
√
κ2
2+τ

2
n

. Then, 1− 2τn%n − κ22%2n > 0. By (28), we have

‖Tn(v̂n)− x̃‖2 ≤ (2τn − 1)[1 + 2(τn − 1)%n]‖un − x̃‖2 + (1− %n)‖un − Tn(v̂n)‖2. (29)

Combining (22) and (29), we receive

‖vn − x̃‖2 ≤ σn(2τn − 1)[1 + 2(τn − 1)%n]‖un − x̃‖2 + (1− σn)‖un − x̃‖2

+ σn(1− %n)‖un − Tn(v̂n)‖2 − σn(1− σn)‖un − Tn(v̂n)‖2

= [1 + 2(τn − 1)σn + 2(τn − 1)(2τn − 1)%nσn]‖un − x̃‖2

+ σn(σn − %n)‖un − Tn(v̂n)‖2.

which results, together with (21), that

‖un+1 − x̃‖2 ≤ [1 + 2(τn − 1)σn + 2(τn − 1)(2τn − 1)%nσn]‖un − x̃‖2

− (%n − σn)σn‖un − Tn(v̂n)‖2 −$‖vn − wn‖2, n ≥ N.
(30)

By the assumptions, we have 2(τn − 1)σn + 2(τn − 1)(2τn − 1)%nσn ≤ 8(τn − 1). It follows
from (30) that

‖un+1 − x̃‖2 ≤ [1 + 8(τn − 1)]‖un − x̃‖2. (31)

Using condition (C5) and (31), we conclude tat limn→∞ ‖un − x̃‖ exists. Therefore, {un} is
bounded. According to (30) and (31), we obtain

(%n − σn)σn‖un − Tn(v̂n)‖2 +$‖vn − wn‖2 ≤ [1 + 8(τn − 1)]‖un − x̃‖2 − ‖un+1 − x̃‖2,

which implies that

lim
n→∞

‖un − Tn(v̂n)‖ = 0. (32)

and

lim
n→∞

‖vn − wn‖ = 0. (33)

In combination with the Lipschitz continuity of f , we have

lim
n→∞

‖f(vn)− f(wn)‖ = 0. (34)

From (8), vn − un = σn(Tn(v̂n)− un). Then, by (32), we have

lim
n→∞

‖vn − un‖ = 0. (35)

By virtue of (10), (32), (33) and (34), we deduce

lim
n→∞

‖un+1 − un‖ = 0. (36)

It is obvious that the sequences {vn} and {wn} are bounded. Since T is uniformly κ2-
Lipschitz continuous, we have

‖un − Tn(un)‖ ≤ ‖un − Tn(v̂n)‖+ ‖Tn(v̂n)− Tn(un)‖
≤ ‖un − Tn(v̂n)‖+ κ2%n‖un − Tn(un)‖.
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It yields

‖un − Tn(un)‖ ≤ 1

1− κ%n
‖un − Tn(v̂n)‖.

This together with (32) implies that

lim
n→∞

‖un − Tn(un)‖ = 0. (37)

Observe that

‖un+1 − T (un+1)‖ ≤ ‖un+1 − Tn+1un+1‖+ ‖Tn+1un+1 − Tn+1un‖
+ ‖Tn+1un − Tun+1‖
≤ ‖un+1 − Tn+1un+1‖+ 2κ2‖un+1 − un‖+ κ2‖Tnun − un‖.

(38)

By virtue of (36), (37) and (38), we get

lim
n→∞

‖un − T (un)‖ = 0. (39)

Next, we show that ωw(un) ⊂ Γ. Choose any x∗ ∈ ωw(un) and {uni} is a subsequence
of {un} such that uni

⇀ x∗ as i → ∞. Thanks yo (33) and (35), we have vni
⇀ x∗ and

wni
⇀ x∗. Take into account of (39) and Lemma 2.1, we obtain that x∗ ∈ Fix(T ). Now,

we prove that x∗ ∈ Sol(C, f). Noting that wni
= PC [vni

− αni
f(vni

)] and applying (5), we
receive

〈wni
− vni

+ αni
f(vni

), wni
− û〉 ≤ 0, ∀û ∈ C,

which yields

1

αni

〈vni
− wni

, û− wni
〉+ 〈f(vni

), wni
− vni

〉 ≤ 〈f(vni
), û− vni

〉, ∀û ∈ C. (40)

Owing to (33), limi→∞ ‖vni − wni‖ = 0. It follows from (40) that

limi→∞〈f(vni
), û− vni

〉 ≥ 0, ∀û ∈ C (41)

Now, we consider two cases: limi→+∞‖f(vni)‖ = 0 and limi→+∞‖f(vni)‖ > 0.
Suppose that limi→+∞‖f(vni)‖ = 0. Since vni ⇀ x∗ and f satisfies condition (C2),

we obtain that f(x∗) = 0. Hence, x∗ ∈ Sol(C, f). Suppose that limi→+∞‖f(vni
)‖ > 0.

Then there exists an integer I > 0 verifying f(vni
) 6= 0 for all i ≥ I. In view of (41), we

achieve

limi→+∞〈f(vni)/‖f(vni)‖, û− vni〉 ≥ 0, ∀û ∈ C. (42)

Let {ξj} be a sequence satisfying (i) ξj > 0 for all j > 0; (ii) ξj+1 < ξj ,∀j > 0 and
(iii) limj→∞ ξj = 0. By virtue of (42), there exists a strictly increasing subsequence {nij}
satisfying nij ≥ I and ∀j ≥ 0,

〈f(vnij
)/‖f(vnij

)‖, û− vnij
〉+ ξj > 0, ∀û ∈ C,

which results in that

〈f(vnij
), û− vnij

〉+ ξj‖f(vnij
)‖ > 0, ∀û ∈ C, ∀j ≥ 0. (43)

Write ṽj = f(vnij
)/‖f(vnij

)‖2,∀j ≥ 0. It is clear that 〈f(vnij
), ṽj〉 = 1 for each j ≥ 0.

Owing to (43), we have

〈f(vnij
), û+ ξj‖f(vnij

)‖ṽj − vnij
〉 > 0, ∀û ∈ C,∀j ≥ 0. (44)

Since f is quasimonotone on H, from (44), we have

〈f(û+ ξj‖f(vnij
)‖ṽj), û+ ξj‖f(vnij

)‖ṽj − vnij
〉 ≥ 0, ∀û ∈ C,∀j ≥ 0. (45)
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Since limj→+∞ ξj‖f(vnij
)‖‖ṽj‖ = limj→+∞ ξj = 0 and f is Lipschitz continuous, we con-

clude that limj→∞ f(x+ ξj‖f(vnij
)‖ṽj) = f(x). Letting j → +∞ in (45), we deduce

〈f(û), û− x∗〉 ≥ 0, ∀û ∈ C,

which indicates x∗ ∈ Sold(C, f). Next, we show that x∗ is the unique weak cluster point of

{un} in Sold(C, f). Let x̄ ∈ Sold(C, f) be another weak cluster point of {un}. Then, there
exists a sequence {unj} of {un} satisfying unj ⇀ x̄ as j → +∞. Note that for all k ≥ 0,

2〈un, x∗ − x̄〉 = ‖un − x̄‖2 − ‖un − x∗‖2 + ‖x∗‖2 − ‖x̄‖2. (46)

Note that limn→+∞ ‖un−x∗‖ and limn→+∞ ‖un−x̄‖ exist. From (46), limn→+∞〈un, x∗−x̄〉
exists. Hence,

lim
i→+∞

〈uni , x
∗ − x̄〉 = lim

j→+∞
〈unj , x

∗ − x̄〉 (47)

Since uni ⇀ x∗ and unj ⇀ x̄, from (47), we have

〈x∗, x∗ − x̄〉 = 〈x̄, x∗ − x̄〉
which implies that ‖x∗ − x̄‖2 = 0 and hence x∗ = x̄. Therefore, {un} has the unique weak

cluster point in Sold(C, f). By the condition (C1), {x ∈ C, f(x) = 0} \ Sold(C, f) is a finite
set. Therefore, {un} has finite weak cluster points in Sol(C, f) denoted by a1, a2, · · · , am.

Set N0 = {1, 2, · · · ,m} and ν = min{‖aj−ak‖3 , j, k ∈ N0, j 6= k}. Let aj , j ∈ N0 be any

weak cluster point in Sol(C, f) and {ujni
} be a subsequence of {un} satisfying ujni

⇀ aj as
i→ +∞. Then, we have

lim
i→+∞

〈ujni
,
aj − ak
‖aj − ak‖

〉 = 〈aj ,
aj − ak
‖aj − ak‖

〉, ∀k ∈ N0 and k 6= j. (48)

By the definition of ν, we have ∀k 6= j,

〈aj ,
aj − ak
‖aj − ak‖

〉 =
‖aj − ak‖

2
+
‖aj‖2 − ‖ak‖2

2‖aj − ak‖

> ν +
‖aj‖2 − ‖ak‖2

2‖aj − ak‖
.

(49)

In the light of (48) and (49), there exists an integer qji such that when i ≥ qji ,

ujni
∈ {x : 〈x, aj − ak

‖aj − ak‖
〉 > ν +

‖aj‖2 − ‖ak‖2

2‖aj − ak‖
}, k ∈ N0, k 6= j. (50)

Set

Sbj =

m⋂
k=1,k 6=j

{x : 〈x, aj − ak
‖aj − ak‖

〉 > ν +
‖aj‖2 − ‖ak‖2

2‖aj − ak‖
}. (51)

Take into account of (50) and (51), we have ujni
∈ Sbj when i ≥ max{qji , j ∈ N0}.

Now we show that un ∈
⋃m
j=1 Sbj for a large enough n. If not, there exists a subse-

quence {unl
} of {un} such that unl

/∈
⋃m
j=1 Sbj . By the boundedness of {unl

}, there exists

a subsequence of {unl
} convergent weakly to x∗. Without loss of generality, we still denote

the subsequence as {unl
}. According to assumptions unl

/∈
⋃m
j=1 Sbj , so unl

/∈ Sbj for any

j ∈ N0. Therefore, there exists a subsequence {unls
} of {unl

} such that ∀s ≥ 0,

unls
/∈ {x : 〈x, aj − ak

‖aj − ak‖
〉 > ν +

‖aj‖2 − ‖ak‖2

2‖aj − ak‖
}, k ∈ N0, k 6= j. (52)

Thus,

x∗ /∈ {x : 〈x, aj − ak
‖aj − ak‖

〉 > ν +
‖aj‖2 − ‖ak‖2

2‖aj − ak‖
}, k ∈ N0, k 6= j,
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which implies that x∗ 6= aj , j ∈ N0. This is impossible. So, for a large enough positive
integer N1, un ∈

⋃m
j=1 Sbj when n ≥ N1.

Next, we show that {un} has the unique weak cluster point in Sol(C, f). First, there
exists a positive integer N2 ≥ N1 such that ‖un+1 − un‖ < ν for all n ≥ N2. Assume
that {un} has at least two weak cluster points in Sol(C, f). Then, there exists n̂ ≥ N2

such that un̂ ∈ Sbj and un̂+1 ∈ Sbk, where j, k ∈ N0 and m ≥ 2, that is, un̂ ∈ Sbj =⋂m
k=1,k 6=j{x : 〈x, aj−ak

‖aj−ak‖ 〉 > ν+
‖aj‖2−‖ak‖2
2‖aj−ak‖ } and un̂+1 ∈ Sbk =

⋂m
j=1,j 6=k{x : 〈x, ak−aj

‖ak−aj‖ 〉 >

ν +
‖ak‖2−‖aj‖2
2‖ak−aj‖ }. Therefore,

〈un̂,
aj − ak
‖aj − ak‖

〉 > ν +
‖aj‖2 − ‖ak‖2

2‖aj − ak‖
(53)

and

〈un̂+1,
ak − aj
‖ak − aj‖

〉 > ν +
‖ak‖2 − ‖aj‖2

2‖ak − aj‖
. (54)

Combining (53) and (54), we achieve

〈un̂ − un̂+1,
aj − ak
‖aj − ak‖

〉 > 2ν. (55)

At the same time, we have

‖un̂+1 − un̂‖ < ν. (56)

Based on (55) and (56), we deduce 2ν < 〈un̂ − un̂+1,
aj−ak
‖aj−ak‖ 〉 ≤ ‖un̂ − un̂+1‖ < ν. This

leads to a contradiction. Then, {un} has the unique weak cluster point in Sol(C, f). So,
the sequence {un} has the unique weak cluster point x∗ ∈ Γ. Therefore, the sequence {un}
converges weakly to x∗ ∈ Γ. This completes the proof. �

Based on Algorithm 3.1 and Theorem 3.1, we can obtain the following algorithms and
the corresponding corollaries.

Algorithm 3.2. Let u0 ∈ H be an initial guess. Set n = 0.
Step 1. Let the n-th iterate un and the n-th step-size αn be given. Compute wn = PC [un −
αnf(un)], and un+1 = (1− ςn)un + ςnwn + ςnαn[f(un)− f(wn)].
Step 2. Update the n+ 1-th step-size by the following form

αn+1 =

{
min

{
αn,

ζ‖wn−un‖
‖f(wn)−f(un)‖

}
, if f(wn) 6= f(un),

αn, else.

Set n := n+ 1 and return to step 1.

Corollary 3.1. Assume that the operator f : H → H is quasimonotone, κ1-Lipschitz
continuous and satisfies condition (C2). Suppose that Sold(C, f) 6= ∅, {x ∈ C : f(x) =

0} \ Sold(C, f) is a finite set and condition (C4) holds. Then the sequence {un} generated
by Algorithm 3.2 converges weakly to some point in Sol(C, f).

Algorithm 3.3. Take u0 ∈ C and α0 > 0. Set n = 0.
Step 1. For known un, compute un+1 = (1− σn)un + σnT

n[(1− %n)un + %nT
n(un)].

Step 2. Set n := n+ 1 and return to step 1.

Corollary 3.2. Assume that T is a uniformly κ2-Lipschitz and τn-asymptotically pseudocon-
tractive operator on H. Suppose that Fix(T ) 6= ∅ and conditions (C3) and (C5) hold. Then
the sequence {un} generated by Algorithm 3.3 converges weakly to some point in Fix(T ).
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4. Conclusions

In this paper, we investigate a fixed point problem and a quasimonotone variational
inequality in a Hilbert space. We construct an iterative algorithm (Algorithm 3.1) for
finding a fixed point of an asymptotically pseudocontractive operator T and a solution of
quasimonotone variational inequality. Our algorithm consists of Tseng-type method and
self-adaptive rule. With the help of conditions (C1) and (C2), we show that the proposed
iterative sequence (10) converges weakly to a fixed point of an asymptotically pseudocon-
tractive operator T and a solution of quasimonotone variational inequality.
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