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The purpose of this paper is to establish some coupled coincidence point
theorems for mappings having a mixed g-monotone property in partially ordered
G-metric spaces. Also, we present a result on the existence and uniqueness of
coupled common fixed points. The results presented in the paper generalize and
extend several well-known results in the literature.
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1. Introduction

The Banach contraction mapping is one of the pivotal results of analysis. It
is a famous tool for solving existence problems in various fields of mathematics.
There are a lot of generalizations of the Banach contraction principle in the litera-
ture. Ran and Reurings [34] extended the Banach contraction principle in partially
ordered sets with some applications to linear and nonlinear matrix equations. Ni-
eto and Rodŕiguez-López [32] extended the result of Ran and Reurings and applied
their main theorems to obtain a unique solution for a first order ordinary differential
equation with periodic boundary conditions. Bhaskar and Lakshmikantham [6] in-
troduced the concept of mixed monotone mappings and obtained some coupled fixed
point results. Also, they applied their results on a first order differential equation
with periodic boundary conditions.

In [22], Mustafa and Sims introduced G-metric spaces, which is a generaliza-
tion of metric spaces, in which every triplet of elements is assigned to a non-negative
real number. Recently, many researchers have obtained fixed point, common fixed
point, coupled fixed point results on metric spaces, convex metric spaces, partial
metric spaces, G-metric spaces, partially ordered metric spaces and partially or-
dered G-metric spaces (see [1]-[44]).

The purpose of this paper is to establish some new coupled coincidence point
results in partially ordered G-metric spaces for mappings having mixed g-monotone
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property. Also, we present a result on the existence and uniqueness of coupled
common fixed points.

2. Preliminaries

Definition 2.1. Let (X, d) be a metric space and F : X ×X → X and g : X → X
two mappings. We say that F and g commute if F (gx, gy) = g(F (x, y)), for all
x, y ∈ X.

Definition 2.2 ([22]). Let X be a non-empty set, G : X × X × X → R+ be a
function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three vari-

ables);
(G5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z) for all x, y, z, a ∈ X (rectangle inequal-

ity).
Then the function G is called a generalized metric, or, more specifically, a

G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 2.3 ([22]). Let (X,G) be a G-metric space, and let {xn} be a sequence of
points of X. We say that {xn} is G-convergent to x ∈ X if limn,m→∞G(x, xn, xm) =
0, that is, for any ϵ > 0, there exists N in N such that G(x, xn, xm) < ϵ, for all
n,m ≥ N .

We call x the limit of the sequence and write xn → x or limxn = x.

Proposition 2.1 ([22]). Let (X,G) be a G-metric space. The following are equiva-
lent:

(1) {xn} is G-convergent to x.
(2) G(xn, xn, x) → 0 as n→ +∞.
(3) G(xn, x, x) → 0 as n→ +∞.
(4) G(xn, xm, x) → 0 as n,m→ +∞.

Definition 2.4 ([22]). Let (X,G) be a G-metric space. A sequence {xn} is called
a G-Cauchy sequence if, for any ϵ > 0, there is N ∈ N such that G(xn, xm, xl) < ϵ
for all m,n, l ≥ N , that is, G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 2.2 ([21]). Let (X,G) be a G-metric space. Then the following are
equivalent

(1) The sequence {xn} is G-Cauchy;
(2) For any ϵ > 0, there exists N ∈ N such that G(xn, xm, xm) < ϵ , for all

m,n ≥ N .

Proposition 2.3 ([22]). Let (X,G) be a G-metric space. A mapping f : X → X is
G-continuous at x ∈ X if and only if it is G-sequentially continuous at x, that is,
whenever {xn} is G-convergent to x, {f(xn)} is G-convergent to f(x).

Proposition 2.4 ([22]). Let (X,G) be a G-metric space. Then, the function G(x, y, z)
is jointly continuous in all three of its variables.

Definition 2.5 ([22]). A G-metric space (X,G) is called G-complete if every G-
Cauchy sequence is G-convergent in (X,G).
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Definition 2.6 ([15]). Let (X,G) be a G-metric space. A mapping F : X×X → X
is said to be continuous if for any two G-convergent sequences {xn} and {yn}, to x
and y respectively, {F (xn, yn)} is G-convergent to F (x, y).

Definition 2.7. Let (X,≼) be a partially ordered set and F : X × X → X. The
mapping F is said to be non-decreasing if for x, y ∈ X, x ≼ y implies F (x) ≼ F (y)
and non-increasing if for x, y ∈ X, x ≼ y implies F (x) ≽ F (y).

Definition 2.8. Let (X,≼) be a partially ordered set and F : X × X → X and
g : X → X. The mapping F is said to have the mixed g-monotone property if
F (x, y) is monotone g-non-decreasing in x and monotone g-non-increasing in y, that
is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 ≼ gx2 ⇒ F (x1, y) ≼ F (x2, y),

and

y1, y2 ∈ X, gy1 ≼ gy2 ⇒ F (x, y1) ≽ F (x, y2).

If g =identity mapping in Definition 2.8, then the mapping F is said to have
the mixed monotone property.

Definition 2.9. An element (x, y) ∈ X ×X is called a coupled coincidence point of
the mappings F : X ×X → X and g : X → X if F (x, y) = gx, and F (y, x) = gy.

If g =identity mapping in Definition 2.9, then (x, y) ∈ X × X is called a
coupled fixed point.

The following coupled fixed point theorem is the main result of Bhaskar and
Lakshmikantham [6].

Theorem 2.1. Let (X,≼) be a partially ordered set and suppose that there exists
a metric d on X such that (X, d) is a metric space. Suppose that F : X ×X → X
is a self mapping on X and has the mixed monotone property on X such that there
exists two elements x0, y0 ∈ X with x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0). Suppose that
there exist k ∈ [0, 1) such that

d(F (x, y), F (u, v)) ≤ k

2
(d(x, u) + d(y, v)) (2.1)

for all x, y, u, v ∈ X with x ≽ u and y ≼ v.
Further suppose that either
a) F is continuous or
b) X has the following properties:
(i) if a sequence {xn} ⊂ X is a non-decreasing sequence with xn → x in X,

then xn ≼ x, for every n;
(ii) if a sequence {yn} ⊂ X is a non-increasing sequence with yn → y in X,

then yn ≽ y, for every n;
Then there exists x, y ∈ X such that F (x, y) = x and y = F (y, x), that is, F

has a coupled fixed point (x, y) ∈ X ×X.

3. Main Results

In this section, we prove some coupled common fixed point theorems in the
context of partially ordered G-metric spaces. In this respect, let Ψ denote the set
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of all functions ψ : [0,∞) → [0,∞) which satisfy limt→r ψ(t) > 0 for all r > 0 and
limt→0+ ψ(t) = 0; and Φ denote the set of all functions ϕ : [0,∞) → [0,∞) such that

(i) ϕ is continuous and non-decreasing;
(ii) ϕ(t) = 0 if and only if t = 0;
(iii) ϕ(t+ s) ≤ ϕ(t) + ϕ(s), for all t, s ∈ [0,∞).
For example, functions ϕ1(t) = kt, where k > 0, ϕ2(t) =

t
t+1 , ϕ3(t) = ln(t+1),

and ϕ4(t) = min{t, 1} are in Φ. Functions ψ1(t) = kt, where k > 0, ψ2(t) =
ln(2t+1)

2 ,
and

ψ3(t) =


1, t = 0
t

t+1 , 0 < t < 1

1, t = 1
t
2 , t > 1

are in Ψ.

Theorem 3.1. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Suppose that F : X × X → X and
g : X → X are continuous self mappings on X such that F has the mixed g-monotone
property on X such that there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0)
and g(y0) ≽ F (y0, x0). Suppose that there exist ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ(G(F (x, y), F (u, v), F (w, z))) ≤ 1

2
ϕ(G(gx, gu, gw) +G(gy, gv, gz))

−ψ
(
G(gx, gu, gw) +G(gy, gv, gz)

2

)
(3.1)

for all x, y, u, v, w, z ∈ X with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz. Further suppose
that F (X × X) ⊆ g(X) and g commutes with F . Then there exists x, y ∈ X such
that F (x, y) = gx and gy = F (y, x), that is, F and g have a coupled coincidence
point (x, y) ∈ X ×X.

Proof. Let x0, y0 ∈ X be such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0). Since
F (X ×X) ⊆ g(X), we can construct sequences {xn} and {yn} in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), ∀n ≥ 0. (3.2)

We claim that for all n ≥ 0,

gxn ≼ gxn+1, (3.3)

and
gyn ≽ gyn+1. (3.4)

We shall use the mathematical induction.
Let n = 0. Since gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0), in view of gx1 =

F (x0, y0) and gy1 = F (y0, x0), we have gx0 ≼ gx1 and gy0 ≽ gy1, that is, (3.3) and
(3.4) hold for n = 0. Suppose that (3.3) and (3.4) hold for some n > 0. As F has
the mixed g-monotone property and gxn ≼ gxn+1 and gyn ≽ gyn+1, from (3.2), we
get

gxn+1 = F (xn, yn) ≼ F (xn+1, yn) ≼ F (xn+1, yn+1) = gxn+2, (3.5)

and
gyn+1 = F (yn, xn) ≽ F (yn+1, xn) ≽ F (yn+1, xn+1) = gyn+2. (3.6)
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Now, from (3.5) and (3.6), we obtain that gxn+1 ≼ gxn+2 and gyn+1 ≽ gyn+2.
Thus by the mathematical induction, we conclude that (3.3) and (3.4) hold for all
n ≥ 0. Therefore

gx0 ≼ gx1 ≼ gx2 ≼ . . . ≼ gxn ≼ gxn+1 ≼ . . . , (3.7)

and

gy0 ≽ gy1 ≽ gy2 ≽ . . . ≽ gyn ≽ gyn+1 ≽ . . . . (3.8)

Since gxn ≼ gxn+1 and gyn ≽ gyn+1, from (3.1) and (3.2), we have

ϕ(G(gxn+1, gxn+1, gxn)) = ϕ(G(F (xn, yn), F (xn, yn), F (xn−1, yn−1)))

≤ 1

2
ϕ(G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1))

−ψ
(
G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1)

2

)
, (3.9)

and

ϕ(G(gyn+1, gyn+1, gyn)) = ϕ(G(F (yn, xn), F (yn, xn), F (yn−1, xn−1)))

≤ 1

2
ϕ(G(gyn, gyn, gyn−1) +G(gxn, gxn, gxn−1))

−ψ
(
G(gyn, gyn, gyn−1) +G(gxn, gxn, gxn−1)

2

)
. (3.10)

From (3.9) and (3.10), we have

ϕ(G(gxn+1, gxn+1, gxn)) + ϕ(G(gyn+1, gyn+1, gyn))

≤ ϕ(G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1))

−2ψ

(
G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1)

2

)
. (3.11)

By property (iii) of Φ, we have

ϕ(G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn))

≤ ϕ(G(gxn+1, gxn+1, gxn)) + ϕ(G(gyn+1, gyn+1, gyn)). (3.12)

From (3.11) and (3.12), we have

ϕ(G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn))

≤ ϕ(G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1))

−2ψ

(
G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1)

2

)
(3.13)

which implies that

ϕ(G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn))
≤ ϕ(G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1)).

As ϕ is non-decreasing, we get

G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn)
≤ G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1).
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Thus we proved that δn = {G(gxn+1, gxn+1, gxn)+G(gyn+1, gyn+1, gyn)} is a mono-
tone decreasing sequence of non-negative real numbers. Hence there exists r ≥ 0
such that δn → r as n→ ∞.

Now, we shall show that r = 0. Suppose, to the contrary, that r > 0. Then
taking the limit as n→ ∞ in (3.13), we have

ϕ(r) = limϕ(δn) ≤ lim

[
ϕ(δn−1)− 2ψ(

δn−1

2
)

]
< ϕ(r),

which is a contradiction. Thus r = 0, that is,

lim δn = lim [G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn)] = 0. (3.14)

Now, we shall prove that {gxn} and {gyn} are G-Cauchy sequences. On the
contrary, assume that atleast one of {gxn} or {gyn} is not a G-Cauchy sequence.
Then there exists an ϵ > 0 for which we can find subsequences {gxm(k)} and {gxn(k)}
of {gxn} and {gym(k)} and {gyn(k)} of {gyn} with n(k) > m(k) > k such that for
every k,

G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k)) ≥ ϵ. (3.15)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) ≥ k and satisfies (3.15). Then

G(gxn(k)−1, gxn(k)−1, gxm(k)) +G(gyn(k)−1, gyn(k)−1, gym(k)) < ϵ. (3.16)

Using rectangle inequality, we get

ϵ ≤ rk := G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

≤ G(gxn(k), gxn(k), gxn(k)−1) +G(gxn(k)−1, gxn(k)−1, gxm(k))

+G(gyn(k), gyn(k), gyn(k)−1) +G(gyn(k)−1, gyn(k)−1, gym(k))

= G(gxn(k)−1, gxn(k)−1, gxm(k)) +G(gyn(k)−1, gyn(k)−1, gym(k)) + δn(k)−1

≤ ϵ+ δn(k)−1.

Letting k → ∞, in above inequality and using (3.14), we get

lim rk = ϵ+. (3.17)

Also, again by using ractangle inequality, we have

rk = G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

≤ G(gxn(k), gxn(k), gxn(k)+1) +G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gxm(k)+1, gxm(k)+1, gxm(k)) +G(gyn(k), gyn(k), gyn(k)+1)

+G(gyn(k)+1, gyn(k)+1, gym(k)+1) +G(gym(k)+1, gym(k)+1, gym(k))

= δm(k) +G(gxn(k), gxn(k), gxn(k)+1) +G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gyn(k), gyn(k), gyn(k)+1) +G(gyn(k)+1, gyn(k)+1, gym(k)+1).

Using that G(x, x, y) ≤ 2G(x, yy), for any x, y ∈ X, in the above inequality, we
have,

rk ≤ δm(k) + 2G(gxn(k), gxn(k)+1, gxn(k)+1) +G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+2G(gyn(k), gyn(k)+1, gyn(k)+1) +G(gyn(k)+1, gyn(k)+1, gym(k)+1)

= δm(k) + 2δn(k) +G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gyn(k)+1, gyn(k)+1, gym(k)+1).
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Using the property of ϕ, we have

ϕ(rk) ≤ ϕ(2δn(k) + δm(k) +G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gyn(k)+1, gyn(k)+1, gym(k)+1))

≤ ϕ(2δn(k) + δm(k)) + ϕ(G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gyn(k)+1, gyn(k)+1, gym(k)+1))

≤ ϕ(2δn(k) + δm(k)) + ϕ(G(gxn(k)+1, gxn(k)+1, gxm(k)+1))

+ϕ(G(gyn(k)+1, gyn(k)+1, gym(k)+1)). (3.18)

Since n(k) > m(k), gxn(k) ≽ gxm(k) and gyn(k) ≼ gym(k), from (3.1) and (3.2), we
have

ϕ(G(gxn(k)+1, gxn(k)+1, gxm(k)+1))

= ϕ(G(F (xn(k), yn(k)), F (xn(k), yn(k)), F (xm(k), ym(k))))

≤ 1

2
ϕ(G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k)))

−ψ
(
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

2

)
=

1

2
ϕ(rk)− ψ

(rk
2

)
. (3.19)

Similarly, we have

ϕ(G(gyn(k)+1, gyn(k)+1, gym(k)+1))

= ϕ(G(F (ym(k), xm(k)), F (ym(k), xm(k)), F (yn(k), xn(k))))

≤ 1

2
ϕ(G(gym(k), gym(k), gyn(k)) +G(gxm(k), gxm(k), gxn(k)))

−ψ
(
G(gym(k), gym(k), gyn(k)) +G(gxm(k), gxm(k), gxn(k))

2

)
=

1

2
ϕ(rk)− ψ

(rk
2

)
. (3.20)

From (3.18)-(3.20), we have

ϕ(rk) ≤ ϕ(2δn(k) + δm(k)) + ϕ(rk)− 2ψ
(rk
2

)
.

Letting k → ∞ and using (3.14) and (3.17), we have

ϕ(ϵ) ≤ ϕ(0) + ϕ(ϵ)− 2ψ
( ϵ
2

)
< ϕ(ϵ),

which is a contradiction. This implies that {gxn} and {gyn} are G-Cauchy sequences
in the G-metric space (X,G).

Now, since (X,G) is a G-complete, there is (x, y) ∈ X ×X such that {gxn}
and {gyn} are respectively G-convergent to x and y, that is from Proposition 2.1,
we have

limG(gxn, gxn, x) = limG(gxn, x, x) = 0

and

limG(gyn, gyn, y) = limG(gyn, y, y) = 0.
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Using continuity of g, we get from Proposition 2.3,

limG(g(gxn), g(gxn), gx) = limG(g(gxn), gx, gx) = 0

and

limG(g(gyn), g(gyn), gy) = limG(g(gyn), gy, gy) = 0.

Since gxn+1 = F (x, y) and gyn+1F (y, x), the commutativity of F and g yields that
F (gxn, gyn) = gF (xn, yn) = g(gxn+1) and F (gyn, gxn) = gF (yn, xn) = g(gyn+1).

Now we show that F (x, y) = gx and F (y, x) = gy.
The mapping F is continuous, so since the sequences {gxn} and {gyn} are

respectively G-convergent to x and y, hence using Definition 2.6, the sequence
{F (gxn, gyn)} is G-convergent to F (x, y). Therefore, {g(gxn+1)} is G-convergent
to F (x, y). By uniqueness of the limit, we have F (x, y) = gx. Similarly, we can
show that F (y, x) = gy. Hence, (x, y) is a coupled coincidence point of F and g. �

In the next theorem, we replace the continuity of F with the topic in the
following definition.

Definition 3.1. Let (X,≼) be a partially ordered set and G be a G-metric on X.
We say that (X,G,≼) is regular if the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn ≼ x for all
n,

(ii) if a non-increasing sequence {yn} is such that yn → y, then y ≼ yn for all
n.

Theorem 3.2. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G,≼) is regular. Suppose that F : X × X → X and g : X → X are
self mappings on X such that F has the mixed g-monotone property on X such
that there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0) and g(y0) ≽
F (y0, x0). Suppose that there exist ϕ ∈ Φ and ψ ∈ Ψ such that (3.1) satisfies
for all x, y, u, v, w, z ∈ X with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz. Further suppose
that F (X × X) ⊆ g(X) and (g(X), G) is a complete G-metric. Then there exists
x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x), that is, F and g have a coupled
coincidence point (x, y) ∈ X ×X.

Proof. Following the proof of Theorem 3.1, we will get two G-Cauchy sequences
{gxn} and {gyn} in the complete G-metric space (g(X), G). Then, there exist x, y
in X such that gxn → gx and gyn → gy. Since {gxn} is non-decreasing and {gyn}
is non-increasing, using the regularity of (X,G,≼), we have gxn ≼ gx and gy ≼ gyn
for all n ≥ 0. If gxn = gx and gyn = gy for some n ≥ 0, then gx = gxn ≼ gxn+1 ≼
gx = gxn and gy ≼ gyn+1 ≼ gyn = gy, which implies that gxn = gxn+1 = F (xn, yn)
and gyn = gyn+1 = F (yn, xn), that is, (xn, yn) is a coupled coincidence points of F
and g. Then, we suppose that (gxn, gyn) ̸= (gx, gy) for all n ≥ 0. Using rectangle
inequality (3.1) and properties of ϕ and ψ, we have

ϕ(G(F (x, y), gxn+1, gxn+1)) = ϕ(G(F (x, y), F (xn, yn), F (xn, yn)))

≤ 1

2
ϕ(G(gx, gxn, gxn) +G(gy, gyn, gyn))− ψ

(G(gx, gxn, gxn) +G(gy, gyn, gyn)

2

)
.

Taking n→ ∞, we get G(F (x, y), gx, gx) = 0 and hence gx = F (x, y). Similarly, we
can show that gy = F (y, x). Thus F and g have a coupled coincidence point. �
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If ϕ(t) = t, in the above result we have the following result.

Corollary 3.1. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Suppose that F : X × X → X and
g : X → X are continuous self mappings on X such that F has the mixed g-monotone
property on X such that there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0)
and g(y0) ≽ F (y0, x0). Suppose that there exists ψ ∈ Ψ such that

G(F (x, y), F (u, v), F (w, z)) ≤ 1

2
[G(gx, gu, gw) +G(gy, gv, gz)]

−ψ
(
G(gx, gu, gw) +G(gy, gv, gz)

2

)
(3.21)

for all x, y, u, v, w, z ∈ X with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz. Further suppose
that F (X × X) ⊆ g(X) and g commutes with F . Then there exists x, y ∈ X such
that F (x, y) = gx and gy = F (y, x), that is, F and g have a coupled coincidence
point (x, y) ∈ X ×X.

Corollary 3.2. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G,≼) is regular. Suppose that F : X × X → X and g : X → X are
self mappings on X such that F has the mixed g-monotone property on X such that
there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0) and g(y0) ≽ F (y0, x0).
Suppose that there exists ψ ∈ Ψ such that (3.21) satisfies for all x, y, u, v, w, z ∈ X
with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz. Further suppose that F (X ×X) ⊆ g(X) and
(g(X), G) is a complete G-metric. Then there exists x, y ∈ X such that F (x, y) =
g(x) and gy = F (y, x).

If ψ(t) = (1−k)t
2 , in the the above corollaries we have the following results.

Corollary 3.3. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Suppose that F : X × X → X and
g : X → X are continuous self mappings on X such that F has the mixed g-monotone
property on X such that there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0)
and g(y0) ≽ F (y0, x0). Suppose that there exists k ∈ [0, 1) such that

G(F (x, y), F (u, v), F (w, z)) ≤ k

2
[G(gx, gu, gw) +G(gy, gv, gz)], (3.22)

for all x, y, u, v, w, z ∈ X with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz. Further suppose
that F (X × X) ⊆ g(X) and g commutes with F . Then there exists x, y ∈ X such
that F (x, y) = gx and gy = F (y, x), that is, F and g have a coupled coincidence
point (x, y) ∈ X ×X.

Corollary 3.4. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G,≼) is regular. Suppose that F : X × X → X and g : X → X are
self mappings on X such that F has the mixed g-monotone property on X such that
there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0) and g(y0) ≽ F (y0, x0).
Suppose that there exists k ∈ [0, 1) such that (3.22) satisfies for all x, y, u, v, w, z ∈ X
with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz. Further suppose that F (X ×X) ⊆ g(X) and
(g(X), G) is a complete G-metric. Then there exists x, y ∈ X such that F (x, y) =
g(x) and gy = F (y, x).
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Now, we shall prove the existence and uniqueness of a coupled common fixed
point.

For this purpose, if (X,≼) is a partially ordered set, then we endow the product
space X ×X with the following partial order relation:

for (x, y), (u, v) ∈ X ×X, (u, v) ≼ (x, y) ⇔ x ≼ u, y ≽ v.

Theorem 3.3. In addition to hypotheses of Theorem 3.1, suppose that for every
(x, y) and (z, t) in X ×X, there exists (u, v) ∈ X ×X such that (F (u, v), F (v, u)) is
comparable to (F (x, y), F (y, x)) and (F (z, t), F (t, z)). Then F and g have a unique
coupled common fixed point, that is, there exists a unique (x, y) ∈ X ×X such that
x = gx = F (x, y) and y = gy = F (y, x).

Proof. From Theorem 3.1, the set of coupled coincidence points of F and g is non-
empty. Suppose that (x, y) and (z, t) are coupled coincidence points of F and g,
that is, gx = F (x, y), gy = F (y, x), gz = F (z, t) and gt = F (t, z). We shall show
that gx = gz and gy = gt. By the assumption, there exists (u, v) ∈ X×X such that
(F (u, v), F (v, u)) is comparable with (F (x, y), F (y, x)) and (F (z, t), F (t, z)). Put
u0 = u, v0 = v and choose u1, v1 ∈ X so that gu1 = F (u0, v0) and gv1 = F (v0, u0).
Then, similarly as in the proof of Theorem 3.1, we can inductively define sequences
{gun}, {gvn} as gun+1 = F (un, vn) and gvn+1 = F (vn, un) for all n. Further, set
x0 = x, y0 = y, z0 = z, t0 = t and on the same way define the sequences {gxn},
{gyn}, and {gzn}, {gtn}.

Since (F (x, y), F (y, x)) = (gx1, gy1) = (gx, gy), (F (u, v), F (v, u)) = (gu1, gv1)
are comparable, then gx ≽ gu1 and gy ≼ gv1. Now, we shall show that (gx, gy)
and (gun, gvn) are comparable, that is, gx ≽ gun and gy ≼ gvn for all n. Suppose
that it holds for some n ≥ 0, then by the mixed g-monotone property of F , we have
gun+1 = F (un, vn) ≼ F (x, y) = gx and gvn+1 = F (vn, un) ≽ F (y, x) = gy. Hence
gx ≽ gun and gy ≼ gvn hold for all n. Thus from (3.1), we have

ϕ(G(gx, gx, gun+1)) = ϕ(G(F (x, y), F (x, y), F (un, vn)))

≤ 1

2
ϕ(G(gx, gx, gun) +G(gy, gy, gvn))

−ψ
(
G(gx, gx, gun) +G(gy, gy, gvn)

2

)
(3.23)

and

ϕ(G(gy, gy, gvn+1)) = ϕ(G(F (y, x), F (y, x), F (vn, un)))

≤ 1

2
ϕ(G(gy, gy, gvn) +G(gx, gx, gun))

−ψ
(
G(gy, gy, gvn) +G(gx, gx, gun)

2

)
(3.24)

From (3.23), (3.24) and properties of ϕ and ψ, we have

ϕ(G(gx, gx, gun+1) +G(gy, gy, gvn+1)) ≤ ϕ(G(gx, gx, gun+1)) + ϕ(G(gy, gy, gvn+1))

≤ ϕ(G(gx, gx, gun) +G(gy, gy, gvn))− 2ψ
(
G(gx,gx,gun)+G(gy,gy,gvn)

2

)
(3.25)
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which implies that ϕ(G(gx, gx, gun+1) + G(gy, gy, gvn+1)) ≤ ϕ(G(gx, gx, gun) +
G(gy, gy, gvn)). Hence the sequence {δn := G(gx, gx, gun) +G(gy, gy, gvn)} is non-
negative and decreasing and so lim δn = δ, for some δ ≥ 0.

We shall show that δ = 0. On the contrary, assume that δ > 0. From (3.25),
taking n→ ∞, we obtain

ϕ(δ) ≤ ϕ(δ)− 2 lim
n→∞

ψ

(
G(gx, gx, gun) +G(gy, gy, gvn)

2

)
< ϕ(δ),

which is contradiction. Thus, limG(gx, gx, gun) = 0 = limG(gy, gy, gvn). Similarly,
we can prove that limG(gz, gz, gun) = 0 = limG(gt, gt, gvn). Hence gx = gz and
gy = gt. Since gx = F (x, y) and gy = F (y, x), by the commutativity of F and g,
we have

g(g(x)) = g(F (x, y)) = F (gx, gy), and g(gy) = g(F (y, x)) = F (gy, gx). (3.26)

Denote gx = p and gy = q. Then gp = F (p, q) and gq = F (q, p). Thus (p, q) is
a coupled coincidence point. Then from (3.26), with z = p and t = q, it follows
gp = gx and gq = gy, that is, gp = p and gq = q. Hence p = gp = F (p, q) and
q = gq = F (q, p). Therefore, (p, q) is a coupled common fixed point of F and g.

To prove the uniqueness, assume that (r, s) is another coupled common fixed
point. Then by (3.26), we have r = gr = gp = p and s = gs = gq = q. Hence we get
the result. �
Example 3.1. Let X = [0,+∞) be endowed with usual metric, and with usual
order in R. Consider the function

G : [0,+∞)3 → [0,+∞), G(x, y, z) = max{|x− y|, |x− z|, |y − z|}.
It is known that (X,G) is a G-metric space (see [22]). Define

g : X → X, g(x) = x2; F : X ×X → X, F (x, y) =

{
1
4(x

2 − y2), x ≥ y
0, x < y.

Then it is clear that (g(X), G) is complete, F : X × X → X ⊆ g(X) = X, and F
has the g-monotone property. Moreover, taking x0 = y0 = 0, then x0 ≤ F (x0, y0)
and F (y0, x0) ≤ y0.

Consider ϕ(t) = t and ψ(t) = t
2 for all t ≥ 0. Now, we verify inequality 3.1,

1

2
ϕ(G(gx, gu, gw) +G(gy, gv, gz))− ψ

(
G(gx, gu, gw) +G(gy, gv, gz)

2

)
=

1

2
ϕ(max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|})

−ψ
(max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}

2

)
=

1

2
[max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}]

−1

4
[max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}]

=
1

4
[max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}].

By definition of g, we shall prove that (3.1) holds for all x, y, u, v, w, z ∈ X
with x ≤ u ≤ w and z ≤ v ≤ y. For this, we distinguish the following cases:
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Case 1. If x < y, u < v, and the case when w ≤ z, (3.1) is obvious, so let
w ≥ z. It follows

G(F (x, y), F (u, v), F (w, z)) = G
(
0, 0,

|w2 − z2|
4

)
=

|w2 − z2|
4

≤ 1

4
[max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}].

Case 2. If x < y and u ≥ v, then z ≤ v ≤ u ≤ w, so w ≥ z. We have

G(F (x, y), F (u, v), F (w, z)) = G
(
0,
u2 − v2

4
,
w2 − z2

4

)
=
w2 − z2

4

≤ 1

4
[max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}].

Case 3. If x ≥ y, in this case, we have z ≤ v ≤ y ≤ x ≤ u ≤ w. So, we obtain

G(F (x, y), F (u, v), F (w, z)) = G
(x2 − y2

4
,
u2 − v2

4
,
w2 − z2

4

)
= max

{∣∣∣x2 − y2

4
− u2 − v2

4

∣∣∣, ∣∣∣x2 − y2

4
− w2 − z2

4

∣∣∣, ∣∣∣u2 − v2

4
− w2 − z2

4

∣∣∣}
=
x2 − y2

4
− w2 − z2

4

≤ 1

4
[max{|x2 − u2|, |x2 − w2|, |u2 − w2|}+max{|y2 − v2|, |y2 − z2|, |v2 − z2|}].

In all the cases, inequality (3.1) of Theorem 3.1 is satisfied. Hence by Theorem
3.1, (0, 0) is coupled coincidence point. Indeed, for x > y, F (y, x) = 0 and since
F (y, x) = g(y), we have g(y) = 0. Then F (x, 0) = g(x) implies x = 0.

Other consequences of our results are the given in the following, for mappings
involving contractions of integral type.

Denote by Λ the set of functions µ : [0,∞) → [0,∞) satisfying the following
hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact of [0,∞);
(h2) for any ϵ > 0, we have

∫ ϵ
0 µ(t) > 0.

Corollary 3.5. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Suppose that F : X × X → X and
g : X → X are continuous self mappings on X such that F has the mixed g-monotone
property on X such that there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0)
and g(y0) ≽ F (y0, x0). Suppose that∫ G(F (x,y),F (u,v),F (w,z))

0
α(s)ds ≤

∫ 1
2
[G(gx,gu,gw)+G(gy,gv,gz)]

0
α(s)ds

−
∫ [

G(gx,gu,gw)+G(gy,gv,gz)
2

]

0
β(s)ds,

hold for all x, y, u, v, w, z ∈ X with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz, where α, β ∈ Λ.
Further suppose that F (X ×X) ⊆ g(X) and g commutes with F . Then there exists
x, y ∈ X such that F (x, y) = gx and gy = F (y, x), that is, F and g have a coupled
coincidence point (x, y) ∈ X ×X.
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Corollary 3.6. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Suppose that F : X × X → X and
g : X → X are continuous self mappings on X such that F has the mixed g-monotone
property on X such that there exists two elements x0, y0 ∈ X with g(x0) ≼ F (x0, y0)
and g(y0) ≽ F (y0, x0). Suppose that there exists k ∈ [0, 1) such that∫ G(F (x,y),F (u,v),F (w,z))

0
α(s)ds ≤ k

∫ [G(gx,gu,gw)+G(gy,gv,gz)]

0
α(s)ds

for all x, y, u, v, w, z ∈ X with gx ≽ gu ≽ gw and gy ≼ gv ≼ gz, where α ∈ Λ.
Further suppose that F (X ×X) ⊆ g(X) and g commutes with F . Then there exists
x, y ∈ X such that F (x, y) = gx and gy = F (y, x), that is, F and g have a coupled
coincidence point (x, y) ∈ X ×X.
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[32] J.J. Nieto and R.R. López, Contractive mapping theorems in partially ordered sets and appli-
cations to ordinary differential equations, Order 22(2005), 223-239.

[33] M.O. Olatinwo and M. Postolache, Stability results for Jungck-type iterative processes in con-
vex metric spaces, Appl. Math. Comput. 218(2012), No. 12, 6727-6732.

[34] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some
applications to matrix equations, Proc. Amer. Math. Soc. 132(5)(2004), 1435-1443.

[35] K.P.R. Rao, K. Bhanu Lakshmi and Z. Mustafa, Fixed and related fixed point theorems for
three maps in G-metric space, J. Adv. Stud. Topology, Accepted, 2012.

[36] W. Shatanawi and A. Pitea, Omega-distance and coupled fixed point in G-metric spaces, Fixed
Point Theory Appl. 2013, Article ID: 2013:208, 15 p.

[37] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of Omega-distance for
nonlinear contraction, Fixed Point Theory Appl. 2013, ID: 2013:xxx (editorially accepted).

[38] W. Shatanawi and A. Pitea, Some coupled fixed point theorems in quasi-partial metric spaces,
Fixed Point Theory Appl. 2013, ID: 2013:153.

[39] W. Shatanawi and M. Postolache, Some fixed point results for a G-weak contraction inG-metric
spaces, Abstr. Appl. Anal. 2012, ID: 815870, 19 pp.

[40] W. Shatanawi and M. Postolache, Coincidence and fixed point results for generalized weak
contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. Volume
2013, ID: 2013:54, 17 pp.

[41] W. Shatanawi and M. Postolache, Common fixed point results of mappings for nonlinear con-
tractions of cyclic form in ordered metric spaces, Fixed Point Theory Appl. Volume 2013, ID:
2013:60, 13 pp.

[42] W. Shatanawi, M. Postolache, Z. Mustafa and N. Tahat, Theorems for Boyd-Wong type con-
tractions in ordered metric spaces, Abstr. Appl. Anal. 2012, ID: 359054, 14 pp.

[43] W. Shatanawi, S. Chauhan, M. Postolache, M. Abbas and S. Radenović, Common fixed points
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