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CRITICAL STRESSES, CRITICAL GROUPS OF STRESSES
AND STRENGTHS OF TUBULAR STRUCTURES WITHOUT
AND WITH CRACKS

Valeriu V. JINESCU', Vali - Ifigenia NICOLOF?, Angela CHELU®,
Simona - Eugenia MANEA*

One analysis the strength of tubular samples and tubular junctions without
and with cracks. Non-linear behaviour is considered. Strength calculation has been
proposed for: — un-cracked and cracked tubular specimens mixed-mode loaded; —
un-cracked and cracked tubular joints mixed-mode loaded. The obtained
relationships for strength calculation take into account the deterioration, the
residual stress, as well as the scattering of mechanical characteristics involved in
the loading process. The relationships proposed in the paper were verified against
results reported in literature.

Keywords: mixed-mode loading; critical stresses; crack; tubular sample; tubular
branch junction.

1. Introduction

The calculation of the deterioration and failure stress of cracked tubular
sample is useful in structural integrity assessment of pressure equipment,
particularly of piping, as well as for tubular mechanical structures.

The plastic limit loads of cylindrical tubes have been analyzed in the
papers [1-8], which cover the case of cracked pipes having mean radius-to-
thickness ratios greater than five, as well as less than five for thick-walled pipes
[9].

In general, the limit load was arbitrarily defined as the load which
provides yielding (local or global). For example, the papers [8] and [10] provides
plastic limit load solutions of cylinders with part-through surface cracks, and
under combined axial tension, internal pressure and global bending, using elastic-
perfectly plastic material behavior [8]. Both circumferential and axial cracks,
external and internal cracks, are considered. On the other side the paper [9]
presents plastic limits loads parameters for cracked thick-walled pipes with axial
and circumferential through-wall and surface cracks. In the plastic limit analyses,
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generally, the materials were assumed to be elastic—perfectly plastic. In reality the
materials behavior beyond the yield stress is non-linear.

This paper presents a non-linear, deterioration dependence, of the critical
stresses and critical loading parameters for tubular sample and branch pipe
junction without and with cracks, mixed — mode loaded. Both, axial and
circumferential surface cracks are considered. The deterioration is calculated for
thin-walled cylinders under a single loading (axial force, global bending or
internal pressure), as well as under combined loading (axial force and global
bending, internal pressure and global bending, internal pressure and axial force).

2. State - of - the - art for cracked structure sample strength calculation

The failure condition of materials with cracks is obtained by superposing
crack participation and stress, o, participation. For example, Morozov has
proposed the following criterion of rupture [11; 12],

K 2+ o 2:1 (1)
K]c Ocr ,

where K is the stress intensity factor in the case of mode I failure; K. is the
toughness; o, is the critical stress of the specimen without cracks (may be the

yield stress or the ultimate stress).
For flat plates with cracks, under the same stress o, the ratio

B/ = S 7 ~

where 2c,, is the critical crack length under stress o . The last two relations yield
the critical stress for a cracked specimen (eq. (3) in Table 1).

The bending stress in a welded structure with a crack of depth a is given
by eq. (4) as it was reported in [13; 14], where ob(a) and o, are the bending
stress component for cracked and un-cracked joints, respectively; ¢ - is the
structure thickness. Andreikiv [15] proposed the failure criterion (5), where ¢,
e 1s the effective and the critical strain, respectively, while m is the exponent

determined experimentally. From equations (2) and (5) one obtains the critical

specific strain of the cracked specimen given by eq. (6).
Table 1
Mechanical characteristics for cracked sample

oole)=o, (1-9 ) ®
oy(a)=oy-(1-%/] )
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3. A general proposal of strength calculation in the case of non — linear
behavior

Let us consider the nonlinear, power law, behavior of the specimen, under
normal stress, o, and shear stress, T,

c=M_ - andt=M_-y", @)

where ¢ is the strain; y is the shear stress; M, M., k and k| are material

constants.

In recent works [16 - 18], on the basis of principle of critical energy
(PCE), were proposed the following relations for the critical stresses of specimens
with cracks:

1

Gcr (Cl, C) = Gcr ’ [1 - D(ac;c)]m; (8)

r lase)=z,[i-Dlae)] .
where the total deterioration D(as;c) depends on the crack depth, a =a,, and
the crack length 2c¢ in the direction perpendicular to the normal stress o, while
deterioration D(a,;c) depends on the depth of the crack, a = a,, and the crack
length 2¢ in the direction of shear stress 7.

The relations proposed in the literature [8-10] for yield loading in tubular

specimens with cracks, generally can be written as in eq. (8), namely

YL =Y, - fi- (Dlase))®3 ©)
where Y, is the limit load of the cracked tubular specimen; Y, is the limit load of

the crackless tubular specimen.
4. Strength of un-cracked tubular sample mixed — mode loaded

Piping systems, as well as pressure equipment with nozzles, are always
subjected to combined pressure and loadings (bending moment, torsional moment,
forces...), thus the studies need to be carried out of combined loadings. Generally
some mechanical structures and their components are stressed by simultaneous or
successive applied loads. These loads together represent a loading group. If under
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group of loads the critical state is achieved, the group is named critical group of
loads.

a. Un-cracked tubular structures. General case. Consider a certain
structure whose nonlinear material behaves according to relations (7). Under a
group of loads such as F; (z' =12; 3.. n), the total participation of specific

energies introduced into the structure material is written as [19],

o+l
F
PT=Z(/F_ ) 5, (10)

where F; ., is the critical value of the generalized load F;, while 6 =1 if F;

icr
acts in the direction of the process and & =—1, if it opposes the evolution of the
process. The PCE introduces the term critical participation P,, (t), a time (t)
dependent variable [20],
Pcr(t)zPcr(o)_DT(t)_Pres’ (11)
where [21],
Dy ()= D;(t). (12)
l

is the total deterioration, a dimensionless parameter time dependent, a sum of the
partial deteriorations, D; (t), due to different loads/actions (corrosion, aging,

erosion, crack, creep, fatigue, hydrogen, neutrons etc...).

P.,.(0) is the value of P..(r) at £ =0; it takes values between Py min (0)>0 and
P max (0)<1, depending on the scatter of the material mechanical characteristics

involved in the loading process. If the mechanical characteristics are deterministic
values, than P.,.(0)=1. The residual stress (c,,,) influence is introduced through

the participation of residual stress specific energy, P, [20].

For crackless structures and no residual stresses P,,.(¢)=P..(0); the
critical state is reached when Pp =P, (0) Consequently, the group of static loads
becomes critical if|

Z(%j -8, =P,(0). (13)

b. If a tubular structure is under loads (Fig. 1) p (pressure), F (force) and
M, (bending moment) relation (13) becomes,

a+l a+l o+l
(LJ {F—J -6F+[M”] By =P 0), (14

Per F, Mb,cr

cr
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whered,; =1 in the section where M, causes elongation andd,; =—1 in the

section where M produces compression.

M, M,

Fig. 1.Tubular specimen loaded with internal pressure, p, tensile axial force, F, and bending
moment M,

In interpreting the experimental data, in general, one can see
that P, (0)# 1 is a random value. Consequently, the critical group is not a single

value but a stochastic distribution between P, in (0) and Py max (O), depending

on the probability of structure material failure. These justify the scatter of
experimental data. Several test points may be outside the upper (Pcr,max (O)) and

lower (Pc,,,min (O)) bounds. This may be caused by inaccuracy of material property

and experimental measurement. The proposed criterion (14) for critical group of
loads is an effective criterion for the fracture of defect — free tubular sample.
C. For simultaneous loading with p and M, equation (14) becomes,

o+l a+l
(LJ J{ My J 83 =P, (0). (15)

Per b,cr

For linear-elastic loading (csmax <o y), a=1/k=1. If one adds to the

above P..(0)=1 corresponding to the deterministic values of the mechanical
characteristics, then the relationship (15) is converted to,

2 2
(L] +[ﬂ] ~1. (16)
Per Mb,cr

This relationship was obtained on experimental data with tube specimens
made from carbon steel (St 20) and austenitic steel (12X18H 10T ). For critical
parameters the following relations have been proposed [23],

Py =z p and M, =20,
which is the yield pressure and the yield bending moment, respectively, i.e. the
values of those loads that determine the transition to a plastic state of the section
to the outer radius, where the maximum stress becomes equal to the yield stress.

b,cr s (1 6)
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Stress 65 =0, is the yield stress corresponding to a residual strain of 0.2%; S

is the static moment of the area section and =R, /R, (Fig. 1)

d. For simultaneous loading with axial force and bending moment, if force
F produces elongation (5 =1), then in the section where o, >0 (5,, =1) eq.

(14) becomes,
F o+l M o+l
[_J + i =P, (O) (17)
Fcr Mb,cr

e. For simultaneous loading under internal pressure and tensile axial
force, relation (14) becomes,

) <[] o

In the eqgs. (17) and (18), for a linear-elastic material one replaces
a=1/k=1 and for deterministic values of the mechanical characteristics of the
material, one replaces P, (0)=1.

5. Strength of cracked tubular samples mixed — mode loaded

In the case of mechanical samples with cracks the deterioration Dy (¢)# 0.
If the damage is caused by a crack with depth a and length 2c, then
DT(t)E D(a;c) or DT(t)E D(a;e), where 2¢ is the length of the axial crack,
while 20 is the angle at the centre of the circumferential crack on the tube
element (Fig. 2). For structures with cracks one should replace P, (O) with

P, (t)=[P..(0)- D(a;c)] in all previous relationships.

Fig. 2. Circumferential cracks in tubular samples with semi-elliptical cross section (a; b) at inner
surface (a) and outer surface (b).

For the linear-elastic behavior of the structure material o =1/k =1, in the
section under the highest load, relations (15), (17) and (18) become:



Critical stresses, critical groups [...] strengths of tubular structures without and with cracks 171

2 2
£ + My J :Pcr(o)_D(a;e);

Per Mb,cr
F 2 M 2
b
— | + = P..(0)- D(a;0); (19)
Fcr Mb cr “

2 2
2o B <o) o)
Per Fe,

where one considered: - tensile axial force (0 =1); - the sections where the

bending moment produces tensile stresses (03, =1). The right member in these
relationships takes values ranging

Py o (1) = Pegpuos (0)-D(2:0) and P, (t)=P.,;,(0)-D(a;0) (20)

Any of the eqgs. (19) describes a quarter of a circle with radius

=(t)=0882 ¥ (tj=0838

(1] =0.785
Prpain (1) =0.774

00 — , 00 - ;
00 02 04 06 08 10 00 02 04 06 08 10
Ll My M b My My
Fig. 3. The interdependence between F/F,, and M,/M, ., fora tube specimen, when a/f =0.1
and 6/7 =0.1 (a) and between p/p,, and M, /M, , incase a/t=0.75 and 6/7 =0.4 (b)

Curves are drawn with relations (19). Experimental points were taken from work [8].

The interpretation of the experimental data [8] on tubular specimens based
on relations (19) emphasizes the dependence of the kind represented in Fig. 3. For
example, with loading featuring an axial force and bending moment (Fig. 3, a),

the points fall between the circles with radius /2., (t) = 0.785 and 0.882. With
loading featuring an internal pressure and bending moment (Fig. 3, b) the
experimental points fall between circles of radius ,/P,.,.(¢) =0.774 and 0.838. As
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shown in figure 3 the results agree very well eq. (19), which takes into account the
crack depth (a/t) and the crack extension (6/ n).

The general criterion (14), obtained in the paper, where P, (0) is replaced
by P, (t) and its particular cases (19) are able to take into account the influence
of deterioration upon the value of the critical participation.

6. Strength of tubular branch junction loaded with internal pressure
and bending moment

A branch junction (Fig. 4) was assumed to be subjected to combined
pressure and bending. The mean radius of the pipe is denoted R, = O.S(Rl + RZ)

and that of the branch pipe by 7,, = 0.5(r +7,).

Fig. 4. The branch pipe junction used in the paper [22].

a. Un-cracked tubular branch junction. For un-cracked branch [24] with a
medium bore branch with »/R=0.27 (r=59.5mm,R =222.5mm, ¢=8mm;
T =20 mm) the limit load is given by the circular interaction curve, described by
eq. (16). In this eq. p,. = p; (M =0) and M, =M, (p=0) denote the plastic
limit loads for un-cracked branch junction under internal pressure and under
bending, respectively. An elastic-perfect plastic material was assumed

(cmax <o,).
For large bore branch (r/ R= 0.63) after Meyong et al. [24] the interaction

of pressure and bending is slightly higher than the parabolic interaction curve
described by the eq.

2
M
(pj Tl 1)
Per Mb,cr

but lower than the circular interaction given by eq. (16).
b. Cracked tubular branch junction. It is important to have information on
limit loads of cracked branch junctions in structural integrity assessment of piping
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components. The paper [24] describes the effect of cracks on the plastic limit
loads of branch junctions under combined pressure and bending. Limit loads for
single loading [24] of a branch junction: - un-cracked branch, depending on the
branch geometry, collapse can occur either in the intersection or in the pipe; - at
through — wall cracks the limit loads decrease almost with increasing relative
crack length.

The problem is to correlate the limit load with the deterioration due to
crack, in the case of a single load, as well as in the case of combined loads. This
may be obtained by using the egs. (19). The relevant dimensions of the branches
reported by Myeong et al are inscribed in Fig. 5 [24].

)

NS

1 Crack in the crotch

al /N

—
i’lIIIIAI
LA [*]

(

Crack

Fig. 5. A branch with a crack in the lower weld toe: 1 — run pipe; 2 — branch pipe; 3 — weld.

The limit loads as dimensionless variables (p/p;, and My /My ) for

through — wall cracked branch junctions under combined pressure and in-plane
bending to the branch pipe, for the crack in the crotch of the weld toe, is shown in

Fig. 6, a. The curves correspond approximately to /P, =0.8 and 0.9. By
comparing these curves with the first eq. (19) one obtains P, =P, (O) - D(a; a).



174 Valeriu V. Jinescu, Vali - Ifigenia Nicolof, Angela Chelu, Simona - Eugenia Manea

1.0 5 1.0
® P =09
0.8 0.8 |
JP, =038
M, 061 M, 0.6
M, R =244 5mm; M,
0.4 0.4
r=154 mm; -
T=318mm;
o2l t=159mm. 02
0.0 ' : : 0.0 . ‘ .
00 02 04 06 08 10 0.0 02 04 06 08 1.0
p/p: P/D:
-a- -b-

Fig. 6. The correlation: a - between M, /M,, and p/p, for through wall cracked branch
(a/T =1) in the case of crack located in the lower weld toe on the crotch (Fig. 5):
a/m=0.125 (0); a/7=0.25 (®); /7 =0.44 (D); /7 =0.50 (A)[24];

b - between M,/M,, and p/p, for surfaced cracked branches in the case of crack located in the
lower weld toe flank ( /7 =0.50): a/T =0.50 (0);a/T =1.0 (e) [24].

The curves drawn with the first eq. (19).

With P, (0)=1 for through wall (a = T') crack, one obtains the following

mean values of deteriorations (Fig. 6, a):
D(a;a)=1- (0.9)2 =0.19 -in the case of P, =0.9, when a/n = 0.125 ... 0.25;

D(a;r)=1-(0.8)* = 0.36 - in the case of P, = 0.8, when o/r = 0.44 ... 0.50.
Because a/T =1, there results D(a;a)= D(ax); the deterioration depends only on

the crack length expressed through the angle 2a (Fig. 5, a).
In the case represented in Fig. 6, b where the crack is on the toe flank

(Fig. 5, c), the correlation between the reported pressure, p/py , and reported
bending moment, My /My, may be done with the first eq. (19) with
VP =0.80 and 0.924. For the crack length corresponding to angle 24 =7 the

deterioration D(a; ﬁ)z D(a) depends only on the crack depth (a/T).
Consequently, the deteriorations are:

D(a; ) =1-(0.80)? = 0.36 for /P, =0.80, where a/T = 1.0;
D(a; ) =1-(0.924)* =0.1462 for /P, =0.924, where a/T = 0.50.
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The curves described with the first eq. (19) are in good agreement with the
data reported by Myeong et al [24].

In the tubular branch junction considered here, the crack is in the run pipe
(Fig. 5). The effect of a semi-elliptical crack in the branch pipe has been analyzed
by finite element method, starting with the concepts of stress intensity factor [25].
Instead of the well known concepts of fracture mechanics in the paper we have
used the concept of deterioration. This makes easier the strength calculation,
especially in the case of mixed mode loading.

7. Conclusions

On the basis of principle of critical energy (PCE), there have been
proposed relations for critical normal stress and for critical shear stress (8),
depending on the damage caused by cracks, in the general case of the nonlinear
behavior of the material structure (7).

Further were presented the strength calculation of crackless tubular
specimens and branch pipe junction mixed-mode loaded ((13) and (14)). An
analysis is made of the particular loading cases involving two different loads
(internal pressure and bending moment; axial force and bending moment; axial
force and internal pressure).

On the basis of PCE eqs. of the critical group were obtained, expressed in
terms of forces, by considering the stochastic distribution of the mechanical
characteristics of the materials (14). Work on particular cases yielded relations for
loading with two different loads ((15), (17), (18)) of specimens without cracks in
materials with nonlinear behavior. For the same groups of particular loads there
have been deduced relations (19) for tubular specimens with cracks.

The relations obtained were verified against experimental data provided by
literature for tubular specimens and for tubular branch junction.
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