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SEVERAL ASPECTS ABOUT FRACTALITATY ROLE IN THE 

DYNAMICS OF COMPLEX SYSTEMS 

Mihaela Viviana IVAN1, Andrei ZALA 2, Andrei AGOP3, Elena PUIU4, Dorin 

VĂIDEANU5, Ion PALAMACIUC6, Dragoş TEODOR IANCU7*, Radu 

CRIŞAN-DABIJA8 

In the framework of the Scale Relativity Model with an arbitrary constant 

fractal dimension, several characteristic dynamics of complex systems induced only 

by the "fractal force" are presented. In this case, fractal velocity field is described 

both by topological solitons of kink type and by nontopological soliton varieties of 

breather type. The existence of such "nonlinearities" has as consequence either self-

structuring effects by generating patterns or chaotic effects. Such behaviors are 

illustrated by analyzing the dynamics of blood, considered fractal fluid. 
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1. Introduction 

Complex systems are composed of many interacting structural units. The 

evolution of the complex systems cannot be predicted simply by analyzing the 

behaviour of individual elements or by superposing their individual evolutions [1, 

2]. Even in the case of singular units the analysis can be very complicated, since 

the nonlinear dynamics of a system highly sensitive to the initial condition can 

evolve to chaos [3]. Therefore, the global evolution of a complex system is 

determined by the manner in which individual elements interact each other.  
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In the classical concepts, the theoretical models (hydrodynamic, kinetic, 

etc. [4,5]) of complex systems are realized assuming that the dynamics of 

individual elements are characterized by continuous and differentiable motion 

variables (energy, momentum, density etc.), exclusively dependent on the spatial 

coordinates and time.  

In reality, the complex system dynamics is much more complicated and 

the classical theoretical models failed in the attempt to explain all the concerned 

aspects, as illustrated by the experimental observations. 

These difficulties can be overcome in a complementary approach, using 

fractal concepts, defined for the first time by Mandelbrot [6]. He introduced the 

term “fractal” to describe the“exotic” shapes that did not fit the patterns of 

Euclidean geometry, i.e. irregular geometrical objects, cells of living organisms, 

human arterial, neural network, convoluted surface of the brain etc., that possess 

invariance with respect to the scale transformations which can be captured well by 

the fractal geometry. In this context, the fractal analysis has proven to be a useful 

tool describing various systems from physics and chemistry [7-9], biology and 

medicine [10,11], econophysics [12,13].  

Moreover, the analysis of complex systems evolution showed that most of 

them are nonlinear and, therefore, new mathematical tools were required. These 

have been provided by the Scale Relativity Theory (SRT) [14, 15] and by 

Extended Scale Relativity Theory (ESRT) [16], i.e. the Scale Relativity Theory 

with an arbitrary constant fractal dimension.  

These theories consider that the motions of the complex systems structural 

units take place on continuous but non-differentiable curves (fractal curves). In 

this situation, the Euclidean dynamics of a complex system subjected to external 

constraints is replaced by a fractal dynamics characterizing the same system free 

of any external constraints. More precisely, the constrained motions in the 

Euclidian space, i.e. on continuous and differentiable curves, are substituted by 

free, independent motion (without constrains) in a fractal space, i.e. on 

continuous, but non-differentiable (fractal) curves (for details by means of 

applications, see [17-21]) 

Therefore, non-differentiability becomes a fundamental property of the 

complex system dynamics. In such conjecture, a correspondence between the 

trajectories can be established. Then, for specific scales that are large with respect 

to the inverse of the highest Lyapunov exponent [22], the deterministic 

trajectories are replaced by a collection of potential trajectories, while the concept 

of definite positions is substituted by that of the probability density. Moreover, the 

complex systems structural units may be reduced and identified with their own 

trajectories so that the complex system will behave as a special fluid lacking 

interactions (via their geodesics in a fractal space). We have called such fluid a 

“fractal fluid” (for details through its implications, see [23-27]) 
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Let us note that there are currently a great number of works describing the 

behaviours of complex systems in different forms, from which most interesting, 

related to the application presented are drug delivery systems, in various 

formulations: microparticles [28], hydrogels [29-31], magnetic nanoparticles [32] 

All of these models employed the ESRT in order to develop mathematical models 

for in vitro drug release mechanisms. 

Taking into account the above, the role of „fractal force” in the dynamics 

of complex systems is analyzed, using the ESRT model.  

2. Hallmarks of non-differentiability 

In such a framework, some consequences of non-differentiability both in 

the usual space (of the space and time coordinates) and in the scale space are 

evident [14-16]: 

i) any continuous, but non-differentiable curve of the complex 

system structural units (fractal curve) is explicitly dependent of scale resolution 

t , i.e. its length tends to infinity when t  tends to zero; 

ii) the physics of the complex system phenomena is related to the 

behaviour of a functions set during the zoom operation of the scale t . Then, 

through the substitution principle, t  will be identified with dt , i.e, dtt  . 

Consequently, it will be considered as an independent variable; 

iii) the complex system dynamics is described through fractal 

variables. As consequence, the velocity field, both in the usual space and in scale 

space, becomes a complex variable dynamics, with the form: 

l

F

l

D

l iVVV 


, 1i      (1) 

where the real part, l

DV , is the differentiable velocity and the imaginary one, l

FV , is 

the non-differentiable (fractal) velocity; 

iv) the differential of the spatial coordinate field, iYd , is expressed as 

the sum of two differentials, one of them being differential part iyd and the other 

one being scale fractal part, id  , i.e.: 
iii dydYd          (2) 

The sign ”+” corresponds to the forward process, while the sign ”-“ to the 

backwards one; 

v) the fractal part of the spatial coordinate field satisfies the fractal 

equation: 

    FD1ii dtdt,td          (3) 

where 
FD  defines the fractal dimension of the fractal motion curve and i

  are 

constant coefficients that indicates the fractalisation type; 
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vi) an infinite number of fractal curves can be found relating any pair 

of points, both in the usual space and in scale space. Then, any external constraint 

is interpreted as a selection of fractal curves, corresponding to the maximum of 

the probability density; 

vii) the complex system dynamics, both in the usual space and in scale 

space, can be described through a scale covariant derivative: 
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In the previous relations the indices k,l  take the values 3,2,1  in the usual 

space, while in the scale space they have an arbitrary dimension imposed by the 

intrinsic structure of the complex system. 

Considering now the functionality of a generalized covariance principle 

[14-16], the standard derivative operator dtd  is replaced by the non-

differentiable operator dtd


.  

Under these conditions, applying the operator (4) to the complex velocity 

field (1), in the absence of any external constraint and for motions on Levy curves 

[5], which implies the restriction 
illili  2        (6) 

with   the fractal-nonfractal transition coefficient (for details see [9, 14-16]) and 
il the Kronecker tensor, the fractal equation of the motion (geodesics equation) 

have the following form: 

  
0
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VdtiVVV
dt

Vd
F    (7) 

Previous result shows that, both in the usual space and in scale space, the 

local “acceleration”, the ”convection” and the “dissipation” make their balance in 

any point of non-differentiable curve. Moreover, the presence of the complex 

coefficient of viscosity type indicates that the complex system is a rheological 

medium, so it has memory, as a datum, by its own structure. 

In equation (7), by separating the motions on differential and fractal scale 

resolutions, it results: 
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3. Dynamics only at fractal scale resolutions 

Further, let’s analyze which type of dynamics “hide” the cancellation of 

“fractal force”. 

   i
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12

       (9) 

under the condition that the fractal fluid at non-differentiable scale is 

incompresible: 

0V i

Fi          (10) 

Finding the solutions for these equations can be relatively difficult, due to 

the fact that the system equations are non-linear. However, there is an analytical 

solution of this system, in the particular case of a stationary flow in a plane 

symmetry  y,x . In these circumstances, equations (9) and (10), with 

)0,,( yxF VVV  take the form:  
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where  y,xVV xx   is the fractal velocity along axis Ox ,  y,xVV yy   is the 

fractal velocity along Oy  axis. The boundary conditions of the flow are: 
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and the flux momentum per length unit is constant: 
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Using the method from [33] for resolving the equations (11) and (12), with 

the limit conditions (13) and (14), the following solutions result: 
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Relations (15) and (16) suggest that the fractal velocity field of the fractal 

fluid is highly non-linear by means of soliton-breather and soliton-kink type 

solutions (for details on such solutions, see [22, 34]). Given the structural 

complexity of the fluid, an accurate way of writing relations (15) and (16) will be 

the one in which we assign indexes for each component.  

For 0y , we obtain, from relation (15), the flow critical velocity in the 

form: 
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while relation (14), taking into account (17), becomes: 
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so that the critical cross section of the strains lines tube is given by: 
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Relations (15) and (16) can be strongly simplified if we introduce the 

normalized quantities: 
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where 000 ,, wyx  are specific lengths and, respectively, the specific velocity of the 

flow of the fractal fluid. It results that: 
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We present in Fig. 1a,b – 2a,b the dependence of the normalized velocity 

field u  on the normalized spatial coordinates  ,  for different nonlinearity 

degrees ( 5.0  in Fig. 1 and 5  in Fig. 2). The results showcase that the 

velocity field on the flow direction ( ) is affected in a weak manner by the 

nonlinearity degree (the velocity always decreases on the flow axes regardless of 

the nonlinearity degree). On the other hand, the flow direction ( ) is strongly 

affected. The flow starts from constant values on the   axis, and with the increase 

of  , preferential flow direction can be identified. 

 
 

 

 

 

 

 

 

 

 

Figs. 1a, b: The dependence of the normalized velocity field u on the normalized spatial 

coordinates ξ, η in three dimensional (a) and contour plot (b) representations, for the nonlinearity 

degree 𝜔 = 0.5 

 

 

 

 

 

 

 

 

 
Figs. 2a, b: The dependence of the normalized velocity field u on the normalized spatial 

coordinates ξ, η in three dimensional (a) and contour plot (b) representations, for the nonlinearity 

degree 𝜔 = 5 
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In Fig. 3a,b – 4a,b the dependences of the normalized velocity field v  on 

the normalized spatial coordinates  ,  for different nonlinearity degrees 

( 5.0  in Fig. 3 and 5  in Fig. 4) are represented. For small nonlinearity 

degrees the variations of the velocity field have similar behaviors on both 

directions (  , ), while for higher values of the nonlinearity degree these 

variations are only focused on a single direction ( ). 

 

 

 

 

 

 

 

 

Figs. 3a, b: The dependence of the normalized velocity field v on the normalized spatial 

coordinates ξ, η in three dimensional (a) and contour plot (b) representations, for the nonlinearity 

degree 𝜔 = 0.5 

 

 

 

 

 

 

 
 

Figs. 4a, b: The dependence of the normalized velocity field v on the normalized spatial 

coordinates ξ, η in three dimensional (a) and contour plot (b) representations, for the nonlinearity 

degree 𝜔 = 5 

4. Blood flow dynamics through fractal fluid approach 

Blood (composed of blood cells suspended in blood plasma) is a body 

fluid that transport both necessary substances such as nutrients and oxygen to the 

cells and metabolic waste products away from the same cells. Plasma, which 

constitutes 55% of a blood’s fluid, is mostly water, containing dissipated proteins, 

glucose, mineral ions, hormones, carbon dioxide, other molecules (like 

cholesterol) and blood cells themselves. Blood circulation around the body 

through blood vessels is assured by the pumping action of the heart.  
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From an anatomical and histological point of view, blood is considered a 

specialized form of connective tissue, given its origin in the bones and the 

presence of potential molecular fibers in the form of fibrinogen. 

Given that the circulatory system has a fractal structure, it is expected its 

functionality to be also fractal. This allows us to assimilate the dynamics of the 

blood flow with the one of a fractal fluid. In such context, although the velocity 

fields will remain the same as the one presented in Fig. 1-4, the force that the fluid 

will exercise to the walls of the flow vessels is of great importance for the 

understanding of arterial occlusion and other circulatory system diseases. 

In our case the normalized force is given by the relation: 

  uF        (23) 

In Fig. 5a,b-6a,b are represented the normalized force field evolutions on 

the two-flow direction (  , ) for different nonlinearity degrees ( 5.0  in Fig. 5 

and 5  in Fig. 6). It results that with the increase of the nonlinearity of the 

fluid the force towards the walls increases. This can be a starting point for 

understanding the complexity of the mechanisms involved in the arterial 

occlusion. 
 

 

 

 

 

 

 

 

 

 

 

Figs. 5a,b: The dependence of the normalized velocity field F of a blood flow, on the 

normalized spatial coordinates ξ, η in three dimensional (a) and contour plot (b) representations, 

for the nonlinearity degree 𝜔 = 0.5 

 

 

 

 

 

 

 

 

 

 

 

Figs. 6a,b: The dependence of the normalized velocity field F of a blood flow, on the 

normalized spatial coordinates ξ, η in three dimensional (a) and contour plot (b) representations, 

for the nonlinearity degree 𝜔 = 5 
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The proposed theory has the advantage that it can explain the 

atherogenesis process, from a fractal point of view, basically “molding” to the 

classical anatomical and histopathological descriptions.  

6. Conclusions 

The present paper proposes a fractal model for the dynamics analysis of 

complex fluids flows. The fractal hydrodynamic equations were obtained and 

applied for the laminar flow of a fractal fluid.  

An application for the blood flow was proposed. The results revealed the 

directional flow towards the walls, which can explain the thickening effect which 

is one of the sources of arteriosclerosis.  

We can thus say that fractality represents the mathematical and semantic 

quintessence for complex biological system evolution, both by itself and in 

interaction with other complex systems, a process that can be characterized 

perfectly by fractal physics, thus physics becoming more of a component rather 

than an explanation for the complex biological system. 
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