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SEVERAL ASPECTS ABOUT FRACTALITATY ROLE IN THE
DYNAMICS OF COMPLEX SYSTEMS

Mihaela Viviana IVAN?, Andrei ZALA 2, Andrei AGOP?, Elena PUIU#, Dorin
VAIDEANU?®, lon PALAMACIUCS, Dragos TEODOR IANCU"", Radu
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In the framework of the Scale Relativity Model with an arbitrary constant
fractal dimension, several characteristic dynamics of complex systems induced only
by the "fractal force™ are presented. In this case, fractal velocity field is described
both by topological solitons of kink type and by nontopological soliton varieties of
breather type. The existence of such "nonlinearities” has as consequence either self-
structuring effects by generating patterns or chaotic effects. Such behaviors are
illustrated by analyzing the dynamics of blood, considered fractal fluid.
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1. Introduction

Complex systems are composed of many interacting structural units. The
evolution of the complex systems cannot be predicted simply by analyzing the
behaviour of individual elements or by superposing their individual evolutions [1,
2]. Even in the case of singular units the analysis can be very complicated, since
the nonlinear dynamics of a system highly sensitive to the initial condition can
evolve to chaos [3]. Therefore, the global evolution of a complex system is
determined by the manner in which individual elements interact each other.
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In the classical concepts, the theoretical models (hydrodynamic, Kinetic,
etc. [4,5]) of complex systems are realized assuming that the dynamics of
individual elements are characterized by continuous and differentiable motion
variables (energy, momentum, density etc.), exclusively dependent on the spatial
coordinates and time.

In reality, the complex system dynamics is much more complicated and
the classical theoretical models failed in the attempt to explain all the concerned
aspects, as illustrated by the experimental observations.

These difficulties can be overcome in a complementary approach, using
fractal concepts, defined for the first time by Mandelbrot [6]. He introduced the
term “fractal” to describe the“exotic” shapes that did not fit the patterns of
Euclidean geometry, i.e. irregular geometrical objects, cells of living organisms,
human arterial, neural network, convoluted surface of the brain etc., that possess
invariance with respect to the scale transformations which can be captured well by
the fractal geometry. In this context, the fractal analysis has proven to be a useful
tool describing various systems from physics and chemistry [7-9], biology and
medicine [10,11], econophysics [12,13].

Moreover, the analysis of complex systems evolution showed that most of
them are nonlinear and, therefore, new mathematical tools were required. These
have been provided by the Scale Relativity Theory (SRT) [14, 15] and by
Extended Scale Relativity Theory (ESRT) [16], i.e. the Scale Relativity Theory
with an arbitrary constant fractal dimension.

These theories consider that the motions of the complex systems structural
units take place on continuous but non-differentiable curves (fractal curves). In
this situation, the Euclidean dynamics of a complex system subjected to external
constraints is replaced by a fractal dynamics characterizing the same system free
of any external constraints. More precisely, the constrained motions in the
Euclidian space, i.e. on continuous and differentiable curves, are substituted by
free, independent motion (without constrains) in a fractal space, i.e. on
continuous, but non-differentiable (fractal) curves (for details by means of
applications, see [17-21])

Therefore, non-differentiability becomes a fundamental property of the
complex system dynamics. In such conjecture, a correspondence between the
trajectories can be established. Then, for specific scales that are large with respect
to the inverse of the highest Lyapunov exponent [22], the deterministic
trajectories are replaced by a collection of potential trajectories, while the concept
of definite positions is substituted by that of the probability density. Moreover, the
complex systems structural units may be reduced and identified with their own
trajectories so that the complex system will behave as a special fluid lacking
interactions (via their geodesics in a fractal space). We have called such fluid a
“fractal fluid” (for details through its implications, see [23-27])
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Let us note that there are currently a great number of works describing the
behaviours of complex systems in different forms, from which most interesting,
related to the application presented are drug delivery systems, in various
formulations: microparticles [28], hydrogels [29-31], magnetic nanoparticles [32]
All of these models employed the ESRT in order to develop mathematical models
for in vitro drug release mechanisms.

Taking into account the above, the role of ,,fractal force” in the dynamics
of complex systems is analyzed, using the ESRT model.

2. Hallmarks of non-differentiability

In such a framework, some consequences of non-differentiability both in
the usual space (of the space and time coordinates) and in the scale space are
evident [14-16]:

i) any continuous, but non-differentiable curve of the complex
system structural units (fractal curve) is explicitly dependent of scale resolution
ot , i.e. its length tends to infinity when 6t tends to zero;

i) the physics of the complex system phenomena is related to the
behaviour of a functions set during the zoom operation of the scale ét. Then,
through the substitution principle, & will be identified with dt, i.e, & =dt.
Consequently, it will be considered as an independent variable;

iii)  the complex system dynamics is described through fractal
variables. As consequence, the velocity field, both in the usual space and in scale
space, becomes a complex variable dynamics, with the form:

V=V, SV, i=/-1 (1)
where the real part, V., is the differentiable velocity and the imaginary one, V., is
the non-differentiable (fractal) velocity;

iv) the differential of the spatial coordinate field, d.Y", is expressed as
the sum of two differentials, one of them being differential part d,y'and the other
one being scale fractal part, d,c", i.e.:

d,Y' =d,y' +d,o' (2)

The sign ”+” corresponds to the forward process, while the sign - to the
backwards one;

V) the fractal part of the spatial coordinate field satisfies the fractal
equation:

d, o' (t,dt)= 2. (dt)"" ©)
where D, defines the fractal dimension of the fractal motion curve and 2, are
constant coefficients that indicates the fractalisation type;
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vi) an infinite number of fractal curves can be found relating any pair
of points, both in the usual space and in scale space. Then, any external constraint
is interpreted as a selection of fractal curves, corresponding to the maximum of
the probability density;

vii)  the complex system dynamics, both in the usual space and in scale
space, can be described through a scale covariant derivative:

N

%: o, +V'é, —%(dt)(z/DF)lD'ka,ak 4)
where:
D' = (A 4% = A2 )= i( A A + AL2Y)
2 ®)
8, =2 160, =2

av' T oy oy
In the previous relations the indices |,k take the values 1,2,3 in the usual
space, while in the scale space they have an arbitrary dimension imposed by the
intrinsic structure of the complex system.
Considering now the functionality of a generalized covariance principle
[14-16], the standard derivative operator d/dt is replaced by the non-

differentiable operator a/dt :

Under these conditions, applying the operator (4) to the complex velocity
field (1), in the absence of any external constraint and for motions on Levy curves
[5], which implies the restriction

AA =-2A A =2a5" (6)
with A the fractal-nonfractal transition coefficient (for details see [9, 14-16]) and
5" the Kronecker tensor, the fractal equation of the motion (geodesics equation)
have the following form:

A Ai AA A A

OI%:atvuv' o1vi—ia(dt) P 1ala vi =0 )

Previous result shows that, both in the usual space and in scale space, the
local “acceleration”, the “convection” and the “dissipation” make their balance in
any point of non-differentiable curve. Moreover, the presence of the complex
coefficient of viscosity type indicates that the complex system is a rheological
medium, so it has memory, as a datum, by its own structure.

In equation (7), by separating the motions on differential and fractal scale
resolutions, it results:
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AN

%zat\/s VoV _[VFI _ﬂ(dt)(Z/Dp)*lalblvFi ~0
Adt_ (8)
d(;? =0V +VaoV: -t - (@) o vy =0

3. Dynamics only at fractal scale resolutions

Further, let’s analyze which type of dynamics “hide” the cancellation of
“fractal force”.

Viev! = A(dt)¥> oo Vi (9)
under the condition that the fractal fluid at non-differentiable scale is
incompresible:

oVl =0 (10)

Finding the solutions for these equations can be relatively difficult, due to

the fact that the system equations are non-linear. However, there is an analytical
solution of this system, in the particular case of a stationary flow in a plane
symmetry (x,y). In these circumstances, equations (9) and (10), with

VE =(Vx,Vy,0) take the form:

v, My Mo gy —az\/; (11)
OX OX oy
ov
Ny +—2=0 (12)
ox oy

where V, =V, (x,y) is the fractal velocity along axis Ox, v, :Vy(x,y) is the
fractal velocity along Oy axis. The boundary conditions of the flow are:

. v, B
IleOVy(x, y)=0, lim y =0, Iylﬂlvx(x, y)=0 (13)

and the flux momentum per length unit is constant:

O=p _[Vfdy = const. (14)

Using the method from [33] for resolving the equations (11) and (12), with
the limit conditions (13) and (14), the following solutions result:

ol B
|

A(dt)?®r )’lx]% [A(dt)(z/ De ’H%

(15)
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L 5{ , J%] [y(fp]% -sech?
y o L) Tl g T e
a(af>r ] [(O,Sy{@ﬂ

6p

—tanh

[ 2(dt)o x]%

Relations (15) and (16) suggest that the fractal velocity field of the fractal
fluid is highly non-linear by means of soliton-breather and soliton-kink type
solutions (for details on such solutions, see [22, 34]). Given the structural
complexity of the fluid, an accurate way of writing relations (15) and (16) will be
the one in which we assign indexes for each component.

For y=0, we obtain, from relation (15), the flow critical velocity in the

form:
%
H@) ]
6p

(16)

V,(x,y=0)=V, = 17
X( y ) [ﬂ(dt)(z/DF )*1)(]}6 ( )
while relation (14), taking into account (17), becomes:
+o0 +d,
O =p [V(xydy= [V} (x0)y (18)
—o0 —d
so that the critical cross section of the strains lines tube is given by:
o (2D 11 Zs}(pj%
d.(x,y=0)= =2.42| |Aldt)7 X = 19

Relations (15) and (16) can be strongly simplified if we introduce the

normalized quantities:
( O j%
v, _ 6p

5—1 —l u—V_X V=
_xo'n_yo’ w, oW, [ (e )1, J5
w, |A(dt) X, 20)
2%
6p Yo
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where X,, Y,, W, are specific lengths and, respectively, the specific velocity of the
flow of the fractal fluid. It results that:

U(g,f]) _ 150 SEChZ 05!2(077

= — (21)
2% £
%
4573 Q| on »| 0.5Qwn 0.5Qwn
V(&)= o-sech’| —— " | —tanh| =~ (22)
35 g g £% £

We present in Fig. 1a,b — 2a,b the dependence of the normalized velocity
field u on the normalized spatial coordinates &,n for different nonlinearity
degrees (w=0.5 in Fig. 1 and @ =5 in Fig. 2). The results showcase that the
velocity field on the flow direction (&) is affected in a weak manner by the
nonlinearity degree (the velocity always decreases on the flow axes regardless of
the nonlinearity degree). On the other hand, the flow direction (7;) is strongly
affected. The flow starts from constant values on the 7 axis, and with the increase
of w, preferential flow direction can be identified.
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Figs. 1a, b: The dependence of the normalized velocity field u on the normalized spatial
coordinates & # in three dimensional (a) and contour plot (b) representations, for the nonlinearity
degree w = 0.5

Figs. 2a, b: The dependence of the normalized velocity field u on the normalized spatial
coordinates & # in three dimensional (a) and contour plot (b) representations, for the nonlinearity
degree w =5
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In Fig. 3a,b — 4a,b the dependences of the normalized velocity field v on
the normalized spatial coordinates &, for different nonlinearity degrees
(w=0.5 in Fig. 3 and w=5 in Fig. 4) are represented. For small nonlinearity
degrees the variations of the velocity field have similar behaviors on both
directions (&,7n), while for higher values of the nonlinearity degree these
variations are only focused on a single direction (&).
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Figs. 3a, b: The dependence of the normalized velocity field v on the normalized spatial
coordinates & # in three dimensional (a) and contour plot (b) representations, for the nonlinearity
degree w = 0.5

v

Figs. 4a, b: The dependence of the normalized velocity field v on the normalized spatial
coordinates & # in three dimensional (a) and contour plot (b) representations, for the nonlinearity
degree w =5

4. Blood flow dynamics through fractal fluid approach

Blood (composed of blood cells suspended in blood plasma) is a body
fluid that transport both necessary substances such as nutrients and oxygen to the
cells and metabolic waste products away from the same cells. Plasma, which
constitutes 55% of a blood’s fluid, is mostly water, containing dissipated proteins,
glucose, mineral ions, hormones, carbon dioxide, other molecules (like
cholesterol) and blood cells themselves. Blood circulation around the body
through blood vessels is assured by the pumping action of the heart.



Several aspects about fractalitaty role in the dynamics of complex systems 243

From an anatomical and histological point of view, blood is considered a
specialized form of connective tissue, given its origin in the bones and the
presence of potential molecular fibers in the form of fibrinogen.

Given that the circulatory system has a fractal structure, it is expected its
functionality to be also fractal. This allows us to assimilate the dynamics of the
blood flow with the one of a fractal fluid. In such context, although the velocity
fields will remain the same as the one presented in Fig. 1-4, the force that the fluid
will exercise to the walls of the flow vessels is of great importance for the
understanding of arterial occlusion and other circulatory system diseases.

In our case the normalized force is given by the relation:

F~o0u-0.v (23)

In Fig. 5a,b-6a,b are represented the normalized force field evolutions on
the two-flow direction (&, 7 ) for different nonlinearity degrees (o« =0.5 in Fig. 5
and w=>5 in Fig. 6). It results that with the increase of the nonlinearity of the
fluid the force towards the walls increases. This can be a starting point for
understanding the complexity of the mechanisms involved in the arterial
occlusion.
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Figs. 5a,b: The dependence of the normalized velocity field F of a blood flow, on the
normalized spatial coordinates & # in three dimensional (a) and contour plot (b) representations,
for the nonlinearity degree w = 0.5
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Figs. 6a,b: The dependence of the normalized velocity field F of a blood flow, on the
normalized spatial coordinates & # in three dimensional (a) and contour plot (b) representations,
for the nonlinearity degree w =5
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The proposed theory has the advantage that it can explain the
atherogenesis process, from a fractal point of view, basically “molding” to the
classical anatomical and histopathological descriptions.

6. Conclusions

The present paper proposes a fractal model for the dynamics analysis of
complex fluids flows. The fractal hydrodynamic equations were obtained and
applied for the laminar flow of a fractal fluid.

An application for the blood flow was proposed. The results revealed the
directional flow towards the walls, which can explain the thickening effect which
is one of the sources of arteriosclerosis.

We can thus say that fractality represents the mathematical and semantic
quintessence for complex biological system evolution, both by itself and in
interaction with other complex systems, a process that can be characterized
perfectly by fractal physics, thus physics becoming more of a component rather
than an explanation for the complex biological system.
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