
U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 2, 2013 ISSN 2286 – 3540

MATRIX INVERSE ON CONNEX PARALLEL
ARCHITECTURE

Ana-Maria CALFA1, Gheorghe ŞTEFAN2

Designed for embedded computation in system on chip design, the Connex
Parallel Architecture can compete with general purpose devises in the domain of
matrix computation, improving execution time and GIPS/Watt because of its specific
architectural features. The actual performances of this architecture in the
computation of matrix inversion are investigated using both analytical calculation
and numerical simulation.

Keywords: parallel architecture, embadded systems, inverse of a matrix

1. Introduction

In this paper we will continue to investigate the Connex Parallel
Architecture [1], started on [2] for the first computational motif from Berkeley’s
view [3] - linear algebra.

Two parallel algorithms to calculate the inverse of a matrix [4] are
described in the second section, one optimized for energy use and the other one
for area efficiency.

In the third section the peak performances of Connex Parallel Architecture
are compared with a general purpose CPU and a general purpose microcontroller,
in order to emphasize the advantages of Connex Architecture.

We conclude in the fourth section that, even if the Connex Architecture is
a very simple architecture compared with its competitors, area and power gain are
significant.

2. Matrix Inverse

In this paper, only dense matrices will be investigated and will be later
mentioned as matrices.

The inverse of a matrix A is the matrix A-1 that satisfies the property:

 A A-1 = A-1A = I (1)

1 PhD student, Faculty de Electronics, Telecommunications and Information Tehchnology,

University POLITEHNICA of Bucharest, Romania, e-mail: annie_calfa@yahoo.com
2 Prof., Faculty de Electronics, Telecommunications and Information Tehchnology, University

POLITEHNICA of Bucharest, Romania, e-mail: gstefan@arh.pub.ro

92 Ana-Maria Calfa, Gheorghe Ştefan

where I is the unity matrix.
 Inverse of a matrix can be defined only for square matrices. Not all square
matrices have inverses, but if they do, they are unique! A matrix with inverse is
called invertible or nonsingular and one without inverse is called noninvertible or
singular.
 The inverse of a matrix can be calculated using two methods:

a. Gauss-Jordan elimination transforms [A | I] into [I | A-1].

To exemplify, we consider matrices of 4x4:

...

1000
0100
0010
0001

1000
0100
0010
0001

...

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

 (2)

The method of Gauss-Jordan elimination involves creating the index

matrix instead of the initial matrix and its inverse instead of the unit matrix. This
implies to form zeros, under and upper the main diagonal of the initial matrix. The
matrix to be inverted and the index matrix attached are considered a unit and all
the operations are going to be applied to it.

To use Connex specific architectural features, operation must be
performed on column. On the first column, first step is to divide the first row by
the element of the main diagonal of the matrix that needs to be inverted.

...

1000
0100
0010

00011

1000
0100
0010

00011

...
11

44434241

34333231

24232221

11

14

11

13

11

12

11

44434241

34333231

24232221
11

14

11

13

11

12

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
b

bbbb
bbbb
bbbb
b
b

b
b

b
b

a

aaaa
aaaa
aaaa
a
a

a
a

a
a

 (3)

If this element is zero then we need to interchange this row with another
one of grater index that doesn’t have this element zero. If all the rows have the
first element zero it means that the matrix is singular.

To create zeros on the first column under the main diagonal we need to
multiply, one by one, the first row with the first element of the row where we
intend to create zero and then decrease it from the corresponding row.

Applying the procedure listed above for the second row:

Matrix inverse on connex parallel architecture 93

...0001100011...
1111

14

11

13

11

12
21

1111

14

11

13

11

12
21 ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅
bb

b
b
b

b
bb

aa
a

a
a

a
aa =

...000000...
11

21

11

1421

11

1321

11

1221
21

11

21

11

1421

11

1321

11

1221
21 ⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅⋅⋅⋅

b
b

b
bb

b
bb

b
bbb

a
a

a
aa

a
aa

a
aaa (4)

and then, decreasing the result from the second row, results:

...

1000
0100

001

0001

0

1

...
11

21
11

44434241

34333231
11

1421
24

11

1321
23

11

1221
22

11

14

11

13

11

12

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

−

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
−

⋅
−

⋅
−

a
a

a

aaaa
aaaa

a
aaa

a
aaa

a
aaa

a
a

a
a

a
a

 (5)

Continuing this operation for all remaining rows, it will be obtained zeros

on the first column:

...

100

010

001

0001

0

0

0

1

...

11

41
11

31
11

21
11

11

1441
44

11

1341
43

11

1241
42

11

1431
34

11

1331
33

11

1231
32

11

1421
24

11

1321
23

11

1221
22

11

14

11

13

11

12

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

−

−

−

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
−

⋅
−

⋅
−

⋅
−

⋅
−

⋅
−

⋅
−

⋅
−

⋅
−

a
a
a
a
a
a

a

a
aaa

a
aaa

a
aaa

a
aaa

a
aaa

a
aaa

a
aaa

a
aaa

a
aaa

a
a

a
a

a
a

 (6)

 The zeros on the second column will be first created under the main
diagonal, this means that we should start from the second row where we have to
generate “1” on the main diagonal. This is done dividing the second row by

α22
11

1221
22 a

a
aaa =
⋅

− .

To simplify the equations we make the following notations

αxy
yx

xy a
a

aaa =
⋅

−
11

11 (7)

 Applying (7) to (6):

94 Ana-Maria Calfa, Gheorghe Ştefan

 ...

100

010

001

0001

0
0

10

1

...

11

41
11

31
221122

21
11

444342

343332
22

24

22

23
11

14

11

13

11

12

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

−

−

−

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

a
a
a
a

aaa
a

a

aaa
aaa
a
a

a
a

a
a

a
a

a
a

αα

ααα

ααα
α

α

α

α (8)

To create zeros on the second column under the main diagonal, we apply

the same method as for the first column. Multiplying it, one by one, with the
elements of grater index on the same column:

...00110...
221122

21

22

24

22

23
32 =⎟

⎠
⎞

⋅
−⎜

⎝
⎛ ⋅⋅

ααα

α

α

α
α

aaa
a

a
a

a
aa

 ...000...
22

32

1122

2132

22

24
32

22

23
3232 =⎟

⎠
⎞

⋅
⋅

−⎜
⎝
⎛ ⋅⋅

α

α

α

α

α

α
α

α

α
αα

a
a

aa
aa

a
aa

a
aaa (9)

and then decreasing it from the corresponding row, results:

 ...

10)(

01)(

001

0001

00

00

10

1

...

22

42

1122

2142

11

41
22

32

1122

2132

11

31
1122

21
11

22

24
4244

22

23
4243

22

24
3234

22

23
3233

22

24

22

23
11

14

11

13

11

12

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⋅
⋅

+−

⋅
+−

−

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅

⋅⋅
⋅

⋅

−−

−−

α

α

α

α
α

α

α

α
α

α

α
αα

α

α
αα

α

α
αα

α

α
αα

α

α

α

α

a
a

aa
aa

a
a

a
a

aa
aa

a
a

aa
a

a

a
aaa

a
aaa

a
aaa

a
aaa

a
a

a
a

a
a

a
a

a
a

 (10)

 Continuing these operations for all columns, instead of initial matrix will
be obtained a matrix that has ones on the main diagonal and zeros under it.
Applying the same method for the upper part of the matrix, starting with the last
row, the unit and the inverse matrix will be obtained:

...

1000
0100
0010
0001

1001
0100
0010
0001

...

'44'43'42'41

'34'33'32'31

'24'23'22'21

'14'13'12'11

'44'43'42'41

'34'33'32'31

'24'23'22'21

'14'13'12'11

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

 (11)

Matrix inverse on connex parallel architecture 95

b. Cramer’s rule is defined by :

A-1 =
)det(

)int(
A

Aadjo =)
)det(

)(_(
A

Amatrixcofactor T (12)

First step is to calculate the determinant for all defined matrices. It will be

calculated using the Gaussian elimination method presented above, that will be
applied until the original matrix becomes a triangular matrix, without creating
“1”s on the main diagonal. Under this condition the determinant is defined as the
product of all the elements on the main diagonal.

If the determinant is zero then the matrix A is noninvertible. Because, with
this architecture can be calculated up to 512 inverses in parallel (for matrices of
2x2), those matrices that have the determinant zero will be marked and the inverse
will not be calculated for them. For the rest of the matrices the algorithm will
continue until the inverses are found.

The cofactors of a matrix are those determinants that results after deleting
the row and the column of an element from a matrix, with the sign given by the
sum of the indexes of the given element. If the sum is an even number then the
sign is “+”, otherwise the sign is “-”.

If we consider three matrices for which we want to compute the inverse in
parallel:

......

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

cccc
cccc
cccc
cccc

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

 (13)

first these matrices will be transposed with the method presented in [1], resulting:

......

44342414

43332313

42322212

41312111

44342414

43332313

42322212

41312111

44342414

43332313

42322212

41312111

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

cccc
cccc
cccc
cccc

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

 (14)

 Then, in auxiliary matrices will be stored those matrices resulted after
deleting the row and the column of a specific element, for which will be
calculated the determinants (cofactors after adding the sign) using the method of
Gauss-Jordan elimination.

96 Ana-Maria Calfa, Gheorghe Ştefan

for(i = 0; i < matr_size; i++){
 Index is 1 in position i from matr_size;
 WHERE(Index == 0)
 Tmp = Matr;
 Tmp is shifted one position to the left;

for(j = 0; j < matr_size; j++){
 if((j != 0)||(j != matr_size)){
 for(k = j; k< matr_size; k++){
 Tmp[k+1] = Tmp[k];

 }
Calculate determinants for the Tmp matrices using
Gauss-Jordan elimination;
CofactorMatr[i][j] = (-1)i+j ·det(Tmp);

}
 }
}

 If i = 0, the Index vector is:

()()()...000100010001... (15)

applied to (14), it becomes:

...

0
0
0
0

0
0
0
0

0
0
0
0

...

443424

433323

423222

413121

443424

433323

423222

413121

443424

433323

423222

413121

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ccc
ccc
ccc
ccc

bbb
bbb
bbb
bbb

aaa
aaa
aaa
aaa

 (16)

After shifting it one position to the left, the auxiliary matrices are:

...

0
0
0
0

0
0
0
0

0
0
0
0

...

443424

433323

423222

413121

443424

433323

423222

413121

443424

433323

423222

413121

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ccc
ccc
ccc
ccc

bbb
bbb
bbb
bbb

aaa
aaa
aaa
aaa

 (17)

Matrix inverse on connex parallel architecture 97

...

0000
0
0
0

0000
0
0
0

0000
0
0
0

...
443424

433323

423222

443424

433323

423222

443424

433323

423222

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ccc
ccc
ccc

bbb
bbb
bbb

aaa
aaa
aaa

 (18)

For these matrices of size matr_size-1 will be calculated the determinants.

It represents the cofactors values for (0,0).
Repeating these actions for all columns and rows the adjoint matrices will

be obtained.

 ...

...)1(...)1(...)1()1(

...)1(...)1(...)1()1(

...)1(...)1(...)1()1(

...)1(...)1()1()1(

444342

433323

423222

3121

41

343332

443424

423222

413121

31

242322

443424

433323

413121

21

1413

443414

433313

423212

12

443424

433323

423222

11

...

41

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−

−−−−

−−−−

−−−−

++++

++++

++++

++++

aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa

aaa
aaa
aaa

aaa
aaa
aaa

 (19)

 The inverse of matrices will be obtained dividing adjoint matrices with the
determinant of initial matrices.

3. Performance of Connex Architecture

The figures in Table I represents the clock cycles per operation after
running the presented algorithms on the emulator of Connex Architecture for
scalar vectors of floating points, without considering the input-output transfer of
data.

To emphasize the performances of Connex, the results will be compared
with released figures of a general purpose CPU and a microcontroller used in DSP
application:

98 Ana-Maria Calfa, Gheorghe Ştefan

• Processor : 450 MHz, 34 W
• Microcontroller : 30 MHz

The Gauss-Jordan elimination has the advantage that it is quicker than the
Cramer’s rule, for big matrices, but the number of inverted matrices is halved.
Depending on the applications requests one of the two methods can be used.

Table I

Results of matrix invert on Connex Parallel architecture
 Gauss-Jordan elimination Cramer’s rule

No. of matrices Clock cycles No. of matrices Clock cycles
2x2 256 760 512 300
4x4 128 4472 256 16530
8x8 64 33782 128 492459

16x16 32 312330 64 17098225

In Fig.1 it can be observed that the clock cycles are function of O(n3) for
small n, and function of O(n4) for n bigger than 8. An improvement of at least n is
obtained compared with sequential method.

Comparing both inversion methods on Connex Architecture with a
sequential processor [5] in Table II, for matrices of 4x4, it can be observed that an
acceleration of at least 13 times is obtained if is used Cramer’s rule method, and
efficiency of power (array_inverse/Watt) is increased around 150 times.

Table II

 Performance of Connex Architecture compared with Intel processor

Method Connex
(clk cyc/matr)

CPU
(clk cyc/matr)

Performances
Acceleration Power eff.

Gauss-Jordan Elimination 34,94 1074 30,74x 348,4x
Cramer’s rule 64,57 846 13,10x 148,5x

If the results are compared with a general purpose microcontroller [6]

when the dimension of the matrices is squared, for Cramer’s rule, the acceleration
is still tens [7] (see Table III).

Table III
Performance of Connex Architecture compared with PIC microcontroller

for Cramer’s rule
Method Connex uC Performance

Acceleration
Cramer’s rule 267160 2521742 9,44x

Connex Architecture, besides lowering the execution time also power is

more efficient used compared with current solutions. In the domain of big
matrices, performances are even higher due to architectural features.

Matrix inverse on connex parallel architecture 99

Fig.1 Evolution of clock cycles function of matrix range

Nowadays, there are many security and commercial application that uses

matrix inversion: mathematical research systems, cryptography, search engines,
automatic pilot s.a. These application processes large amounts of data, and due to
its performance, Connex Architecture can be integrated.

The methods and results presented above apply only for dense matrices.
Due to high proportion of non useful data, spare matrices have dedicated methods
to store the data in the memory and to compute it. Spare matrices are part of
future investigation.

4. Conclusion

Due to large amount of low power application that uses matrix inversion,
improvements of time execution and power efficiency (costs lowering) in the
domain of linear algebra are mandatory.

Even if parallel processors are usually used as accelerators where they are
integrated, and most of the times are dedicated to application that processes a
large amount of data, due to its performances translated in lower costs, Connex
Parallel Architecture can be used in a variety of other applications outside of its
design domain.

-1

0

1

2

3

4

5

6

2 4 8 16

Matrix dim

lg
(c

yc
le

s

Gauss-Jordan
elimination
Cramer's rule

lg(n 3̂)

lg(n 4̂)

100 Ana-Maria Calfa, Gheorghe Ştefan

R E F E R E N C E S

[1] Gheorghe Ştefan, The CA1024: SoC with Integral Parallel Architecture for HDTV Processing",
4th International System-on-Chip (SoC) Conference & Exhibit, November 1 & 2, 2006,
Radisson Hotel Newport Beach, CA

[2] Ana-Maria Calfa, Gheorghe Stefan, Matrix Computation on Connex Parallel Architecture, in
ICSES 2010 Proceedings, Gliwice – Poland, September 2010

[3] K. Asanovic, et. al., The Landscape of Parallel Computing Research: A View from Berkeley,
Technical Report No. UCB/EECS-2006-183, December 18, 2006

[4] H. Anton, Elementary Linear Algebra, 7th Edition, John Wiley & Sons Inc., 1994
[5] Intel Corporation, Streaming SIMD Extensions - Inverse of 4x4 Matrix, AP-928, Order

Number 245043-001, March 1999
[6] Microchip, dsPIC Language Tools Libraries, DS51456B, 2004
[7] Artit C. Jarapatnakul, A Multi-Sensor Embedded Microcontroller System for Condition

Monitoring of RC Helicopters, The Pennsylvania State University, 2005

