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MATRIX INVERSE ON CONNEX PARALLEL 
ARCHITECTURE 

Ana-Maria CALFA1, Gheorghe ŞTEFAN2 

Designed for embedded computation in system on chip design, the Connex 
Parallel Architecture can compete with general purpose devises in the domain of 
matrix computation, improving execution time and GIPS/Watt because of its specific 
architectural features. The actual performances of this architecture in the 
computation of matrix inversion are investigated using both analytical calculation 
and numerical simulation. 
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1. Introduction 

In this paper we will continue to investigate the Connex Parallel 
Architecture [1], started on [2] for the first computational motif from Berkeley’s 
view [3] - linear algebra.  

Two parallel algorithms to calculate the inverse of a matrix [4] are 
described in the second section, one optimized for energy use and the other one 
for area efficiency.  

In the third section the peak performances of Connex Parallel Architecture 
are compared with a general purpose CPU and a general purpose microcontroller, 
in order to emphasize the advantages of Connex Architecture.  

We conclude in the fourth section that, even if the Connex Architecture is 
a very simple architecture compared with its competitors, area and power gain are 
significant. 

2. Matrix Inverse 

In this paper, only dense matrices will be investigated and will be later 
mentioned as matrices. 

The inverse of a matrix A is the matrix A-1 that satisfies the property: 
 

        A A-1 = A-1A = I                                               (1) 
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where I is the unity matrix.  
 Inverse of a matrix can be defined only for square matrices. Not all square 
matrices have inverses, but if they do, they are unique! A matrix with inverse is 
called invertible or nonsingular and one without inverse is called noninvertible or 
singular. 
 The inverse of a matrix can be calculated using two methods: 
 

a. Gauss-Jordan elimination transforms [A | I] into [I | A-1]. 
 

To exemplify, we consider matrices of 4x4: 
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The method of Gauss-Jordan elimination involves creating the index 

matrix instead of the initial matrix and its inverse instead of the unit matrix. This 
implies to form zeros, under and upper the main diagonal of the initial matrix. The 
matrix to be inverted and the index matrix attached are considered a unit and all 
the operations are going to be applied to it.  

To use Connex specific architectural features, operation must be 
performed on column. On the first column, first step is to divide the first row by 
the element of the main diagonal of the matrix that needs to be inverted. 

 

...

1000
0100
0010

00011

1000
0100
0010

00011

...
11

44434241

34333231

24232221

11

14

11

13

11

12

11

44434241

34333231

24232221
11

14

11

13

11

12

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
b

bbbb
bbbb
bbbb
b
b

b
b

b
b

a

aaaa
aaaa
aaaa
a
a

a
a

a
a

 (3) 

If this element is zero then we need to interchange this row with another 
one of grater index that doesn’t have this element zero. If all the rows have the 
first element zero it means that the matrix is singular. 

To create zeros on the first column under the main diagonal we need to 
multiply, one by one, the first row with the first element of the row where we 
intend to create zero and then decrease it from the corresponding row.  

Applying the procedure listed above for the second row:  
 



Matrix inverse on connex parallel architecture                                          93 

...0001100011...
1111

14

11

13

11

12
21

1111

14

11

13

11

12
21 ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅
bb

b
b
b

b
bb

aa
a

a
a

a
aa = 

 

...000000...
11

21

11

1421

11

1321

11

1221
21

11

21

11

1421

11

1321

11

1221
21 ⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅⋅⋅⋅

b
b

b
bb

b
bb

b
bbb

a
a

a
aa

a
aa

a
aaa         (4) 

 
and then, decreasing the result from the second row, results: 
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Continuing this operation for all remaining rows, it will be obtained zeros 

on the first column: 
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 The zeros on the second column will be first created under the main 
diagonal, this means that we should start from the second row where we have to 
generate “1” on the main diagonal. This is done dividing the second row by

α22
11

1221
22 a

a
aaa =
⋅

− .  

To simplify the equations we make the following notations  
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 Applying (7) to (6): 
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To create zeros on the second column under the main diagonal, we apply 

the same method as for the first column. Multiplying it, one by one, with the 
elements of grater index on the same column: 

 

...00110...
221122

21

22

24

22

23
32 =⎟

⎠
⎞

⋅
−⎜

⎝
⎛ ⋅⋅

ααα

α

α

α
α

aaa
a

a
a

a
aa  

 

 ...000...
22

32

1122

2132

22

24
32

22

23
3232 =⎟

⎠
⎞

⋅
⋅

−⎜
⎝
⎛ ⋅⋅

α

α

α

α

α

α
α

α

α
αα

a
a

aa
aa

a
aa

a
aaa                                      (9) 

 
and then decreasing it from the corresponding row, results: 
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 Continuing these operations for all columns, instead of initial matrix will 
be obtained a matrix that has ones on the main diagonal and zeros under it. 
Applying the same method for the upper part of the matrix, starting with the last 
row, the unit and the inverse matrix will be obtained: 
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b. Cramer’s rule is defined by : 
 

A-1 = 
)det(

)int(
A

Aadjo = )
)det(

)(_(
A

Amatrixcofactor T                                                               (12) 

 
First step is to calculate the determinant for all defined matrices. It will be 

calculated using the Gaussian elimination method presented above, that will be 
applied until the original matrix becomes a triangular matrix, without creating 
“1”s on the main diagonal. Under this condition the determinant is defined as the 
product of all the elements on the main diagonal.  

If the determinant is zero then the matrix A is noninvertible. Because, with 
this architecture can be calculated up to 512 inverses in parallel (for matrices of 
2x2), those matrices that have the determinant zero will be marked and the inverse 
will not be calculated for them. For the rest of the matrices the algorithm will 
continue until the inverses are found.  

The cofactors of a matrix are those determinants that results after deleting 
the row and the column of an element from a matrix, with the sign given by the 
sum of the indexes of the given element. If the sum is an even number then the 
sign is “+”, otherwise the sign is “-”. 

If we consider three matrices for which we want to compute the inverse in 
parallel: 
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first these matrices will be transposed with the method presented in [1], resulting: 
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 Then, in auxiliary matrices will be stored those matrices resulted after 
deleting the row and the column of a specific element, for which will be 
calculated the determinants (cofactors after adding the sign) using the method of 
Gauss-Jordan elimination.   
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for(i = 0; i < matr_size; i++){ 
 Index is 1 in position i from matr_size; 
 WHERE(Index == 0) 
  Tmp = Matr; 
 Tmp is shifted one position to the left; 

for(j = 0; j < matr_size; j++){ 
 if(( j != 0)||(j != matr_size)){ 
  for(k = j; k< matr_size; k++){ 
   Tmp[k+1] = Tmp[k];  

 } 
Calculate determinants for the Tmp matrices using 
Gauss-Jordan elimination; 
CofactorMatr[i][j] = (-1)i+j ·det(Tmp); 

} 
 } 
} 

 
 If i = 0, the Index vector is: 
 

( )( )( )...000100010001...                              (15) 
 
applied to (14), it becomes: 
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After shifting it one position to the left, the auxiliary matrices are: 
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For these matrices of size matr_size-1 will be calculated the determinants. 

It represents the cofactors values for (0,0). 
Repeating these actions for all columns and rows the adjoint matrices will 

be obtained. 
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 The inverse of matrices will be obtained dividing adjoint matrices with the 
determinant of initial matrices. 
 
 

3. Performance of Connex Architecture 

The figures in Table I represents the clock cycles per operation after 
running the presented algorithms on the emulator of Connex Architecture for 
scalar vectors of floating points, without considering the input-output transfer of 
data.  

To emphasize the performances of Connex, the results will be compared 
with released figures of a general purpose CPU and a microcontroller used in DSP 
application: 
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• Processor : 450 MHz, 34 W 
• Microcontroller : 30 MHz 

The Gauss-Jordan elimination has the advantage that it is quicker than the 
Cramer’s rule, for big matrices, but the number of inverted matrices is halved. 
Depending on the applications requests one of the two methods can be used. 

 
Table I 

Results of matrix invert on Connex Parallel architecture 
 Gauss-Jordan elimination Cramer’s rule 

No. of matrices Clock cycles No. of matrices Clock cycles 
2x2 256 760 512 300 
4x4 128 4472 256 16530 
8x8 64 33782 128 492459 

16x16 32 312330 64 17098225 
 

In Fig.1 it can be observed that the clock cycles are function of O(n3) for 
small n, and function of O(n4) for n bigger than 8. An improvement of at least n is 
obtained compared with sequential method. 

Comparing both inversion methods on Connex Architecture with a 
sequential processor [5] in Table II, for matrices of 4x4, it can be observed that an 
acceleration of at least 13 times is obtained if is used Cramer’s rule method, and 
efficiency of power (array_inverse/Watt) is increased around 150 times. 

 
Table II 

 Performance of Connex Architecture compared with Intel processor  

Method Connex 
(clk cyc/matr) 

CPU 
(clk cyc/matr) 

Performances 
Acceleration Power eff. 

Gauss-Jordan Elimination 34,94 1074 30,74x 348,4x 
Cramer’s rule 64,57 846 13,10x 148,5x 
 
If the results are compared with a general purpose microcontroller [6] 

when the dimension of the matrices is squared, for Cramer’s rule, the acceleration 
is still tens [7] (see Table III). 
 

Table III 
Performance of Connex Architecture compared with PIC microcontroller  

for Cramer’s rule 
Method Connex uC Performance 

Acceleration
Cramer’s rule 267160 2521742 9,44x 

 
Connex Architecture, besides lowering the execution time also power is 

more efficient used compared with current solutions. In the domain of big 
matrices, performances are even higher due to architectural features. 
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Fig.1 Evolution of clock cycles function of matrix range 

 
Nowadays, there are many security and commercial application that uses 

matrix inversion: mathematical research systems, cryptography, search engines, 
automatic pilot s.a. These application processes large amounts of data, and due to 
its performance, Connex Architecture can be integrated. 

The methods and results presented above apply only for dense matrices. 
Due to high proportion of non useful data, spare matrices have dedicated methods 
to store the data in the memory and to compute it. Spare matrices are part of 
future investigation. 

 

4. Conclusion 

Due to large amount of low power application that uses matrix inversion, 
improvements of time execution and power efficiency (costs lowering) in the 
domain of linear algebra are mandatory. 

Even if parallel processors are usually used as accelerators where they are 
integrated, and most of the times are dedicated to application that processes a 
large amount of data, due to its performances translated in lower costs, Connex 
Parallel Architecture can be used in a variety of other applications outside of its 
design domain. 
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