U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 2, 2013 ISSN 2286 — 3540

MATRIX INVERSE ON CONNEX PARALLEL
ARCHITECTURE

Ana-Maria CALFA', Gheorghe STEFAN?

Designed for embedded computation in system on chip design, the Connex
Parallel Architecture can compete with general purpose devises in the domain of
matrix computation, improving execution time and GIPS/Watt because of its specific
architectural features. The actual performances of this architecture in the
computation of matrix inversion are investigated using both analytical calculation
and numerical simulation.

Keywords: parallel architecture, embadded systems, inverse of a matrix
1. Introduction

In this paper we will continue to investigate the Connex Parallel
Architecture [1], started on [2] for the first computational motif from Berkeley’s
view [3] - linear algebra.

Two parallel algorithms to calculate the inverse of a matrix [4] are
described in the second section, one optimized for energy use and the other one
for area efficiency.

In the third section the peak performances of Connex Parallel Architecture
are compared with a general purpose CPU and a general purpose microcontroller,
in order to emphasize the advantages of Connex Architecture.

We conclude in the fourth section that, even if the Connex Architecture is
a very simple architecture compared with its competitors, area and power gain are
significant.

2. Matrix Inverse

In this paper, only dense matrices will be investigated and will be later
mentioned as matrices.
The inverse of a matrix A is the matrix A that satisfies the property:

AAT=ATA=1 (1)

' PhD student, Faculty de Electronics, Telecommunications and Information Tehchnology,
University POLITEHNICA of Bucharest, Romania, e-mail: annie_calfa@yahoo.com

2 Prof., Faculty de Electronics, Telecommunications and Information Tehchnology, University
POLITEHNICA of Bucharest, Romania, e-mail: gstefan@arh.pub.ro

92 Ana-Maria Calfa, Gheorghe Stefan

where I is the unity matrix.

Inverse of a matrix can be defined only for square matrices. Not all square
matrices have inverses, but if they do, they are unique! A matrix with inverse is
called invertible or nonsingular and one without inverse is called noninvertible or
singular.

The inverse of a matrix can be calculated using two methods:

a. Gauss-Jordan elimination transforms [A |I] into [I | A™].

To exemplify, we consider matrices of 4x4:

an a2z asz a4ql 0 0 OYbu bz bz bal 0 0 0

. an a» axs a40 1 0 Ofba b2 bxs bd0 1 0 O 2
a1 a2 ax a0 0 1 O|bst b2 bz b0 0 1 0
as avw ax a0 0 0 1)\ba ba bss bd0 0 0 1

The method of Gauss-Jordan elimination involves creating the index
matrix instead of the initial matrix and its inverse instead of the unit matrix. This
implies to form zeros, under and upper the main diagonal of the initial matrix. The
matrix to be inverted and the index matrix attached are considered a unit and all
the operations are going to be applied to it.

To use Connex specific architectural features, operation must be
performed on column. On the first column, first step is to divide the first row by
the element of the main diagonal of the matrix that needs to be inverted.

poaz @ anl g gy b be baly
ai an anan bt by bulbi
Jan an as @40 1 0 O)ba b bz 040 1 0 0 - 3)
a1 a2 a3z w0 0 1 O|bss b2 bz B340 0 1 O
ann av as a0 0 0 1)\ba b bas bsd O 0 0 1

If this element is zero then we need to interchange this row with another
one of grater index that doesn’t have this element zero. If all the rows have the
first element zero it means that the matrix is singular.

To create zeros on the first column under the main diagonal we need to
multiply, one by one, the first row with the first element of the row where we
intend to create zero and then decrease it from the corresponding row.

Applying the procedure listed above for the second row:

Matrix inverse on connex parallel architecture 93
an as a4l b2 bs b4l
an|ll — — —— 0 0 0pp{l — — —— 0 0 0}.=
an an anan bu bbb
@@ @-a3 @radm b2 bibs bibhdb
@i % 00 0fb 4 0 0 0}.. 4
an an al ‘011 hi i ‘hl
and then, decreasing the result from the second row, results:
| an ai ais 1
an an an an
ax-an ax-ais ax-aia| axn
0 an- a- az- - (5)
an an an an
asi as ass asa 0
as as a4 a4 0

Continuing this operation for all remaining rows, it will be obtained zeros
on the first column:

0 axn-
0 axn-

0 awo-

a2

ail
azi-aiz

ais

ail
a1-ais

ail
asi- a2

a3 -

ail
asi- ai3

ail
a4r- a2

ass -

ail
aal- ais

ail

a3 -

ail

a2 -

as4 -

Qa4 -

a4

ail
azl-aia

ail
asi- a4

ail
aal- a4

ail

1

ail
azi

ail
asi

ail
aal

ail

1

0

1

0

000

1

(6)

The zeros on the second column will be first created under the main
diagonal, this means that we should start from the second row where we have to
generate “1”” on the main diagonal. This is done dividing the second row by

as-an

a2 — =da2a.

aitl
To simplify the equations we make the following notations

ax1-dly

Axy —

(7

= dxya
ail

Applying (7) to (6):

94 Ana-Maria Calfa, Gheorghe Stefan

1

— 0 00
o Aroas o as g,
ain an an a 1 00
0 1 % P gyan ana ()
a»e a2a as 0 10
0 aa A3z Q3
an
0 ase ase asae] G4 0 01
ai

To create zeros on the second column under the main diagonal, we apply
the same method as for the first column. Multiplying it, one by one, with the
elements of grater index on the same column:

e Qa a 1
2|01 — —— — 0 0]=...
w2 A2l A2a
M M| Bu@ B
A0 Bu Bu— Bu—— — 0 0|=...)]
f7% x| ud x

and then decreasing it from the corresponding row, results:

a2 ai3 a4 1
1 — — — — 0 00
an an an an
azsa 24 a
0 1 - 1 00
ara ara e - an (10)
azsa Qa| @31 A3na-A21, A3
0 0 ase-asa- A34a - A32a —(—+ 10
axa axe| an ane-an’ axa
a23a A24a asl da2a- Azl a42a
0 0 ase-asn- Q4da - A42a - —(—+) 0 1
axa axe| an ane-au a2

Continuing these operations for all columns, instead of initial matrix will
be obtained a matrix that has ones on the main diagonal and zeros under it.
Applying the same method for the upper part of the matrix, starting with the last
row, the unit and the inverse matrix will be obtained:

0bir bz by bia
0b2rr b bazy bos

.. (11)
0bsr b3» b3y b
1bar bar baz baa

Olair a2 a1y as

Olasr az» a3

—_— 0 O

0
0 Oazxr ax a» aw
1
0

S O = O
S O O =
S O = O
oS = O O

llaar as a4y as

Matrix inverse on connex parallel architecture 95

b. Cramer’s rule is defined by :

1 _ adjoint(4) _ cofactor _matrix(A)
det(4) det(A)

)’ (12)

First step is to calculate the determinant for all defined matrices. It will be
calculated using the Gaussian elimination method presented above, that will be
applied until the original matrix becomes a triangular matrix, without creating
“1”s on the main diagonal. Under this condition the determinant is defined as the
product of all the elements on the main diagonal.

If the determinant is zero then the matrix A is noninvertible. Because, with
this architecture can be calculated up to 512 inverses in parallel (for matrices of
2x2), those matrices that have the determinant zero will be marked and the inverse
will not be calculated for them. For the rest of the matrices the algorithm will
continue until the inverses are found.

The cofactors of a matrix are those determinants that results after deleting
the row and the column of an element from a matrix, with the sign given by the
sum of the indexes of the given element. If the sum is an even number then the
sign is “+”, otherwise the sign is “-”.

If we consider three matrices for which we want to compute the inverse in
parallel:

ait ae az aus\bu bz bz buYen cz2 a3 4

axzt an an 4| bn b2 bx bulca cn e e

b (13)

a1 a2 a3 w4 | b by b C31 R 033 G4

ast ax as3 ass\bst ba bsz bulcs cao csz ocaa

first these matrices will be transposed with the method presented in [1], resulting:
an axn ax asn\ b ba by bs\cu cu ey oca

ar ax» ax» a2 | b2 bxn bxn bxn|c2 c2 ¢ cx (14)

az an ax ax | bz by b bs|cs c3 ek ocs

ais axe ass as\bis b b bl cia cu ci caa

Then, in auxiliary matrices will be stored those matrices resulted after
deleting the row and the column of a specific element, for which will be
calculated the determinants (cofactors after adding the sign) using the method of
Gauss-Jordan elimination.

96

Ana-Maria Calfa, Gheorghe Stefan

for(i=0; i <matr_size; i++){

}

Index is 1 in position i from matr_size;

WHERE(Index == 0)
Tmp = Matr;
Tmp is shifted one position to the left;

for(j = 0; j <matr_size; j++){

if((j = 0)||j = matr_size)){
for(k = j; k< matr_size; k++){

}

Tmp[k+1] = Tmp[k];

Calculate determinants for the Tmp matrices using
Gauss-Jordan elimination;
CofactorMatr[i][j] = (-1)"” -det(Tmp);

If 1 =0, the Index vector is:

applied to (14), it becomes:

S O O O

10 0 o)1

az1

a2

a3

az4

asi

asz

ass

as4

aal

aaz

aas

a44

b2
b2
b2
b2a

S O O O

0 0 01 0 0 0). (15)
bst b1\ 0 ca1 ¢y ocs
b2 b |0 c2 ¢ ca

. (16)
bz b |0 ¢ ¢33 cs
bis baa O cu 34 cus

After shifting it one position to the left, the auxiliary matrices are:

azl
a2
as

az4

asi

asz

ass

as4

aal

aaz

ass

a4

S O O O

b2 ba
b2 bxn
bx bss
b2 b

bu
bs
b
baa

S O O O

C21

c22

C23

C24

C31

C32

C33

C34

C41

Cc42

C43

Ca4

(17)

S O O O

Matrix inverse on connex parallel architecture 97
an ax ax 0\ba2 b2 b 0Yc2 c2 ci2 0
as ax as 0|bxs b bss O0fcs ¢33 ca3 0 (18)
Taw amu am O|bu by b O)cau cu cu 0O
O 0 O OrLO O O ONO O o0 O

For these matrices of size matr_size-1 will be calculated the determinants.
It represents the cofactors values for (0,0).
Repeating these actions for all columns and rows the adjoint matrices will

be obtained.

(_ 1)1+1

(_ 1)1+2

(_l)l+3

(_ 1)1+4

a2

a4
azi

a4

a1

a4

azl

a3

an a2 aiz ax a4

ass a4y (—l)2+l ais ass a4 (—I)MH (‘DMH
ass a4 a4 A a4

ast aal

o ad (_1)2+2‘“ l (_1)3+2‘“ l (_1)4+2‘“ l
aszs a44

ast a4l

@ ad (_1)2+3‘” 4 (_1)3+3‘” l (_1)4+3‘” l
a4 a4

ast Qs

an ax -] GV R Vi
as as

(19)

The inverse of matrices will be obtained dividing adjoint matrices with the
determinant of initial matrices.

3. Performance of Connex Architecture

The figures in Table I represents the clock cycles per operation after
running the presented algorithms on the emulator of Connex Architecture for
scalar vectors of floating points, without considering the input-output transfer of

data.

To emphasize the performances of Connex, the results will be compared
with released figures of a general purpose CPU and a microcontroller used in DSP

application:

98 Ana-Maria Calfa, Gheorghe Stefan

e Processor : 450 MHz, 34 W
e Microcontroller : 30 MHz
The Gauss-Jordan elimination has the advantage that it is quicker than the
Cramer’s rule, for big matrices, but the number of inverted matrices is halved.
Depending on the applications requests one of the two methods can be used.

Table I
Results of matrix invert on Connex Parallel architecture
Gauss-Jordan elimination Cramer’s rule
No. of matrices | Clock cycles | No. of matrices | Clock cycles
2x2 256 760 512 300
4x4 128 4472 256 16530
8x8 64 33782 128 492459
16x16 32 312330 64 17098225

In Fig.1 it can be observed that the clock cycles are function of O(n’) for
small n, and function of O(n’) for n bigger than 8. An improvement of at least 7 is
obtained compared with sequential method.

Comparing both inversion methods on Connex Architecture with a
sequential processor [5] in Table 11, for matrices of 4x4, it can be observed that an
acceleration of at least 13 times is obtained if is used Cramer’s rule method, and
efficiency of power (array _inverse/Watt) is increased around 150 times.

Table 11
Performance of Connex Architecture compared with Intel processor
Method Connex CPU Perf_ormances
(clk cyc/matr) | (clk cyc/matr) | Acceleration | Power eff.
Gauss-Jordan Elimination 34,94 1074 30,74x 348,4x
Cramer’s rule 64,57 846 13,10x 148,5x

If the results are compared with a general purpose microcontroller [6]
when the dimension of the matrices is squared, for Cramer’s rule, the acceleration
is still tens [7] (see Table III).

Table 111
Performance of Connex Architecture compared with PIC microcontroller
for Cramer’s rule

Method Connex uC Performance
Acceleration
Cramer’s rule | 267160 | 2521742 9,44x

Connex Architecture, besides lowering the execution time also power is
more efficient used compared with current solutions. In the domain of big
matrices, performances are even higher due to architectural features.

Matrix inverse on connex parallel architecture 99

—e— CGauss-Jordan
elimination

4 . - —8— Craner’s rule

lg@"3)

Ig(cycle

1 lg™)

o
SR

4 8 16
Matrixdim

Fig.1 Evolution of clock cycles function of matrix range

Nowadays, there are many security and commercial application that uses
matrix inversion: mathematical research systems, cryptography, search engines,
automatic pilot s.a. These application processes large amounts of data, and due to
its performance, Connex Architecture can be integrated.

The methods and results presented above apply only for dense matrices.
Due to high proportion of non useful data, spare matrices have dedicated methods
to store the data in the memory and to compute it. Spare matrices are part of
future investigation.

4. Conclusion

Due to large amount of low power application that uses matrix inversion,
improvements of time execution and power efficiency (costs lowering) in the
domain of linear algebra are mandatory.

Even if parallel processors are usually used as accelerators where they are
integrated, and most of the times are dedicated to application that processes a
large amount of data, due to its performances translated in lower costs, Connex
Parallel Architecture can be used in a variety of other applications outside of its
design domain.

100 Ana-Maria Calfa, Gheorghe Stefan

REFERENCES

[1] Gheorghe Stefan, The CA1024: SoC with Integral Parallel Architecture for HDTV Processing",
4th International System-on-Chip (SoC) Conference & Exhibit, November 1 & 2, 2006,
Radisson Hotel Newport Beach, CA

[2] Ana-Maria Calfa, Gheorghe Stefan, Matrix Computation on Connex Parallel Architecture, in
ICSES 2010 Proceedings, Gliwice — Poland, September 2010

[3] K. Asanovic, et. al., The Landscape of Parallel Computing Research: A View from Berkeley,
Technical Report No. UCB/EECS-2006-183, December 18, 2006

[4] H. Anton, Elementary Linear Algebra, 7" Edition, John Wiley & Sons Inc., 1994

[5] Intel Corporation, Streaming SIMD Extensions - Inverse of 4x4 Matrix, AP-928, Order
Number 245043-001, March 1999

[6] Microchip, dsPIC Language Tools Libraries, DS51456B, 2004

[7] Artit C. Jarapatnakul, A Multi-Sensor Embedded Microcontroller System for Condition
Monitoring of RC Helicopters, The Pennsylvania State University, 2005

