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ON A GENERAL CLASS OF PRECONDITIONERS FOR 

NONSYMMETRIC GENERALIZED SADDLE POINT 

PROBLEMS 
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This paper deals with applying a class of preconditioners for saddle point 

problems with nonsymmetric positive definite (1,1) part and symmetric positive 

semidefinite (2,2) part. The examined class of preconditioners includes the 

generalized shift-splitting preconditioner and their modified version. The offered 

class of preconditioner is induced from a stationary iterative method. Numerical 

experiments for a model Navier-Stokes problem are reported which illustrate the 

efficiency of the presented preconditioner. 

  

Keywords: Nonsymmetric saddle point problem, preconditioner, shift-splitting, 

iterative method. 

MSC2010: 65F10, 65F50 and 65N22. 

1. Introduction 

Consider generalized saddle point problems of the form  

,
T x fA B

u b
y gB C

    
      

     
A                                            (1) 

such that A
n n  is nonsymmetric positive definite (i.e., the symmetric part 

1
( )

2

TH A A   is positive definite; B m n   is of full row rank  ( m n ) and  

C is symmetric positive semidefinite. In [1, Lemma 1.1], it has been shown that 

the preceding assumptions guarantee existence and uniqueness of the solution of 

(1).  Linear systems of the form (1) arise in a variety of computational sciences 

and engineering applications such as constrained optimization, computational 

fluid dynamics, mixed finite element discretization of the Navier-Stokes 

equations, the linear elasticity problem, elliptic and parabolic interface problems, 

constrained least-squares problem and so on; for more details see [1, 2, 3, 9, 10] 

and references therein. 

In the past few years, there has been a growing interest in saddle problems 

of the form (1) and several types of iterative methods have been proposed; we 

refer the reader to [2] for a comprehensive survey.  More precisely, recently, some 

research works have focused on variants types of the Uzawa method for the case 

that (2,2)-block is zero; for more details see [14, 15, 16] and references therein. 
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More recently, Liang and Zhang [11] have presented a modified Uzawa method 

based on the skew-Hermitian triangular splitting (STS) of the (1,1) part of the 

saddle-point coefficient matrix for solving non-Hermitian saddle-point problems 

with non-Hermitian positive definite and skew-Hermitian dominant (1,1) and zero 

(2,2) part.  

It is well-known that the Krylov subspace methods are superior to the 

stationery iterative methods in general. Nevertheless, the Krylov subspace 

methods converge slowly for solving saddle point problems in practice. To 

overcome this drawback, several papers have applied different types of 

preconditioners till now. For instance, Cao et al. [4] have proposed a modified 

dimensional split preconditioner based on a splitting of the generalized saddle 

point matrix. In the case that the (2,2)-block C  is zero and the (1,1)-block is 

symmetric positive definite. In [5], Cao et al. have examined the  shift-splitting 

preconditioner of the form 

1
, 0.

2

T

SS

I A B

B I






 
  

 
P  (2) 

which is obtained based on shift-splitting of the saddle point coefficient matrix. 

Also the application of a local preconditioner  is studied 

1
, 0.

2

T

LSS

A B

B I




 
  

 
P  

Recently, Chen and Ma [7] have focused on the saddle point problems 

with the similar form mentioned in [5] and developed a general class of 

preconditioners which incorporates (2). More precisely, the following 

preconditioner has been offered 

1
,

2

T

GSS

I A B

B I





 
  

 
P  (3) 

where 0   and 0.    

           Lately, Salkuyeh et al. [13]  have applied a modified generalized shift-

splitting (MGSS) preconditioner 

1
, , 0,

2

T

MGSS

I A B

B I C


 



 
  

  
P  (4) 

for the saddle point problems of the form (1) so that the (1,1)-block is symmetric 

positive definite and 0.C   The MGSS preconditioner is based on a splitting of 

the saddle point coefficient matrix which results in an unconditionally convergent 

stationary iterative method. In addition, the following relaxed version of the 

MGSS preconditioner is examined 



On a general class of preconditioners for nonsymmetric generalized saddle point problems      213 

1
, 0.

2

T

RMGSS

A B

B I C




 
  

  
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More recently, Cao et al. [6]  have studied the application of the 

generalized shift-splitting preconditioner (3) for saddle point problem (1)  whose 

(2,2)-block is zero and (1,1)-block is a nonsymmetric positive definite matrix. 

In this paper, we introduce a class of general preconditioners which are 

obtained by splitting the diagonal blocks of the coefficient matrix A  in  (1). To 

do this, first,  the mixed splitting (MS) iterative method is presented and its 

convergence properties are discussed. The offered MS iterative method includes 

the modified generalized shift-splitting (MGSS) iterative method [13]. Notice that 

the convergence properties of the MGSS iterative method and the application of 

the preconditioners of the form (4) have not been studied for the case that the 

(1,1)-block A  in (1) is nonsymmetric. As seen, the induced preconditioner by the 

MS method incorporates the preconditioners (2), (3) and (4). 

The rest of this paper is organized as follows. Before ending this section, 

some notations are introduced which are exploited throughout the paper. In 

Section 2, first, we present the mixed splitting (MS) iterative method and give 

some sufficient conditions under which the method is convergent. Then based on 

the presented splitting, a general class of preconditioners is offered to improve the 

speed of convergence of the Krylov subspace methods to solve the saddle point 

problems of the form (1).  In Section 3, some numerical experiments are reported 

for a model of Navier-Stokes problem to illustrate the efficiency of the proposed 

new class of preconditioners. Finally the paper is finished with a brief conclusion 

in Section 4. 

Notations: The real and conjugate parts of a complex number a  are 

denoted by Re ( )a and ,a  respectively. For a square matrix A , the symbol ( )A  

stands for the spectral radius of A . For two given symmetric positive definite 

matrices A  and B , the notation A B  means that A B  is positive definite. 

2. Main results 

Consider the following mixed splitting for the coefficient matrix A , 

1 1ˆ ˆ
2 2

,
1 1

2 2

T T

MS MS

M B N B

B M B N

   
   

      
      
   

A P Q                            (5) 

in which M̂  and M  are both nonsingular matrices such that ˆ ˆA M N   and 

C M N  . 

Remark 2.1. Assume that C 0 . Consider a special case of (5)  such that 
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1 1ˆ ˆ( ), ( ), and ,
2 2

M I A N I A M I N I          

where ( )0    and 0  . Evidently, in this case, the mixed splitting reduces to 

the generalized  shift-splitting considered in [6].  Note that it is not difficult to 

verify that ˆ ˆM N  is symmetric (semi) positive definite,  M N  is nonsingular, 

M  is symmetric positive definite and 
1ˆ ˆ( ) ( ) 1M N    . 

Remark 2.2. Suppose that ( ) 0   and 0  are given and A is symmetric. We 

comment here that setting 

1 1ˆ ˆ( ), ( ), and ,
2 2

M I A N I A M I C N I C            

in (5), we obtain the modified generalized shift-splitting splitting discussed in 

[13].  Similar to the previous remark, we point out that here ˆ ˆM N  is symmetric 

(semi) positive definite, M N  is nonsingular, M  is symmetric positive definite 

and  
1ˆ ˆ( ) ( ) 1M N    . 

 

Mixed splitting (MS) iterative method:  

 

Exploiting the mixed splitting (5), we may define the MS iterative scheme 

to solve (1) as follows: 
( 1) ( ) , 0,1,2, ,k k

MSu u c k       (6) 

where 1

MS MS MS

  P Q  is the iteration matrix, 1

MSc b P , ( ) ( ) ( ))(( ,( ) )k k T k T Tu x y  

and the initial guess 
(0)u  is given. It is well-known that (6) is convergent for any 

arbitrary initial guess 
(0)u  iff   1;MS    for further details one may refer to [12, 

Chapter 4]. 

In the sequel we discuss the convergence of the MS method. Let   be an 

arbitrary eigenvalue of MS  and ( , )T T Tu x y  be its corresponding eigenvector. 

That is, 1

MS MSu u P Q  which is equivalent to say that MS MSu uQ P . Hence, we 

obtain 

  
1ˆ ˆ ,
2 2

T TNx B y Mx B y


    (7) 

and 

    
1

. 
2 2

Bx Ny Bx My


     (8) 

Lemma 2.1.  Suppose that M N  is nonsingular. If    is an eigenvalue of MS , 

then 1.     
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Proof. Assume that u  is the corresponding eigenvector of ,  hence 0u  . In 

view of the fact that A  is nonsingular then 1  . Since 1   implies that 

0u A . From (8), we find that if 1    then ( ) 0M N u   which  is a 

contradiction by our assumption that M N is nonsingular.                                  

Remark 2.3.  In view of Remarks 2.1 and 2.2, throughout this work, we assume 

that ˆ ˆM N  is symmetric positive semidefinite, M N  is nonsingular, M  is 

symmetric positive definite, M C  and  1ˆ ˆ( ) 1M N   . 

 

Theorem 2.1.  Assume that 
MS  denotes the iteration matrix of the MS method. 

Suppose that ˆ ˆM N  is symmetric positive semidefinite, M N  is nonsingular,  

M  is symmetric positive definite, M C  and 1ˆ ˆ( ) 1.M N    Then   1MS   . 

Proof.  Let ( , )u  be an arbitrary eigenpair of MS  so that 0   where 

, )( .H H Hu x y   

We first show that 0.x   If x 0  then from (7),  it is seen that 

(1 ) 0.TB y   Now Lemma 2.1 implies that 0,y  hence 0u   which cannot be 

true invoking the fact that u  is an eigenvector. 

Notice if 0y   then from (7), we have ˆ ˆ .Nx Mx  That is   is an 

eigenvalue of 1ˆ ˆM N . Therefore, by the assumption | | 1  . 

In the rest of the proof without loss of generality, it is assumed that  0x   

and 0.y   From Eqs (7) and (8), we have 

2ˆ ˆ ˆ2 
1

 ( )H T H Hx B y x Mx x M N x


   


, (9) 

and 

  
1 2

2 .
1 1

H T H Hy B x y My y Cy


 


 

 
 (10) 

Note that the left hand side of (9) is equal to the conjugate of the left hand 

side of (10), hence 

2 1 2ˆ ˆ ˆ2 ( ) 2 .
1 1 1

H T H H Hx M x x M N x y My y Cy


  


    

  
 

Or equivalently, 

1 1 1ˆ ˆ ˆ2 1 ( ) 2 1 .
1 1 1

H T H H Hx M x x M N x y My y Cy
  

  

      
                   

For simplicity, we set ˆ ˆ( ) ,Hq x M N x   Hr y My  and Hs y Cy . Now from the 

above relation, it is seen that 
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 ˆ2Re1
Re .

1 2

H Tx M x q s

r s q





   
 

   
 (11) 

We point out that by the assumptions, ,r s and q  are positive and . r s  On the 

other hand, straightforward computations reveal that 

   ˆ ˆ ˆ ˆ2 Re 2 Re ( )

Re( ) 0.

H T H H

H

x M x q x Mx x M N x

x Ax

   

 
 

Consequently, from (11), we deduce that 

1
Re 0.

1





 
 

 
 

Now the result follows immediately from the following fact 
2

2

1 | | 1
Re .

1 |1 |

 

 

  
 

  
                                          

Remark 2.4.  As pointed earlier, Salkuyeh et al. [13] has developed the MGSS 

method for saddle point problems with symmetric positive definite (1,1)-block. It 

is pointed in Remark 2.2 that the MGSS method is a special case of the MS 

method. Therefore, Theorem 2.1 turns out that all of the results established by 

Salkuyeh et al. are valid when (1,1)-block A  is nonsymmetric positive definite. 

 

Remark 2.5.  Assume that A is a nonsymmetric positive definite matrix. Let 

P and Q be two arbitrary symmetric positive definite matrices. If we set 

   
1 1 1 1ˆ ˆ, , ( ) and ( ),
2 2 2 2

M P A N P A M Q C N Q C         

then  it can be seen that all of the assumptions in Theorem 2.1 hold. 

Our numerical experiments illustrate that the matrix 
MSP can be served as 

an effective preconditioner to speed up the convergence of the Krylov subspace 

methods (e.g., restarted GMRES method) although its corresponding stationery 

iterative method may converge slowly. The same ideas are utilized in [5, 6, 7, 13] 

which focus on the shift-splitting types of preconditioners. To apply the 

preconditioner induced from the mixed splitting, in fact, we need to handle the 

Krylov subspace methods for solving the following linear system 1 1 .MS MSu b P A P  

Remark 2.6.  In view of Remark 2.5, in our numerical experiments, we set 

   
1 1 1 1ˆ ˆ, , ( ) and ( ),
2 2 2 2

M H A N H A M I C N I C            

where    and   are two given positive parameters and H  is the symmetric part 

of .A That is, we use the following preconditioner 
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* 1
.

2

T

MS

H A B

B I C





 
  

  
P  (12) 

The following proposition presents the eigenvalue distribution of the 
* 1( ) .MS

P A  

Proposition 2.1.  Assume that *

MSP  is defined as in (12). If A  is  nonsymmetric 

positive definite, then the eigenvalues of * 1( )MS

P A  belongs to the following subset 

of , 
2 2{  |  0,   4 and 2 }.z iw z z w w z     S  

 

Proof. Let 
1 2i      be an arbitrary eigenvalue of  * 1( ) .MS

P A Therefore, 

* ,MSu uA P                                                    (13) 

so that ( , ) .H H Hu x y  It is not difficult to verify that 0  and  0x  . From (13), 

it can be observed that 

,  H H T H H H Tx Ax x B y x Ax x Hx x B y       

and 

 , H H H H Hy Bx y Cy y Bx y Cy y y         

where / 2.   Consequently, we have 

   1 1  ,
2

H T H Hx B y x Ax x Hx


       

and 

   1 1 . H H Hy Bx y Cy y y       

For simplicity, assume that 1 2 ,Hx Ax p ip   Hq y Cy and .Hr y y  The 

above two relations implies that 
2 2

1 2 12 2
( ) .

1 1
p ip p q r

   


 

    
       

       

 

Since A  is positive definite ( 1 0p  ), it can be concluded that 

 
2

1 12

Re( )
0.

1
 p r p

 




 
   

  

 

The preceding relation shows that 
2

Re( ) .   In view of the fact that 

2 2 2Re( ) Im( ) ,     we deduce that 2Re( ) Im( )  and 1  which 

complete the proof.                                                                                                  
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3. Numerical experiments 

In this section, we give an example to demonstrate the applicability of the 

proposed preconditioner (in the form given in Remark 2.6) and compare its 

performance with the shift-splitting types. All of the reported experiments were 

performed on a 64-bit 2.45 GHz core i7 processor and 8.00GB RAM using some 

matlab codes on MATLAB version 8.3.0532.  

 In matrices ,GSSP  ,DSSP ,MGSS RMGSSP P  and * ,MSP  the corresponding 

parameters ,   and   are taken to be 0.001.   

Example 3.1. Consider the Oseen equation as follows: 

( . )

. 0.

p
in

     


 

w v w f

w
 (14) 

which is derived when the steady-state Navier-Stokes equation is linearized by 

Picard iteration. Here the vector field v is the approximation of w from the 

previous Picard iteration, the vector w represents the velocity, p denotes the 

pressure and   is a bounded domain. The parameter 0   stands for the 

viscosity. 

Conservative discretizations of the Oseen problem (14) leads to a 

generalized saddle point system of the form (1) with nonsymmetric positive 

definite (1,1)-block. Our examined test problems are constructed using IFISS 

software package written by Elman et al. [8]. The package is used to generate 

discretizations of leaky lid driven cavity problem using stabilized Q1-P0 (Q2-Q1) 

finite elements method (FEM) to study the performance of the offered 

preconditioner for the case that (2,2)-block in (1)  is nonzero (zero).   

Four grids are exploited, 16 16 , 32 32 , 64 64  and 128 128 which 

Q2-Q1 FEM  corresponds  (578,81) , (2178,289),  (8450,1089)  and 

(33282,4225)  to ( , ),n m  respectively and Q1-P0 FEM corresponds (578,289) , 

(2178,1024),   (8450,4096)  and (33282,16384)  to ( , ),n m  respectively.  

In all of the tests, we apply the GMRES(5) method such that the initial 

guess is taken to be zero and the iterations are terminated as soon as  
( ) 61  0 ,kb u b A  

or if the number of iterations exceeds from max 5000k   where 
( )ku denotes the 

k th approximate solution. The corresponding results are disclosed in Tables 1 and 

2. 

We end this section with a remark given as follows. 

Remark 3.1.  In [13], the application of the  MGSS and the relaxed MGSS 

(RMGSS) preconditioners only studied under the assumption that the (1,1)-block 

A  is symmetric positive definite. Our numerical tests show that this 
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preconditioners are also effective when A is nonsymmetrical positive definite. 

Here, we point out that the proposed  MGSS iterative scheme is not convergence 

in the case that the parameter 0,   i.e., when 
MGSSP  reduces to .RMGSSP  On the 

hand, the RMGSS preconditioner outperforms the  MGSS preconditioner which 

the reason can be expressed as in [13, Remark 2]. As seen, *

MSP  is as effective as  

RMGSSP and this may be a motivation to study the other kind of preconditioners in 

the form of  
MSP  in the future works with details. 

Table 1 

Numerical results for Oseen problem with ν = 0.01 (Q2-Q1 FEM) 

 

Table 2 

Numerical results for Oseen problem with ν = 0.01 (Q1-P0  FEM) 

 4. Conclusions 

Recently, Cao et al. [Appl. Math. Lett. 49 (2015), 20-27] and Salkuyeh et 

al. [Appl. Math. Lett.  48 (2015), 55-61] have focused on applying shift-splitting 

preconditioners for saddle point problems. This paper has been concerned with 

employing a general class of preconditioners incorporates shift-splitting 

preconditioners. Our established results have revealed that the results proved by 

Salkuyeh et al. are valid for the case that (1,1) part of the coefficient matrix of the 

saddle point problem is nonsymmetric. The reported numerical results by Cao et 

al. (Salkuyeh et al.) shown that the proposed DSS (RMGSS) preconditioner 

outperforms their other handled preconditioners although the corresponding 

Preconditioner  I  MGSSP    RMGSSP   *

MSP   

Grid IT CPU  IT CPU  IT CPU IT CPU 

16 16  215 0.143  2 0.026  1 
 

0.036 1 
 

0.020 

32 32  533 0.918  3 0.259  1 0.121 1 0.107 

64 64  1214 5.407  11 4.657  2 0.79 2 0.764 

128 128  2164 48.935  82 162.299  3 5.438 3 5.438 

Preconditioner  I      
GSSP    DSSP   

*

MSP   

Grid IT CPU  IT   CPU  IT CPU IT CPU 

16 16  179 0.131  2 0.040  1 0.036 1 0.023 

32 32  369 0.486  3 0.263  1 0.114 1 0.099 

64 64  628 2.960  6 3.346  2 0.806 2 0.788 

128 128  1397 29.809  23 66.72  3 6.902 3 6.939 
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iterative method to DSS  (RMGSS) preconditioner is not convergent. Our 

examined numerical experiments have demonstrated that a special preconditioner 

of the offered class is as effective as DSS and RMGSS preconditioners. Further 

work can be focused on studying the performance of other possible instances of 

the introduced class of the preconditioners with detail. 
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