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ON A GENERAL CLASS OF PRECONDITIONERS FOR
NONSYMMETRIC GENERALIZED SADDLE POINT
PROBLEMS

Fatemeh Panjeh Ali BEIK!

This paper deals with applying a class of preconditioners for saddle point
problems with nonsymmetric positive definite (1,1) part and symmetric positive
semidefinite (2,2) part. The examined class of preconditioners includes the
generalized shift-splitting preconditioner and their modified version. The offered
class of preconditioner is induced from a stationary iterative method. Numerical
experiments for a model Navier-Stokes problem are reported which illustrate the
efficiency of the presented preconditioner.
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1. Introduction
Consider generalized saddle point problems of the form

e S

such that AeP™" is nonsymmetric positive definite (i.e., the symmetric part
H =%(A+ A") is positive definite; BeP™" is of full row rank (m<n) and

C is symmetric positive semidefinite. In [1, Lemma 1.1], it has been shown that
the preceding assumptions guarantee existence and uniqueness of the solution of
(1). Linear systems of the form (1) arise in a variety of computational sciences
and engineering applications such as constrained optimization, computational
fluid dynamics, mixed finite element discretization of the Navier-Stokes
equations, the linear elasticity problem, elliptic and parabolic interface problems,
constrained least-squares problem and so on; for more details see [1, 2, 3, 9, 10]
and references therein.

In the past few years, there has been a growing interest in saddle problems
of the form (1) and several types of iterative methods have been proposed; we
refer the reader to [2] for a comprehensive survey. More precisely, recently, some
research works have focused on variants types of the Uzawa method for the case
that (2,2)-block is zero; for more details see [14, 15, 16] and references therein.
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More recently, Liang and Zhang [11] have presented a modified Uzawa method
based on the skew-Hermitian triangular splitting (STS) of the (1,1) part of the
saddle-point coefficient matrix for solving non-Hermitian saddle-point problems
with non-Hermitian positive definite and skew-Hermitian dominant (1,1) and zero
(2,2) part.

It is well-known that the Krylov subspace methods are superior to the
stationery iterative methods in general. Nevertheless, the Krylov subspace
methods converge slowly for solving saddle point problems in practice. To
overcome this drawback, several papers have applied different types of
preconditioners till now. For instance, Cao et al. [4] have proposed a modified
dimensional split preconditioner based on a splitting of the generalized saddle
point matrix. In the case that the (2,2)-block C is zero and the (1,1)-block is
symmetric positive definite. In [5], Cao et al. have examined the shift-splitting
preconditioner of the form

1(al +A BT
P.== , a>0. 2
58 2[ -B alj @)

which is obtained based on shift-splitting of the saddle point coefficient matrix.
Also the application of a local preconditioner is studied

1( A B
Po=— , a>0.
- 2(—5 alj

Recently, Chen and Ma [7] have focused on the saddle point problems
with the similar form mentioned in [5] and developed a general class of
preconditioners which incorporates (2). More precisely, the following
preconditioner has been offered

PGSSZE((J{HA BT} )
2 -B Al

where ¢ >0 and g >0.
Lately, Salkuyeh et al. [13] have applied a modified generalized shift-
splitting (MGSS) preconditioner

1fal+A B
P == , a, >0, 4
Mo 2( -B Bl +c] / @

for the saddle point problems of the form (1) so that the (1,1)-block is symmetric
positive definite and C = 0. The MGSS preconditioner is based on a splitting of
the saddle point coefficient matrix which results in an unconditionally convergent
stationary iterative method. In addition, the following relaxed version of the
MGSS preconditioner is examined



On a general class of preconditioners for nonsymmetric generalized saddle point problems 213

1( A BT
W%S:E(—B ﬂl+Cj' p>0

More recently, Cao et al. [6] have studied the application of the
generalized shift-splitting preconditioner (3) for saddle point problem (1) whose
(2,2)-block is zero and (1,1)-block is a nonsymmetric positive definite matrix.

In this paper, we introduce a class of general preconditioners which are
obtained by splitting the diagonal blocks of the coefficient matrix A in (1). To
do this, first, the mixed splitting (MS) iterative method is presented and its
convergence properties are discussed. The offered MS iterative method includes
the modified generalized shift-splitting (MGSS) iterative method [13]. Notice that
the convergence properties of the MGSS iterative method and the application of
the preconditioners of the form (4) have not been studied for the case that the
(1,1)-block A in (1) is nonsymmetric. As seen, the induced preconditioner by the
MS method incorporates the preconditioners (2), (3) and (4).

The rest of this paper is organized as follows. Before ending this section,
some notations are introduced which are exploited throughout the paper. In
Section 2, first, we present the mixed splitting (MS) iterative method and give
some sufficient conditions under which the method is convergent. Then based on
the presented splitting, a general class of preconditioners is offered to improve the
speed of convergence of the Krylov subspace methods to solve the saddle point
problems of the form (1). In Section 3, some numerical experiments are reported
for a model of Navier-Stokes problem to illustrate the efficiency of the proposed
new class of preconditioners. Finally the paper is finished with a brief conclusion
in Section 4.

Notations: The real and conjugate parts of a complex number a are
denoted by Re(a) and a, respectively. For a square matrix A, the symbol o(A)

stands for the spectral radius of A. For two given symmetric positive definite
matrices A and B, the notation A> B means that A—B is positive definite.

2. Main results

Consider the following mixed splitting for the coefficient matrix A,
M 1g N -lgr
2 B 2
~-2B M s N
2 2

A =Pys —Qus = ’ ()

in which M and M are both nonsingular matrices such that A=M —N and
C=M-N.
Remark 2.1. Assume that C=0. Consider a special case of (5) such that
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M:%(aI+A), N:%(aI—A), M=pgl and N=plI,

where a > (=)0 and £ > 0. Evidently, in this case, the mixed splitting reduces to
the generalized shift-splitting considered in [6]. Note that it is not difficult to
verify that M +N is symmetric (semi) positive definite, M + N is nonsingular,
M is symmetric positive definite and p(M *N) < (<) 1.

Remark 2.2. Suppose that o > (=) Oand g > Oare given and Ais symmetric. We
comment here that setting

|\7|=%(a|+A), N:%(QI—A), M =pgl+C and N=pI-C,

in (5), we obtain the modified generalized shift-splitting splitting discussed in
[13]. Similar to the previous remark, we point out that here M + N is symmetric
(semi) positive definite, M + N is nonsingular, M is symmetric positive definite
and p(M™N)< (<) 1.

Mixed splitting (MS) iterative method:

Exploiting the mixed splitting (5), we may define the MS iterative scheme
to solve (1) as follows:

u“=r u®+c, k=012,..., ()
where T, =P, is the iteration matrix, c=P,b, u® =((x)",(y*)")"

and the initial guess u® is given. It is well-known that (6) is convergent for any
arbitrary initial guess u' iff p(T',s)<Z; for further details one may refer to [12,

Chapter 4].
In the sequel we discuss the convergence of the MS method. Let 4 be an

arbitrary eigenvalue of T, and u’ =(x',y") be its corresponding eigenvector.

That is, P,,Q,,sU=Au which is equivalent to say that Q,,u= AP, u. Hence, we
obtain

I\AIX—EBTy = /1I\7Ix+£BTy, (7)
2 2
and
%Bx+l\~ly = —%Bx+/1l\7ly. (8)

Lemma 2.1. Suppose that M + N is nonsingular. If A is an eigenvalue of s s
then A = £1.
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Proof. Assume that u is the corresponding eigenvector of A, hence u=0. In
view of the fact that A is nonsingular then A=1. Since A=1 implies that
Au=0. From (8), we find that if 1=-1 then (M +N)u=0 which is a
contradiction by our assumption that M + N is nonsingular. [
Remark 2.3. In view of Remarks 2.1 and 2.2, throughout this work, we assume
that M +N is symmetric positive semidefinite, M +N is nonsingular, M is
symmetric positive definite, M ~C and p(MN)<1.

Theorem 2.1. Assume that T, denotes the iteration matrix of the MS method.

Suppose that M + N is symmetric positive semidefinite, M + N is nonsingular,
M is symmetric positive definite, M = C and p(M *N)<1. Then p(T,)<1.
Proof. Let (A,u) be an arbitrary eigenpair of T, so that A=0 where
u™ =", y").

We first show that x=0. If x=0 then from (7), it is seen that
(1+ 1)B"y =0. Now Lemma 2.1 implies that y =0, hence u=0 which cannot be
true invoking the fact that u is an eigenvector.

Notice if y=0 then from (7), we have Nx=AMx. That is A is an
eigenvalue of M~*N . Therefore, by the assumption |4 |<1.

In the rest of the proof without loss of generality, it is assumed that x =0
and y = 0. From Eqgs (7) and (8), we have

x"B'y = —2xHI\7Ix+LxH(I\7I+I\AI)x, (9)
1+ 4
and
A-1 ~ 2
HBTx = 22— vy"My+—y"Cy. 10
y ) My y Gy (10)

Note that the left hand side of (9) is equal to the conjugate of the left hand
side of (10), hence

A 2 n n A-1 ~ 2
2X"MTx+——=x" (M +N)x=2""-"y"My + —— y"Cy.
1+4 ( ) 1+Ay y l+ly y

Or equivalently,

N A-1 ~ ~ A-1 ~ A-1
“2XPMTx 4+ - =——=|+1 X" (M +N)x=2"Zy"My +| - =——+1|y"Cy.
( (1+/1) J ( ) 1+ﬂuy y ( 1+4 jy y

For simplicity, we set q=x"(M +N)x, r=y"My and s=y"Cy. Now from the
above relation, it is seen that
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_ —2Re(x"M"x)+qg-s
(22 (x"W ) +a-s a

1+4) 2r—s+q
We point out that by the assumptions, r,sand g are positive and r>s. On the
other hand, straightforward computations reveal that
2 Re(xH I\?ITX)—q - 2Re(xH|\7Ix)— x" (M +N)x

= Re(x" Ax) > 0.
Consequently, from (11), we deduce that
Re(ﬂj <0.
1+4
Now the result follows immediately from the following fact
2
e A1) :
1+4) |1+AF
Remark 2.4. As pointed earlier, Salkuyeh et al. [13] has developed the MGSS
method for saddle point problems with symmetric positive definite (1,1)-block. It
is pointed in Remark 2.2 that the MGSS method is a special case of the MS

method. Therefore, Theorem 2.1 turns out that all of the results established by
Salkuyeh et al. are valid when (1,1)-block A is nonsymmetric positive definite.

Remark 2.5. Assume that Ais a nonsymmetric positive definite matrix. Let
P and Q be two arbitrary symmetric positive definite matrices. If we set

M :%(P+A), N :%(P—A), N :%(Q+C) and N :%(Q—C),

then it can be seen that all of the assumptions in Theorem 2.1 hold.

Our numerical experiments illustrate that the matrix P,, can be served as
an effective preconditioner to speed up the convergence of the Krylov subspace
methods (e.g., restarted GMRES method) although its corresponding stationery
iterative method may converge slowly. The same ideas are utilized in [5, 6, 7, 13]
which focus on the shift-splitting types of preconditioners. To apply the
preconditioner induced from the mixed splitting, in fact, we need to handle the
Krylov subspace methods for solving the following linear system P,cAu = P,,:b.
Remark 2.6. In view of Remark 2.5, in our numerical experiments, we set
M :%(7H +A), N =%(7H ~A), M =%(/3| +C) and N :%(ﬁl -C),
where y and g are two given positive parameters and H is the symmetric part
of A That is, we use the following preconditioner
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. 1(yH+A BT
Pus = - (12)
2\ -B pl+C

The following proposition presents the eigenvalue distribution of the
(Pus) A
Proposition 2.1. Assume that P, is defined as in (12). If A is nonsymmetric
positive definite, then the eigenvalues of (P,,) ™A belongs to the following subset

of X,
S={z+iw|z>0, 22+wW? <4 and w<~2z}.

Proof. Let 1 =4, +i4, be an arbitrary eigenvalue of (P,,;)"A. Therefore,
Au = AP, U, (13)

so that u=(x",y")". Itis not difficult to verify that 2 =0and x = 0. From (13),
it can be observed that

X"AX+Xx"BTY = ux" Ax+aux"Hx+ ux"B'y,
and

—y"Bx+y"Cy = —uy"Bx+uy"Cy+puy"y,
where = A/2. Consequently, we have

(1-u)x"B'y = (,u—l)XHAX+a§XH HX,

and

(u=1)y"Bx = (u-1)y"Cy+puy"y.
For simplicity, assume that x"Ax=p,+ip,, q=y"Cyand r=pguy"y. The
above two relations implies that

2 2
—(p1+ip2)+a[“ i prq{—'“' ”Jr-

L L
Since A is positive definite ( p, > 0), it can be concluded that
2
w (ap,+r)=p,>0.
1=

The preceding relation shows that Re(/,t)>|y|2. In view of the fact that

|1 =Re(u)* +1m(x)?, we deduce that Re(u)>Im(u)?and |u|<1which
complete the proof. ]
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3. Numerical experiments

In this section, we give an example to demonstrate the applicability of the
proposed preconditioner (in the form given in Remark 2.6) and compare its
performance with the shift-splitting types. All of the reported experiments were
performed on a 64-bit 2.45 GHz core i7 processor and 8.00GB RAM using some
matlab codes on MATLAB version 8.3.0532.

In matrices Pgs, Ppssr Pucss:Pavess  @and  Ps, the corresponding
parameters «, f and y are taken to be 0.001.
Example 3.1. Consider the Oseen equation as follows:
—VAW + (V.V)W+Vp =f
{VW=Q

which is derived when the steady-state Navier-Stokes equation is linearized by
Picard iteration. Here the vector field vis the approximation of wfrom the
previous Picard iteration, the vector w represents the velocity, p denotes the

pressure and Q is a bounded domain. The parameter v >0 stands for the
viscosity.

Conservative discretizations of the Oseen problem (14) leads to a
generalized saddle point system of the form (1) with nonsymmetric positive
definite (1,1)-block. Our examined test problems are constructed using IFISS
software package written by Elman et al. [8]. The package is used to generate
discretizations of leaky lid driven cavity problem using stabilized Q1-P0 (Q2-Q1)
finite elements method (FEM) to study the performance of the offered
preconditioner for the case that (2,2)-block in (1) is nonzero (zero).

Four grids are exploited, 16x16, 32x32, 64x64 and 128x128which
Q2-Q1 FEM corresponds  (578,81), (2178,289), (8450,1089) and
(33282,4225) to (n,m), respectively and Q1-PO FEM corresponds (578,289),
(2178,1024), (8450,4096) and (33282,16384) to (n,m), respectively.

In all of the tests, we apply the GMRES(5) method such that the initial
guess is taken to be zero and the iterations are terminated as soon as

[b—Au®| <10 [|o],

or if the number of iterations exceeds from k__ =5000 where u® denotes the

k th approximate solution. The corresponding results are disclosed in Tables 1 and
2.

We end this section with a remark given as follows.

Remark 3.1. In [13], the application of the MGSS and the relaxed MGSS
(RMGSS) preconditioners only studied under the assumption that the (1,1)-block
A is symmetric positive definite. Our numerical tests show that this

in Q (14)
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preconditioners are also effective when Ais nonsymmetrical positive definite.
Here, we point out that the proposed MGSS iterative scheme is not convergence
in the case that the parameter « =0, i.e., when P,,; reduces to Pg,,.. On the

hand, the RMGSS preconditioner outperforms the MGSS preconditioner which
the reason can be expressed as in [13, Remark 2]. As seen, P, is as effective as
Pauvess @nd this may be a motivation to study the other kind of preconditioners in
the form of P,, in the future works with details.

Table 1
Numerical results for Oseen problem with v = 0.01 (Q2-Q1 FEM)
Preconditioner I Puss Pruvicss P
Grid IT CPU IT CPU IT CPU IT CPU
16x16 215 0.143 2 0.026 1 0.036 1 0.020
32x32 533 0.918 3 0.259 1 0.121 1 0.107
64 x 64 1214 5.407 11 4.657 2 0.79 2 0.764
128x128 2164 | 48.935 82 | 162.299 3 5.438 3 5.438
Table 2
Numerical results for Oseen problem with v = 0.01 (Q1-P0 FEM)
Preconditioner I Pass Poss Pus
Grid IT CPU IT CPU IT CPU IT CPU
16x16 179 0.131 2 0.040 1 0.036 1 0.023
32x32 369 0.486 3 0.263 1 0.114 1 0.099
64 x 64 628 2.960 6 3.346 2 0.806 2 0.788
128x128 1397 | 29.809 23 66.72 3 6.902 3 6.939

4. Conclusions

Recently, Cao et al. [Appl. Math. Lett. 49 (2015), 20-27] and Salkuyeh et
al. [Appl. Math. Lett. 48 (2015), 55-61] have focused on applying shift-splitting
preconditioners for saddle point problems. This paper has been concerned with
employing a general class of preconditioners incorporates shift-splitting
preconditioners. Our established results have revealed that the results proved by
Salkuyeh et al. are valid for the case that (1,1) part of the coefficient matrix of the
saddle point problem is nonsymmetric. The reported numerical results by Cao et
al. (Salkuyeh et al.) shown that the proposed DSS (RMGSS) preconditioner
outperforms their other handled preconditioners although the corresponding
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iterative method to DSS (RMGSS) preconditioner is not convergent. Our
examined numerical experiments have demonstrated that a special preconditioner
of the offered class is as effective as DSS and RMGSS preconditioners. Further
work can be focused on studying the performance of other possible instances of
the introduced class of the preconditioners with detail.
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