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CALCULUS OF JOINT FORCES IN DYNAMICS OF A 
PLANAR PARALLEL ROBOT 

Stefan STAICU1 

Articolul stabileşte relaţii matriceale pentru dinamica inversă a unui robot 
paralel planar. Trei picioare identice care conectează platforma mobilă sunt 
localizate în acelaşi plan vertical. Pornind de la o cinematică inversă cunoscută, 
dinamica mecanismului este rezolvată printr-un procedeu bazat pe principiul 
lucrului mecanic virtual. În final, se obţin ecuaţii compacte şi grafice de simulare 
pentru unele forţe şi momente din legături. 

Recursive matrix relations for the inverse dynamics of a planar parallel 
robot are established in this paper. Three identical legs connecting to the moving 
platform are located in the same vertical plane. Starting from a known inverse 
kinematics, the dynamics of the mechanism is solved using an approach based on 
the principle of virtual work. Finally, compact matrix equations and graphs of 
simulation for some forces and torques in joints are obtained. 
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1. Introduction 

Equipped with revolute or prismatic actuators, the parallel robots have a 
robust construction and can move bodies of large dimensions with high velocities 
and accelerations [1]. Parallel manipulators have received more and more 
attention from researches and industries. Among these, the class of manipulators 
known as Stewart-Gough platform focused great attention (Stewart [2]; Merlet 
[3]). The prototype of Delta parallel robot (Clavel [4]; Tsai and Stamper [5]) and 
the Star parallel manipulator (Hervé and Sparacino [6]) are both equipped with 
three motors, which train on the mobile platform in a three-degrees-of-freedom 
translational motion.  

A mechanism is said to be a planar robot if all the moving links in the 
mechanism perform the planar motions. Bonev, Zlatanov and Gosselin [7] 
describe several types of singular configurations by studying the direct kinematics 
model of a 3-RPR planar parallel robot with actuated base joints. Pennock and 
Kassner [8] present a kinematical study of a planar parallel robot, where a moving 
platform is connected to a fixed base by three links, each leg consisting of two 
binary links and three parallel revolute joints.   

2. Kinematics analysis 

A recursive method is introduced in the present paper, to reduce significantly 
the number of equations and computation operations by using a set of matrices for 
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the calculus of internal joint forces in the inverse dynamics of a 3-RPR planar 
parallel robot. 

The planar parallel robot of three degrees of freedom is a symmetrical 
mechanism composed of three planar kinematical chains 321 AAA , 321 BBB and 

321 CCC , having variable length and identical topology, all connecting the fixed 
base 111 CBA  to the moving platform 333 CBA (Fig. 1). Together, the mechanism 
consists of seven moving links, six revolute joints, three prismatic joints and three 
revolute actuators installed on the fixed base [9]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1 General layout of the planar parallel robot 
For the purpose of analysis, we attach a Cartesian frame 000 zyOx to the fixed 

base with its origin located at the centreO , the 0z horizontal axis perpendicular to 
the base. A mobile reference frame GGG zyGx is attached to the moving platform, with 
the origin located just at the centreG of the triangle (Fig. 2). 

One of three active legs (for example leg A ) consists of a fixed revolute 
joint 1A and a moving cylinder 1 of length 1l , mass 1m and tensor of inertia 1Ĵ , 
which has rotation about Az1 axis with the angle A

10ϕ . A prismatic joint is as well as 
a piston 2, having a relative motion with the displacement A

21λ . It has the length 2l , 
mass 2m and tensor of inertia 2Ĵ . Finally, a revolute joint is introduced at a planar 
moving platform, which is schematised as an equilateral triangle with 
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edge 3rl = , mass 3m and inertia tensor 3Ĵ linked at the AAA zyxA 3333 frame, which 

rotates with the angle A
32ϕ  about Az3 . 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
                                        Fig. 2 Kinematical scheme of first leg A of the mechanism 
 
At the central configuration, we consider that all legs are symmetrically 

extended with the angles 6/,6/,6/5,2/ πβπαπαπα =−=−== CBA  of orientation 
of three fixed pivots. 

We call the matrix ϕ
1, −kka , for example, the orthogonal transformation 33×  matrix of 

relative rotation with the angle A
kk 1, −ϕ of link A

kT around A
kz axis. Starting from the 

reference origin O  and pursuing the independent legs 321 AAOA , 321 BBOB , 

321 CCOC , we obtain the following transformation matrices [10] 
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 In the inverse geometric problem, the position of the mechanism is 
completely given through the coordinates GG yx 00 , of the mass centreG and the 
orientation angle φ  of the mobile central frame GGG zyGx . The orthogonal known 
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rotation matrix of the platform from 000 zyOx  to GGG zyGx  reference system 
is ),( φzrotR = . 

We suppose that the position vector of G centre TGGG yxr ]0[ 000 =  and the 
orientation angleφ , which are expressed by following analytical functions 
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can describe the general absolute motion of the moving platform in its vertical 
plane.  

From the conditions concerning the orientation of the platform 
                                     Rqq T =3030 , ),,(,30 cbaqaaq i == αβ                                 (4)  

we obtain the following relations between three angles ),,(,3210 CBAiii ==+ φϕϕ . 
Pursuing the kinematical modeling developed in [9], six independent 

variables AA
2110 , λϕ , BB

2110 , λϕ , CC
2110 , λϕ will be determined by the analytical equations 

         )sin()cos()( 100102120 βαφαϕλ +++−=+++ i
iG

i
ii rxxll  

               )cos()sin()( 100102120 βαφαϕλ ++−−=+++ i
iG

i
ii ryyll ),,( CBAi = .       (5) 

Now, we compute in terms of the angular velocity of the platform and velocity 
of centre G  the relative velocities AAA v 322110 ,, ωω , starting from following matrix 
conditions of connectivity [11], [12] 
  A

10ω TT
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Considering some successive independent virtual motions of the planar 

mechanism, virtual displacements and velocities should be compatible with the 
motions imposed by all kinematical constraints and joints at a given instant in 
time. Concerning the first leg A , the characteristic virtual velocities are expressed 
as functions of the pose of the mechanism by the general kinematical equations 
(6), where we add the contributions of successive virtual translations during some 
fictitious displacements of the prismatic joint 2A and of the revolute joints 1A and 

3A , for example, as follows: 
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Now, let us assume that the robot has successively some virtual motions 
determined by following sets of velocities: 
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                                                ),,( CBAi = .                                                    (8) 
These virtual velocities are required into the computation of virtual power and 
virtual work of all forces applied to the component elements of the robot. 

As for the relative accelerations AAA
322110 ,, εγε of the robot, new conditions of 

connectivity can be obtained through the derivative of above equations (6): 
          A

10ε TT
j au 10 }{~

332213221213
GATTATA raararu ++ A

21γ+ 110uau TT
j

A
32ε+ −= GT

i
GATT

j ruruau 03330
~     

           3101010
~uau TT

j
AAωω− }{~

332213221213
GATTATA raararu ++ −− GATT

j
AA ruuau 333303232

~~ωω  
           13102110

~2 uuauv TT
j

AAω−  GATTTT
j

AA ruaauau 3332213103210
~~2 ωω− ,         )2,1( =j                        (9) 

                                                      φεε =+ AA
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3. Dynamics modelling 

In the context of the real-time control, neglecting the friction forces and 
considering the gravitational effects, an important objective of the dynamics is 
first to determine the input torques or forces which must be exerted by the 
actuators in order to produce a given trajectory of the end-effector, but also to 
calculate all internal joint forces or torques. 

Upon to now, several methods have been applied to formulate the dynamics of 
parallel mechanisms, which could provide the same results concerning these 
actuating torques or forces. First method applied to formulate the dynamics 
modelling is using the Newton-Euler procedure [13], the second one applies the 
Lagrange’s equations and multipliers formalism [14] and the third approach is 
based on the principle of virtual work [15]. 

Knowing the position and kinematics state of each link as well as the external 
forces acting on the planar 3-RPR parallel robot, in the present paper we apply the 
principle of virtual work for the inverse dynamic problem in order to establish 
some definitive recursive matrix relations for the calculus of forces in the joints. 

Planar evolution of the moving platform is controlled by three electric motors 
that generate three couples of moments 31010 umm AA = , 31010 umm BB = , 31010 umm CC = .The 
force of inertia ( )[ ]CA
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hand, the wrench of two vectors A
kf ∗ and A

km∗ evaluates the influence of the action 
of the weight and of other external and internal forces applied to the same element 

A
kT of the robot. 

Two significant recursive relations generate the vectors 
                A

k
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with the notations A
k

inA
k

A
k ffF ∗−−= 00 , A

k
inA
k

A
k mmM ∗−−= 00 .    

As example, starting from (10), we develop a set of six recursive matrix 
relations for the leg A : 
                             AA FF 303 = , ATAA FaFF 332202 += , ATAA FaFF 221101 +=  

    AA MM 303 = , ATAATAA FarMaMM 33232332202
~++= , ATAATAA FarMaMM 22121221101

~++= . (11) 
The fundamental principle of the virtual work states that a mechanism is under 

dynamic equilibrium if and only if the virtual work developed by all external, 
internal and inertia forces vanish during any general virtual displacement, which 
is compatible with the constraints imposed on the mechanism. Total virtual work 
contributed by the inertia forces and moments of inertia forces, by the wrench of 
known external forces and by some joint forces, for example, can be written in a 
compact form, based on the relative virtual velocities. 

Applying the fundamental equations of the parallel robots dynamics [16], 
[17], following compact matrix relations results 
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for the first joint force, 
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for the second joint force acting in the external revolute joint 1A ,  
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for the  joint force acting in the prismatic joint 2A ,  
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for the  joint torque acting in the prismatic joint 2A ,  
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for the first joint force and 
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for the second joint force acting in the internal revolute joint 3A .  
The simulation procedure for solving the inverse dynamics of the planar 

parallel robot can be summarised in several basic steps. 
1. For a period of 3=Δt seconds, it is assumed that the time-history evolution of 
the moving platform is specified in terms of its position and orientation about the 
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centreG from analytical equations (3). The relations (4), (5) give the evolution of 
the variables i

10ϕ , i
21λ , i

32ϕ ),,( CBAi = . 
2. Using the relations (1), (2), we compute the transformation matrices of three 
legs CBA ,, : 10q , 21q , 32q and 102120 qqq = , 203230 qqq =  ),,( cbaq = . 
3. Determine the velocities and accelerations of all links by performing the 
inverse kinematics analysis in terms of prescribed velocities Gx0 , Gy0 ,φ and 
accelerations Gx0 , Gy0 , φ of the moving platform. Specifically, for each leg, from 
the conditions of connectivity (6), (9) we compute the relative 
velocities i

10ω , iv21 , i
32ω and the relative accelerations i

10ε , i
21γ , i

32ε .  
4. Using the equations (7), where successively are introduced the conditions (8), 
we compute the virtual characteristic velocity of each element of the robot.  
5. Decompose artificially the robot in several open-loop planar chains by cutting 
open at the moving revolute joints 333 ,, CBA .  

7. For each moving link and platform we determine the inertia force inA
kf 0 and the 

resulting force A
kF exerted to the rigid body A

kT , for example, from recursive 
equations (10). 
8. For each moving link and platform we determine the moment of inertia 
forces inA

km 0 and the resulting moment A
kM  exerted at the joint kA , from same 

recursive equations (10). 
9. Finally, we find the joint forces i

y
i

x ff 1010 , , i
yf21 , i

z
i

y ff 3232 , and of the joint torques 
im21 ),,( CBAi = during the platform’s evolution from the compact equations (12)-

(17). 
As application let us consider same planar parallel robot 3-RPR analysed in 

[9], which has the following geometrical and architectural characteristics: 
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Using the MATLAB software, a computer program was developed to solve 
the inverse dynamics of the planar RPR  parallel robot. To illustrate the algorithm, 
it is assumed that for a period of three seconds the platform starts at rest from a 
central configuration and rotates or moves along two orthogonal directions. 

Assuming that there are no external forces and moments acting on the moving 
platform, a dynamic simulation is based on the computation of the joint 
forces i

y
i

x ff 1010 , , i
yf21 , i

z
i

y ff 3232 , and of the joint torques im21 ),,( CBAi = during the 
platform’s evolution. 
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Following examples are solved to illustrate the simulation. For the first example we 
consider the rotation motion of the moving platform about 0z horizontal axis with variable 
angular acceleration while all the other positional parameters are held equal to zero (Fig. 
3), (Fig. 4), (Fig. 5), (Fig. 6), (Fig. 7), (Fig. 8). 

 
      Fig. 3 Joint forces i

xf10 from three legs                          Fig. 4 Joint forces i
yf10 from three legs 

 
      Fig. 5 Joint forces i

yf21 from three legs                         Fig. 6 Joint torques im21 from three legs 

 
      Fig. 7 Joint forces i

yf32 from three legs                          Fig. 8 Joint forces i
zf32 from three legs 
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If the platform’s centreG moves along a rectilinear planar trajectory without 
rotation of the platform, the joint forces are calculated by the program and plotted 
versus time as follows: Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14.  

  
              Fig. 9 Joint forces i

xf10 from three legs                           Fig. 10 Joint forces i
yf10 from three legs    

 
     Fig. 11 Joint forces i

yf21 from three legs                       Fig. 12 Joint torques im21 from three legs 

    
              Fig. 13 Joint forces i

yf32 from three legs                       Fig. 14 Joint forces i
zf32 from three legs  
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4. Conclusions 

The present dynamics model takes into consideration the mass, the tensor of 
inertia and the action of weight and inertia force introduced by all compounding 
elements of the parallel robot. Based on the principle of virtual work, this 
approach establishes a direct determination of the time-history evolution for the 
internal forces or torques in joints.  

Choosing appropriate serial kinematical circuits connecting many moving 
platforms, the present method can easily be applied in forward and inverse 
mechanics of various types of parallel mechanisms, complex manipulators of 
higher degrees of freedom and particularly hybrid structures, when the number of 
components of the mechanisms is increased. 
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