

DUALITY CONDITION FOR GABOR FRAMES $(\chi_{[0,c)}, a, b)$ AND $(\chi_{[0,d)}, a, b)$

Mohammad Ali Hasankhani Fard¹, Mohammad Ali Dehghan²

In this paper we find a sufficient and necessary condition for which two Gabor frames $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ form dual frames for $L_2(\mathbb{R})$, where a, b, c and d are positive numbers.

Keywords: Frames, Gabor frames, Dual frames.

MSC2010: Primary 46L99; Secondary 47A05, 42C15, 46H25.05.

1. Introduction

Frames were first introduced by Duffin and Schaeffer [6] in the study of nonharmonic Fourier series in 1952. Frames have very important and interesting properties which make them very useful in the characterization of function spaces, signal processing and many other fields. A frame is a family of elements in a separable Hilbert space which allows stable not necessarily unique decomposition of arbitrary elements into expansions of frame elements [2]. Given a separable Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$, a sequence $\{f_k\}_{k=1}^{\infty}$ is called a frame for \mathcal{H} if there exist constants $A > 0$, $B < \infty$ such that for all $f \in \mathcal{H}$,

$$A\|f\|^2 \leq \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \leq B\|f\|^2, \quad (1)$$

where A, B are the lower and upper frame bounds, respectively. The second inequality of the frame condition (1) is also known as the Bessel condition for $\{f_k\}_{k=1}^{\infty}$. If $A = B$, then $\{f_k\}_{k=1}^{\infty}$ is called a tight frame. For more information concerning frames refer to [1, 4, 5, 8, 12].

For any $x, y \in \mathbb{R}$ the translation operator T_x and modulation operator E_y on $L_2(\mathbb{R})$ are defined by $(T_x g)(t) = g(t - x)$, $(E_y g)(t) = e^{2\pi i y t} g(t)$. A Gabor system (g, a, b) with window function $g \in L_2(\mathbb{R})$, time shift parameter $a > 0$ and frequency shift parameter $b > 0$ is the sequence $\{E_{mb} T_{na} g\}_{m,n \in \mathbb{Z}}$. A Gabor system (g, a, b) is called a Gabor frame if it is a frame for $L_2(\mathbb{R})$, i.e., if there exist constants $A > 0$, $B < \infty$ such that for all $f \in L_2(\mathbb{R})$,

$$A\|f\|^2 \leq \sum_{m,n \in \mathbb{Z}} |\langle f, E_{mb} T_{na} g \rangle|^2 \leq B\|f\|^2, \quad (2)$$

¹ Corresponding author, Ph.D student, Department of Mathematics Vali-e-Asr University, Rafsanjan, Iran, e-mail: m.hasankhani@vru.ac.ir

² Department of Mathematics Vali-e-Asr University, Rafsanjan, Iran, P.O.Box 518, e-mail: dehghan@vru.ac.ir

where $\|\cdot\|$ and $\langle \cdot, \cdot \rangle$ denote the standard norm and inner product of $L_2(\mathbb{R})$.

It is a non-trivial problem that when is (g, a, b) a Gabor frame? It is well known that if $ab \leq 1$, then (g, a, b) is a Gabor frame. By the Ron-Shen theory [11] and [7], Sec. 1.2, the triple (g, a, b) is a Gabor frame with bounds $A > 0$, $B < \infty$ if and only if $bAI \leq M_g(t)M_g^*(t) \leq bBI$, a.e. $t \in \mathbb{R}$, where I denote the identity operator on $\ell_2(\mathbb{Z})$ and $M_g(t)$ is the bi-infinite matrix defined by $M_g(t) = (g(t+na - \frac{k}{b}))_{k,n \in \mathbb{Z}}$, a.e. $t \in \mathbb{R}$, where k is the row index and n is the column index. The case when g is a characteristic function $\chi_{[0,c]}$ of an interval $[0, c)$ for some $c > 0$ has been studied in [10]. As a result of the Ron-Shen theorem, $(\chi_{[0,c]}, a, b)$ is a Gabor frame with frame bounds $A > 0$, $B < \infty$ if and only if $(\chi_{[0,bc]}, ba, 1)$ is a Gabor frame with frame bounds bA and bB . For any $x \in \mathbb{R}$ the largest integer less than or equal to x denote by $\lfloor x \rfloor$ and the smallest integer greater than x denote by $\lceil x \rceil$. There are some results that has proved by Janssen in [10].

Theorem 1.1. *Let a, c be as above and $N = 2, 3, \dots$*

- a) $(\chi_{[0,c]}, a, 1)$ is not a Gabor frame when $a > c$,
- b) $(\chi_{[0,c]}, a, 1)$ is a Gabor frame when $a \leq c \leq 1$,
- c) $(\chi_{[0,c]}, 1, 1)$ is a Gabor frame if and only if $c = 1$,
- d) When $1 \leq c < 2$ we have that $(\chi_{[0,c]}, N^{-1}, 1)$ is a Gabor frame $\Leftrightarrow c \in [1, 2 - N^{-1}]$. When $c \geq 2$ we have that

$$(\chi_{[0,c]}, N^{-1}, 1) \text{ is a Gabor frame} \Leftrightarrow c - \lfloor c \rfloor \in [N^{-1}, 1 - N^{-1}],$$

- e) $(\chi_{[0,c]}, a, 1)$ is not a Gabor frame when $c = 2, 3, \dots$,
- f) $(\chi_{[0,c]}, a, 1)$ is a Gabor frame when $a \leq \min(c - \lfloor c \rfloor, 1 - (c - \lfloor c \rfloor))$,
- g) $(\chi_{[0,c]}, a, 1)$ is a Gabor frame when $1 \leq c < 2$ and $a \leq 1 - (c - \lfloor c \rfloor)$.

Two frames $\{f_k\}_{k=1}^{\infty}$ and $\{g_k\}_{k=1}^{\infty}$ are dual frames for \mathcal{H} if

$$f = \sum_{k=1}^{\infty} \langle f, f_k \rangle g_k = \sum_{k=1}^{\infty} \langle f, g_k \rangle f_k, \quad \forall f \in \mathcal{H}.$$

Dual frames are important to reconstruction of vectors (or signals) in terms of the frame elements. Two Gabor frames (g, a, b) and (h, a, b) form dual frames for $L_2(\mathbb{R})$ if for all $f \in L_2(\mathbb{R})$

$$f = \sum_{m,n \in \mathbb{Z}} \langle f, E_{mb} T_{na} g \rangle E_{mb} T_{na} h.$$

In this paper we find a simple duality condition for the case that g and h are characteristic functions on intervals $[0, c)$ and $[0, d)$, respectively.

2. Dual frames

The duality condition for a pair of Gabor systems (g, a, b) and (h, a, b) is presented by Janssen as follows [9]:

Lemma 2.1. *Two Bessel sequences (g, a, b) and (h, a, b) form dual frames for $L_2(\mathbb{R})$ if and only if $\sum_{k \in \mathbb{Z}} \overline{g(x - ka - \frac{n}{b})} h(x - ka) = b\delta_{n,0}$, a.e. $x \in [0, a]$.*

Every Gabor system $(\chi_{[0,c]}, a, b)$ is a Bessel sequence [10]. In this section we are going to find duals of a Bessel sequence $(\chi_{[0,c]}, a, b)$ having the form $(\chi_{[0,d]}, a, b)$.

Lemma 2.2. *If $c > \frac{1}{b}$ or $d > \frac{1}{b}$, then $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are not dual frames for $L_2(\mathbb{R})$.*

Proof. We first assume that $c > \frac{1}{b}$.

If $d > c - \frac{1}{b}$, then for all $x \in [0, e) \subseteq [0, a)$, where $e = \min\{a, c - \frac{1}{b}\}$ we have $0 \leq x < e \leq c - \frac{1}{b} < d$ and hence $\chi_{[0,d)}(x) = \chi_{[0,c)}(x + \frac{1}{b}) = 1$. Therefore for $n = -1$ we have $\sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x - ka + \frac{1}{b}) \chi_{[0,d)}(x - ka) \geq \chi_{[0,c)}(x + \frac{1}{b}) \chi_{[0,d)}(x) = 1$. If $d \leq c - \frac{1}{b}$, then for all $x \in [0, e) \subseteq [0, a)$, where $e = \min\{a, d\}$ we have $0 \leq x < e \leq d \leq c - \frac{1}{b}$ and hence $\chi_{[0,d)}(x) = \chi_{[0,c)}(x + \frac{1}{b}) = 1$. Therefore for $n = -1$ we have $\sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x - ka + \frac{1}{b}) \chi_{[0,d)}(x - ka) \geq \chi_{[0,c)}(x + \frac{1}{b}) \chi_{[0,d)}(x) = 1$. Thus $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are not dual frames for $L_2(\mathbb{R})$ by Lemma 2.1. The proof of the case $d > \frac{1}{b}$ is similar. \square

For all $x \in [0, a)$ we have $0 \leq x - ka < d$ if and only if $\lceil \frac{x-d}{a} \rceil \leq k \leq \lfloor \frac{x}{a} \rfloor = 0$. Thus $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are dual frames for $L_2(\mathbb{R})$ if and only if $\sum_{k=\lceil \frac{x-d}{a} \rceil}^{\lfloor \frac{x}{a} \rfloor} \chi_{[0,c)}(x - ka - n/b) = b \delta_{n,0}$, a.e. $x \in [0, a]$. A sufficient and necessary condition for duality of two Bessel sequences $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ is given in the next theorem.

Theorem 2.1. *Let a, b, c and d be positive numbers. Then two Bessel sequences $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are dual frames for $L_2(\mathbb{R})$ if and only if $b \in \mathbb{N}$, $c \leq \frac{1}{b}$, $d \leq \frac{1}{b}$ and $ab = \min\{c, d\}$.*

Proof. We first assume that $d \leq c$ and we show that $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are dual frames for $L_2(\mathbb{R})$ if and only if $b \in \mathbb{N}$, $c \leq \frac{1}{b}$, $d \leq \frac{1}{b}$ and $ab = d$.

Let $b \in \mathbb{N}$, $c \leq \frac{1}{b}$, $d \leq \frac{1}{b}$, $ab = d$ and $x \in [0, a)$. Thus $0 \leq \frac{x}{a} < 1$ and hence $-b \leq \frac{x-d}{a} < -b + 1$. Thus $\lfloor \frac{x}{a} \rfloor = 0$ and $\lceil \frac{x-d}{a} \rceil = -b + 1$. Since $d \leq c$ we have

$$\begin{aligned} \sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x - ka) \chi_{[0,d)}(x - ka) &= \sum_{k=\lceil \frac{x-d}{a} \rceil}^{\lfloor \frac{x}{a} \rfloor} \chi_{[0,c)}(x - ka) \chi_{[0,d)}(x - ka) \\ &= \lfloor \frac{x}{a} \rfloor - \lceil \frac{x-d}{a} \rceil + 1 = b. \end{aligned}$$

Also $d \leq c \leq \frac{1}{b}$ implies that if $0 \leq x - ka < d$, then $x - ka - \frac{n}{b} \leq x - ka - \frac{1}{b} \leq x - ka - d < 0$ for $n > 0$ and $x - ka - \frac{n}{b} \geq x - ka + \frac{1}{b} \geq \frac{1}{b} \geq c$, for $n < 0$ and hence $x - ka - \frac{n}{b} \notin [0, c)$ for all $n \in \mathbb{Z} - \{0\}$. Thus for all $n \in \mathbb{Z} - \{0\}$

$$\sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x - ka - \frac{n}{b}) \chi_{[0,d)}(x - ka) = 0.$$

So $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are dual frames for $L_2(\mathbb{R})$ by Lemma 2.1.

Conversely let $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are dual frames for $L_2(\mathbb{R})$. Now $b = \sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x - ka) \chi_{[0,d)}(x - ka) \in \mathbb{N}$ by Lemma 2.1 and $c, d \leq \frac{1}{b}$ by Lemma 2.2. If $ab < d$, then for all $x \in [0, e) \subseteq [0, a)$, where $e = \min\{a, d - ab\}$ we have $\lfloor \frac{x}{a} \rfloor = 0$

and $\lceil \frac{x-d}{a} \rceil \leq -b$. Thus

$$\begin{aligned} \sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x-ka) \chi_{[0,d)}(x-ka) &= \sum_{k=\lceil \frac{x-d}{a} \rceil}^{\lfloor \frac{x}{a} \rfloor} \chi_{[0,c)}(x-ka) \chi_{[0,d)}(x-ka) \\ &= \lfloor \frac{x}{a} \rfloor - \lceil \frac{x-d}{a} \rceil + 1 \geq b + 1 > b. \end{aligned}$$

If $ab > d$, then for all $x \in [e, a) \subseteq [0, a)$, where $e = \max\{0, d - ab + a\}$ we have $\lfloor \frac{x}{a} \rfloor = 0$ and $\lceil \frac{x-d}{a} \rceil \geq -b + 2$. Thus

$$\begin{aligned} \sum_{k \in \mathbb{Z}} \chi_{[0,c)}(x-ka) \chi_{[0,d)}(x-ka) &= \sum_{k=\lceil \frac{x-d}{a} \rceil}^{\lfloor \frac{x}{a} \rfloor} \chi_{[0,c)}(x-ka) \chi_{[0,d)}(x-ka) \\ &= \lfloor \frac{x}{a} \rfloor - \lceil \frac{x-d}{a} \rceil + 1 \leq b - 1 < b. \end{aligned}$$

Hence $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are not dual frames for $L_2(\mathbb{R})$ by Lemma 2.1 and so $ab = d$.

Now assume that $c \leq d$. A similar argument shows that $(\chi_{[0,c)}, a, b)$ and $(\chi_{[0,d)}, a, b)$ are dual frames for $L_2(\mathbb{R})$ if and only if $b \in \mathbb{N}$, $c \leq \frac{1}{b}$, $d \leq \frac{1}{b}$ and $ab = c$. \square

Corollary 2.1. *Let a , c and d be positive numbers. Then two Bessel sequences $(\chi_{[0,c)}, a, 1)$ and $(\chi_{[0,d)}, a, 1)$ are dual frames for $L_2(\mathbb{R})$ if and only if $c \leq 1$, $d \leq 1$ and $a = \min\{c, d\}$.*

REFERENCES

- [1] *J. J. Benedetto*, Frame decomposition, sampling, and uncertainty principle inequalities in wavelets, Mathematics and applications (J. J. Benedetto and M. W. Frazier.), CRC Press, Boca Raton, FL, 1994, chap. 7.
- [2] *O. Christensen*, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, Basel, Berlin, 2002.
- [3] *Ole Christensen and Richard S. Laugesen*, Approximately dual frames in Hilbert spaces and application to Gabor frames, *Sampl. Theory Signal Image Process.*, **9**(2011), 77-90.
- [4] *I. Daubechies*, Ten Lectures on Wavelets, 1992.
- [5] *I. Daubechies, A. Grossmann, and Y. Meyer*, Painless nonorthogonal expansions, *J. math. phys.*, **27**(1986), 1271-1283.
- [6] *R. J. Duffin and A. C. Schaeffer*, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.*, **72**(1952), 341-366.
- [7] *H.G. Feichtinger, T. Strohmer*, Eds. Gabor Analysis and Algorithms-Theory and Applications. Boston. Birkhäuser, 1998.
- [8] *C. Heil, D. Walnut*, Continuous and discrete wavelet transform, *SIAM Rev.*, **31**(1969), 628-666.
- [9] *A. J. E. M. Janssen*, The duality condition for Weyl-Heisenberg frames. In Gabor analysis: theory and application (eds. H. G. Feichtinger and T. Strohmer). Birkhäuser, Boston, 1998.
- [10] *A. J. E. M. Janssen*, Zak transforms with few zeros and the tie. In: Advances in Gabor Analysis (Eds.: H. G. Feichtinger and T. Strohmer) Boston-MA. Birkhäuser 2003.
- [11] *A. Ron, Z. Shen*, Weyl-Heisenberg systems and Riesz bases in $L_2(\mathbb{R}^d)$. *Duke. Math. J.* **89**(1997), 237-282 .
- [12] *R. Young*, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.