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DUALITY CONDITION FOR GABOR FRAMES (x|),a,b) AND
(X[O,d)a a, b)

Mohammad Ali Hasankhani Fard!, Mohammad Ali Dehghan?

In this paper we find a sufficient and necessary condition for which two
Gabor frames (X[o,c), a,b) and (X[0,q), @, b) form dual frames for La(R), where a,
b, ¢ and d are positive numbers.
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1. Introduction

Frames were first introduced by Duffin and Schaeffer [6] in the study of nonhar-
monic Fourier series in 1952. Frames have very important and interesting properties
which make them very useful in the characterization of function spaces, signal pro-
cessing and many other fields. A frame is a family of elements in a separable Hilbert
space which allows stable not necessarily unique decomposition of arbitrary elements
into expansions of frame elements [2]. Given a separable Hilbert space 3 with inner
product < .,. >, a sequence {f;}7°, is called a frame for 3{ if there exist constants
A >0, B < oo such that for all f € H,

oo
A <31 < Ffie> P < B, (1)
k=1
where A, B are the lower and upper frame bounds, respectively. The second inequal-
ity of the frame condition (1) is also known as the Bessel condition for {f}32,. If
A = B, then {f;}?2, is called a tight frame. For more information concerning
frames refer to [1, 4, 5, 8, 12].

For any z,y € R the translation operator T, and modulation operator £, on
Ly(R) are defined by (T,g)(t) = g(t — z), (Eyg)(t) = e*™¥g(t). A Gabor system
(g, a,b) with window function g € Lo(R), time shift parameter a > 0 and frequency
shift parameter b > 0 is the sequence {ETha0}mnez. A Gabor system (g, a,b) is
called a Gabor frame if it is a frame for Lo(R), i.e., if there exist constants A > 0,
B < oo such that for all f € Ly(R),

AIFIP < >0 1< £ B Toag > I < BJIfII%, (2)

m,nel
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where ||.|| and < .,. > denote the standard norm and inner product of La(R).

It is a non-trivial problem that when is (g, a, b) a Gabor frame? It is well known
tht if ab < 1, then (g, a,b) is Gabor frame. By the Ron-Shen theory [11] and [7], Sec.
1.2, the triple (g,a,b) is a Gabor frame with bounds A > 0, B < oo if and only if
bAI < My(t)Mg(t) <bBI, a.e.t € R, where I denote the identity operator on ¢5(Z)
and M,(t) is the bi-infinite matrix defined by My(t) = (g(t+na— %)) ez, a.e.t€
R, where k£ is the row index and n is the column index. The case when ¢ is a
charactristic function x[o.) of an interval [0,¢) for some ¢ > 0 has been studied
in [10]. As a result of the Ron-Shen theorem, (x[o),a,b) is a Gabor frame with
frame bounds A > 0, B < oo if and only if (x[o4c), ba, 1) is a Gabor frame with
frame bounds bA and bB. For any x € R the largest integer less than or equal to
x denote by |z| and the smallest integer greater than x denote by [z]. There are
some results that has proved by Janssen in [10].

Theorem 1.1. Let a,c be as above and N = 2,3, ....
a) (X[0,c)> @, 1) is not a Gabor frame when a > c,
b) (X[0,¢), @, 1) is a Gabor frame when a < ¢ <1,
¢) (X[o,c)> 1, 1) is a Gabor frame if and only if c = 1,
d) When 1 < ¢ < 2 we have that (x[o ), N, 1) is a Gabor frame & c € [1,2—N"1].
When ¢ > 2 we have that
(X[ch),N_l, 1) is a Gabor frame < c¢—|c| € [N7',1 - N1,
e) (X[0,c) @ 1) is not a Gabor frame when c = 2,3, ...,
f) (X[o0,¢)»a,1) is a Gabor frame when a < min(c — |c],1— (c— [c])),
9) (X[0,c)» @, 1) is @ Gabor frame when 1 <c <2 and a <1 — (c— [¢c]).

Two frames {f,}32, and {gx}72, are dual frames for I if
F=Y <ffe>g=_<Ffo>fu VfeH
k=1 k=1

Dual frames are important to reconstruction of vectors (or signals ) in terms of the
frame elements. Two Gabor frames (g, a,b) and (h, a,b) form dual frames for Ly(R)
if for all f € La(R)

f = Z < f7 EnpThag > EnpThah.
m,neZ
In this paper we find a simple duality condition for the case that g and h are

charactristic functions on intervals [0, ¢) and [0, d), respectively.

2. Dual frames

The duality condition for a pair of Gabor systems (g,a,b) and (h,a,b) is
presented by Janssen as follows [9]:

Lemma 2.1. Two Bessel sequences (g, a,b) and (h,a,b) form dual frames for Lo(R)
if and only if 3 9(x — ka — §)h(x — ka) = b, o, a.e. x € [0,a].

Every Gabor system (x(o.),a,b) is a Bessel sequence [10]. In this section we
are going to find duals of a Bessel sequnce (x(o,¢),a,b) having the form (/o q), @, b).
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Lemma 2.2. If ¢ > % or d > %, then (X[0,c)> a,b) and (x[0,4),a,b) are not dual

frames for La(R).

Proof. We first assume that ¢ > %.
If d > ¢ — ¢, then for all z € [0,e) C [0,a), where e = min{a,c — 3} we have

o<z <e<c—3 <dand hence X[Od)( T) = X[o,0)(T + 3 1y = 1. Therefore for

n = —1 we have >3 .7 Xjo.0) (€ — ka + 3)X[0.0)(z — ka) > xo, c)(x + 3)Xp.0) () = 1.
Ifd<ec-— 11), then for all z € [0,e) C [0,a), where e = min{a,d} we have 0 < x <
e <d < c— ¢ and hence X[0,4) (%) = XJo, C)(:v—i— ) = 1. Therefore for n = —1 we have
> kez X[o,c)( — ka + )X[o (@ — ka) = X0, (x + ) X[0,q)(z) = 1. Thus (X[0,¢) @, b)
and (X|o,4), @, b) are not dual frames for La(R) by Lemma 2.1. The proof of the case
d > % is similar. O

For all x € [0,a) we have 0 < = — ka < d if and only if [%l] <k <
2] = 0. Thus (xo,), @, b) and (X[o,4), @, b) are dual frames for Ly(R) if and only if

th J[z a1 X[0, o —ka —n/b) = bdnp0, ae. € [0,a]. A sufficient and necessary

condition for duality of two Bessel sequences (X[ch), a,b) and (X[O,d)7 a,b) is given in
the next theorem.

Theorem 2.1. Let a, b, ¢ and d be positive numbers. Then two Bessel sequences
(X[0,¢)> @, b) and (X[o,q); @, ) are dual frames for L2(R) if and only if b € N, ¢ < i
d < 3 and ab = min{c,d}.

Proof. We first assume that d < ¢ and we show that (X[o ¢)» @, b) and (x(0,4), @, b) are
dual frames for Ly(R) if and only if b€ N, ¢ < 4, d < { and ab = d.

Let b € N, ¢ < 3,d < ;,ab_dandxe[ a). Thus 0 < £ < 1 and hence
—b< =49 < —p4+1. Thus [£] =0and [£4] = —b+ 1. Since d < ¢ we have

L]
D Xpoo (@ = ka)xpa (@ —ka) = Y X @ = ka)xjq(z — ka)

_rz—d
kEZ k=[2=4]

~ -1

Alsodgcg%impliesthatif0<x—ka<d thenx—ka—7<x—ka—5§
x—ka—d<0forn>0anda:—ka—§>a:—ka+ > 1 ; = ¢, for n < 0 and hence
x—ka—% &[0,c) for all n € Z — {0}. ThusforallnEZ {0}

n
> Xy (& — ka— 3 X0 (@ —ka) =0.
keZ

So (Xo,c), @, b) and (Xo,4), @, b) are dual frames for La(R) by Lemma 2.1.

Convesely let (x[o,c),a b) and (X[0,4), @, b) are dual frames for LQ(R). Now b =
> kez X[0,c) (T — ka)X[o,q)(r — ka) € N by Lemma 2.1 and ¢, d S by Lemma 2.2. If
ab < d, then for all x € [0,e) C [0,a), where e = min{a,d — ab} we have 2] =0
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and [£-4] < —b. Thus

[Z]
> X (@ = ka)xpa (@ —ka) = > Xjoo(® - ka)xjpq (@ — ka)
kEZ k:[zfd]

a
Tz —d
a

:L%J—( J+1>b+1>0b.

If ab > d, then for all z € [e,a) C [0,a), where e = max{0,d — ab + a} we have
|2] =0 and (‘”T—ﬂ > —b+ 2. Thus

[Z]
> Xioo @ —ka)xpa (@ —ka) = > Xz — ka)xp.q (@ — ka)
keZ k:[%d]

z—d
a

:LSJ_( J+1<b-1<b.

Hence (x[o,c); @, b) and (X[o,4), @, b) are not dual frames for Ly(R) by Lemma 2.1 and

so ab = d.
Now assume that ¢ < d. A similar argument shows that (x,), @, b) and (x/o,q), @, b)
are dual frames for Lo(R) if and only if b € N, ¢ < %, d< % and ab = c. O

Corollary 2.1. Let a, ¢ and d be positive numbers. Then two Bessel sequences

(X[o,

)» @, 1) and (X[o,q),a, 1) are dual frames for La(R) if and only if ¢ <1, d < 1

and a = min{c,d}.
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