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IMPROVED LIGHTWEIGHT MULTISCALE FINGER VEIN
RECOGNITION FOR VISION TRANSFORMER

Zhiyong TAO?, Yajing GAOY", Sen LIN?

Finger vein recognition methods suffer from ignoring local information,
complexity and slow recognition speed when applying Transformer architecture. In
this paper, an improved visual transformer multi-scale finger vein recognition method
is proposed. Specifically, the network backbone adopts the improved visual
transformer architecture and grouped convolutional structure. The improved vision
transformer architecture can extend the global features of an image while
simultaneously reducing the computational cost-effectively. Group convolution
realizes low-cost multi-scale image feature extraction. The experiment showed that
the method proposed in this paper has a recognition accuracy of 99.86%, which is
more suitable for industrial deployment than other state-of-the-art works.

Keywords: Convolutional neural network, Finger vein recognition, Near-infrared
image, Light-weight networking, Feature extraction

1. Introduction

Biometrics is one of the most common identification methods, including:
human face, fingerprints, palm print, iris, finger vein, etc. Because each person's
vein texture is hidden in the body, it is not easy to steal and has uniqueness, so
biometrics of finger veins has great advantages in vivo recognition. As far as current
research is concerned, light and angle of finger placement all affect the recognition
performance of finger veins. It is very important to study more accurate and robust
recognition algorithms. The common finger vein recognition process usually
includes image acquisition, preprocessing, feature extraction, and comparison. The
acquisition of finger vein images necessitates the use of a device that combines an
image sensor and an infrared light source. The acquired finger vein image is
preprocessed to facilitate the subsequent feature extraction process.

As deep learning technology advances, deep learning-based recognition
techniques have shown greater advantages over traditional methods, which is due
to the fact that deep learning-based methods can obtain deeper image features
through Convolutional neural networks (CNN) and can show more stable
recognition results. Therefore, some researchers proposed CNN based finger vein
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recognition methods, for example, Fang et al. [1] proposed a lightweight dual
channel network to improve finger vein verification by extracting mini region of
interest (ROI). The Vision Transformer (ViT) [2] method, proposed by researchers
recently, has attracted a lot of attention in the field of deep learning. Compared with
CNN, ViT focuses more on global features and has shown excellent performance
in several domains. In addition, researchers have proposed some improved methods,
such as Liu et al. [3] proposed Swin Transformer, which obtains global and local
features by constructing hierarchical feature maps and sliding windows, with better
experimental results but high model complexity; Peng et al. [4] proposed Parallel
Network Architecture, which utilizes convolution and the mechanism of multiple
self-attention[5] (MHSA) for parallel extracts local and global features, which
improves the network performance but is ineffective for small datasets. Based on
the advantages shown by Transformer, researchers started to apply it to finger vein
recognition. Huang [6] proposed the Finger Vein Transformer (FVT) model for
recognition, which realizes multi-scale feature extraction by reducing the number
of Token layer by layer but increases the complexity and computation.

From the above analysis, it can be seen that the existing approaches have
achieved better results in terms of recognition performance, but there are still some
shortcomings in terms of recognition time and model complexity. In this paper, we
conduct an in-depth study on the problems of low accuracy and high model
complexity arising from applying Transformer architecture in finger vein
recognition. Lightweight multi-scale finger vein recognition with improved Vision
Transformer is designed to extract local and global features in finger vein images
by improved E-Transformer Block and grouped Group-Conv Block together,
avoiding the problem of low accuracy caused by insufficient feature extraction.
MHSA is utilized in the E-Transformer Block to maximize the acquisition of global
features, while the recognition accuracy is improved by improving MLP. The group
convolution in the Group-Conv Block effectively reduces the computational cost in
the feature extraction process and realises the lightweight and multi-scale extraction
of image features. Finally, comprehensive experiments on self-constructed datasets
and three public datasets show that our proposed methods achieve better recognition
results with lower model parameters and computational complexity, as well as
shorter recognition time and lower equal error rate (EER).

2. Finger Vein Image Recognition Network

How to take into account the simplicity and light weight of the CNN model
while utilizing the Transformer architecture for finger vein recognition is a major
challenge in current research. Therefore, this paper designs a multi-scale finger vein
recognition method with an improved Vision transformer, as shown in Fig. 1. The
network is composed of two components: the E-Transformer Block, which
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enhances the ViT, and the Group-Convolution Group-Conv Block. One of the E-
Transformer Block is responsible for obtaining the global features in the image. By
making the multi-head self-attention mechanism more efficient, the computational
cost can be decreased, and the complexity can be minimized, resulting in a
lightweight design. Another Group-Conv Block is responsible for obtaining some
subtle features in the image, and group convolution can realize feature amplification
and multi-scale acquisition of effective information in the image. After feature
extraction by the above two blocks, the learning process of the classifier is
supervised using the cross-entropy loss function to output more accurate
recognltlon results.

E-Transformer . E-Transformer
!—)H—b[ Block ]—)[Groupfonvl RIOCWH Block ]—)[Cuoup Conv B]ock

Fig. 1 Network structure diagram
2.1 Group-Conv Block

To further improve the network's effectiveness in recognizing finger veins,
Group-Conv Block utilizes group convolution to achieve feature amplification. The
details are shown in Fig. 2. Group-Conv Block contains one DW3x3, one Convlx1
and one batch normalization (BN) layer. A DW convolution operation for the input
features allows the number of channels that would otherwise be C to be increased
to C'. The number of parameters required for a regular convolution operation on a
given input feature map is:

F.,, =HxWxCxC' (1)

Nevertheless, when employing DW convolution, the operation necessitates
a certain number of parameters:

F,, = H xW x (C / group) x (C '/ group) x group (2)

The above formula shows that grouped convolution can obtain more finger

vein features with a smaller number of parameters, the network parameters and

computational workload are decreased while still guaranteeing recognition
accuracy.
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Fig. 2 Grouped convolutional structure
2.2 E-MLP Block

In E-Transformer, this paper focuses on improving the MLP structure in the
vision transformer. To show the superiority of the improved MLP in this paper, we
compare it with the common converter structure papers such as ResT V2 [7], VIiT,
Next-ViT [8], and EfficientFormer [9], as shown in Fig. 2. Next-ViT uses ReLU as
the activation function, but GELU performs better and converges faster than ReL.U.
In addition, we find that the BN layer prevents overfitting and speeds up training.
For these reasons, in this paper, we use GELU as the activation function and add
BN layer and Dropout layer to improve the performance. We demonstrated the
effectiveness of E-MLP in the ablation experiment section.

*—)[ Gel.U ]—){I)ropout ]—P[ Linear ]—> b
i ;—)[ RelU H Dropout ]—)[ Linear ]—): (¢) Next-ViT

[ Input H Lincar H BN ]—P[ GeLU HDmpau[ H Lincar ]—P[ BN HDmpnu[] (d) CfficientFormer

ViT

Fig. 3 Comparison of MLP in different methods
2.3 MHSA Block

MHSA can adaptively learn the relationship between different regions in an
image to extract more comprehensive feature information. Therefore, this paper
uses MHSA from ViT structure for global feature extraction. In ViT, the input
image is first divided into multiple subgraphs as input vectors. Then, these vectors
are encoded using the multi-head attention mechanism, the correlation between
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them is calculated, and the attention weights are obtained by the Softmax function.
Finally, these vectors are weighted and summed with corresponding attention
weights to obtain the final feature representation. We introduce positional coding
to obtain the positional information in the image features. To reduce the
computational cost and enable more efficient and lightweight deployment. As
shown in the following figure, the low-frequency signal is first captured by MHSA
with the following equation:

MHSA(x) = Concat(SA(X, ), SA(X,),---, SA(X, ))W° (3)

Where denotes the division of input features into multiple heads in the

channel dimension and is the number of divided heads. In this paper, 8 is taken as

the number of heads for the attention mechanism. Is the attention mechanism
computational formula, and the formula is as follows:

SA(X) = Attention(Q -W?, K -W" vV -W") 4)
Where Attention denotes the standard attention, Q , K , Vv denotes query

vector, key vector, and value vector, respectively,w? ,w* w" is the linear layer
used for context encoding.
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Fig. 4 Structure of MHSA

3 Experimental results and analyses
3.1 Data set profiles

We conducted experiments on a total of four datasets, namely, FV-USM
[10], SDUMLA-HMT [11], THU-FVFDT2 [12], and the self-constructed dataset
FV-SIPL, with the exception of the THU-FVFDT2 dataset where the training and
test sets are equally distributed in a 2:1 ratio. The data information is shown in the
following table.Figure 5 illustrates the sample finger vein maps in the four datasets.
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(a) FV-USM (b) SDUMLA-HMT  (¢) THU-FVFDT2 (d) FV-SIPL
Fig. 5 Sample finger vein plots from the four datasets
Table 1
Image categories and totals in the four datasets
Dataset Total numper Total image Total training sets Total test sets
of categories count
FV-USM 492 5904 3936 1968
SDUMLA-HMT 636 3816 2544 1272
THU-FVFDT2 610 1220 610 610
FV-SIPL 108 1296 864 432

3.1.1 FV-USM dataset

Universiti Teknologi Malaysia supplied this dataset, which includes finger
vein images taken by 123 volunteers, each volunteer's four fingers were used to
capture 12 images. Therefore, the whole dataset covers a total of 492 finger
categories and 5904 images. The size of each of these images is 640 x 480pixels.

3.1.2 SDUMLA-HMT dataset

This dataset is provided by Shandong University, which contains the finger
vein images of 106 volunteers, and 6 images are collected for each index, middle
and ring finger of each volunteer's hands. The whole dataset covers 636 finger
categories and 3816 images, where each image size is 320 x 240pixels.

3.1.3 THU-FVFDT?2 dataset

The dataset was provided by Tsinghua University and contained finger vein
images of 610 volunteers. Finger vein images were collected twice for each
volunteer, with a total of 1220 images, each with a size of 200 x 100pixels.

3.1.4 FV-SIPL dataset
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This dataset was made by the Signal and Information Processing Laboratory
of Liaoning University of Engineering and Technology by using infrared finger
vein acquisition sensors to collect finger vein images from 27 volunteers. Among
them, 12 images were collected for each of the four fingers of each volunteer, and
the whole dataset covered 108 finger categories and 1296 images. The size of each
image is 176 x 415pixels.

3.2 Experimental environment and parameter settings

The experiments were conducted under the Linux operating system using
the PyTorch 1.7 framework. The graphics card used for training and testing was
GeForce RTX 3090 GPU. The learning rate is set to 0.001, the batch size is set to
16, and Stochastic Gradient Descent (SGD) is chosen as the optimizer, with a
momentum of 0.9. The the input size of the finger veins was pre-processed with
operations and finally adjusted to 224 x 224 pixels uniformly, and the final
experimental results are obtained through 300 iterations of training.

3.3 Evaluation Metrics

To evaluate the performance and advantages of the model, metrics such as
Accuracy, EER, Average Processing Time of a Single Image (Time), Number of
Parameters, and Floating Point Operations (FLOPS) are selected for evaluation. The
accuracy rate is a frequently employed metric in recognition of finger veins. It can
reflect the model's ability to correctly recognize different categories of samples in
the entire data set. The formula for accuracy rate is shown in equation (5):

Accuracy = TP+ TN 5)
TP+TN+FP+FN

TP represents the quantity of accurate positive sample predictions, while TN
signifies the quantity of accurate negative sample predictions, The number of false
positive sample predictions is denoted by FP, and the number of false negative
sample predictions is denoted by FN . The EER value is typically employed in
image recognition tasks to gauge the model's effectiveness, the determination is
based on the False Acceptance Rate(FAR) and the False Rejection Rate(FRR). The
formulas for FAR and FRR are shown below:

R FP ©)
FP+TN

FRR=—N )
TP+ FN

The predetermined threshold determines the quantity of samples for both false
acceptance and false rejection when the threshold of the match is greater than the
preset threshold, it is determined as wrong acceptance and vice versa as wrong
rejection. When FAR and FRR are equivalent, the result is EER, which indicates
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the effectiveness of the recognition technique, the recognition method's
performance improves as the EER value decreases.

The magnitude and intricacy of the model have a considerable influence on
the training and prediction results. The size of the model can be determined by the
number of parameters, and the complexity of the model can be measured using
FLOPs. The smaller the values of average processing time, number of parameters,
and FLOPs for a single image, the lower the complexity of the model and the faster
the recognition speed is proved.

3.4 Comparison Experiments

To validate the method in this paper, we compared it with a classical
transformer network model: ViT-B, Swin-T, Conformer-B, Next-ViT and the
lightweight CNN network model EfficientNetV2. The results of the recognition
accuracy of the different methods on the datasets are shown in Table 2. The higher
the accuracy rate, the better the recognition effect of the method is proved, and the
results in the table show that the proposed method in this paper achieves the best
recognition effect on all four datasets. The most favorable outcome is denoted by
bold type, whereas underlining signifies the second most favorable outcome.

Table 2
Recognition accuracy of different methods on four data sets(unit: %)

Method FV-USM SDUMLA-HMT THU-FVFDT2 FV-SIPL
ViT-B 84.00 83.00 75.34 93.02
Swin-T 98.33 97.33 90.13 99.52
Conformer-B 97.00 97.00 97.09 97.91
Next-ViT 98.56 99.0 98.87 99.53
EfficientNetV2[13] 99.00 98.00 98.78 97.20
MobileNetV2[14] 98.20 99.00 98.32 99.00
ResNet101[15] 98.33 98.34 98.21 99.00
Our 99.69 99.86 99.33 99.73

In addition to the comparison of accuracy, the average processing time,
number of parameters and FLOPs of individual images of different methods are
also compared, as shown in Table 3. In terms of average processing time for a single
image, MobileNetV2 is 2.27ms, which is 1.16ms faster than the method proposed
in this paper, due to the multi-attention mechanism used in this paper's method.
Other than that, this paper's method outperforms other methods.

Table 3
Analyzing the evaluation index outcomes of various methodologies

Method Time/ms Parameters/M FLOPs/G
ViT-B 11.30 103.03 16.88
Swin-T 7.21 28.27 4.37
Conformer-B 7.15 96.63 21.01
Next-ViT 3.52 31.76 5.79
EfficientNetV2 3.49 21.46 2.90
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MobileNetV2 2.27 3.50 0.33
ResNet101 7.61 44.55 7.84
Our 3.43 1.97 0.35

This research utilizes four datasets to assess different recognition methods,
including ViT-B, Swin-T, and Conformer-B. Fig. 6 displays the outcomes. On the
SDUMLA-HMT dataset, the EER value of the method proposed in this paper is
slightly higher than has excellent performance in finger vein recognition and can be
used as an effective recognition method. This paper's proposed method is more
accurate and robust than other methods, it has the potential to be used in a variety
of practical areas.
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Fig. 6 Comparison of EER of different methods

Conformer-B

The results of comparing the method proposed in this paper with novel
finger vein models in recent years are shown in Table 4. Out of all the methods, our
approach achieves the highest recognition accuracy on both public datasets,
SDUMLA-HMT and THU-FVFDT2. Although the recognition accuracy on the
FV-USM dataset is lower than that of the FVT method by 0.04%, it is higher than
that of FVT by 1.96% and 8.67% on the SDUMLA-HMT and THU-FVFDT2
datasets, respectively. Consequently, this paper's proposed method yields the most
favorable recognition outcomes based on the overall results.

By comparing the novel finger vein recognition algorithms in recent times,
this paper's suggested approach yields superior recognition accuracy, recognition
time and complexity. We take the data at epoch 0, 50, 100, 150, 200, 250, 300 for
image plotting, and the recognition accuracy versus test loss curves on the four
datasets are shown below.

Table 4
The precision of various techniques in identifying public datasets(unit: %)
Method FV-USM SDUMLA-HMT THU-FVFDT?2
Merge CNN[16] 96.15 89.99 —
DS-CNNJ17] — 98.00 89.00
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Semi-PFVN[18] 94.67 96.61 —
LFVRN_CEJ[19] 98.58 97.75 —
DGLFV[20] — 99.25 —
CMrFD[21] 98.33 98.92 —
FVT 99.73 97.90 90.66
TFHFT-DPFNN[22] — 98.00 —
CNNs[23] 97.95 — —
Coding SchemeA[24] 99.59 95.91 —
FV-GAN — — 98.52
Triplet-Classifier GAN[25] 99.66 99.53 —
Our 99.69 99.86 99.33

—— FV-USM

[—Fv-Uusm —— SDUMLA-HMT
SDUMLA-HMT

—— THU-FVFDT2

FV-SIPL
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Fig. 7 (a) Accuracy curve;(b) Test loss curve

It is clear from the diagram that THU-FVFDT2 has the best recognition
effect from 50 to 100 epochs, followed by FV-SIPL, SDUMLA-HMT, and FV-
USM, and finally stabilizes after 150 epochs. Similarly, the loss curve shows that
THU-FVFDT?2 has the smallest loss from 50 to 100 epochs, followed by SDUMLA-
HMT, FV-SIPL, and FV-USM, whose losses increase sequentially and eventually
converge to zero.

3.5 Ablation Experiments

We conducted ablation experiments to better verify the conjecture. Under
the premise that the rest of the conditions remain unchanged, the Group-Conv Block
is combined with different models of the MLP structure, and the accuracy is tested
on four datasets and the results are shown in Fig. 8.Based on the information
depicted in the figure, it can be seen that the improved MLP structure in this paper
has obvious advantages in the recognition effect compared with the classic
Transformer architecture paper, thus verifying that the previous conjecture is
correct.
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Fig. 8 Results of ablation experiments on four datasets with different methods
4 Conclusion

Aiming at the finger vein recognition process, which does not fully consider
the global features of the image and is easy to overfit and other problems, this paper
proposes a multi-scale finger vein recognition method with an improved Vision
Transformer. The improved E-Transformer and group convolution are utilized to
form the backbone network. In the network, the E-Transformer is responsible for
extracting global features, where the improved MLP makes the feature extraction
capability substantially enhanced. Secondly, the use of low-cost packet convolution
allows for feature amplification and multi-scale information acquisition. The
method is experimentally tested on multiple datasets, and good experimental results
are obtained under several evaluation metrics. At present, the method has good
performance and considerable potential in finger vein recognition, but there are still
many aspects that need further improvement and refinement, which will be the
focus of our future work.
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