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SOME REMARKS ON INVERSE LAPLACE TRANSFORMS

INVOLVING CONJUGATE BRANCH POINTS WITH

APPLICATIONS

Leila Moslehi1 and Alireza Ansari2

In this paper, we state a theorem for the inverse Laplace transform
of functions involving conjugate branch points on imaginary axis. We get two
equivalent integral representations for this inversion in terms of the Fourier sine
and cosine transforms. Also, as applications of this theorem we obtain the solu-
tions of dual integral equations with kernels of the Struve and Bessel functions
and show an integral representation for the Gregory-Nörlund numbers. Moreover,
new representations of the powers of the Airy functions are given in terms of the
fractional integrals of order 1

2
.
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1. Introduction

From past to present, the classical Laplace transform

L{f(x); s} = F (s) =

∫ ∞
0

e−sxf(x)dx, (1)

and its inversion formula (complex inversion formula or Bromwich integral)

L−1{F (s);x} = f(x) =
1

2πi

∫ c+i∞

c−i∞
esxF (s)ds, <(s) > c, (2)

have many applications in the applied sciences. One of the most important applica-
tion of this transform is its impact on partial differential equations which have been
attracted much attention for many years, see [10, 11, 17, 23]. The main aspect of
this application is finding suitable contours for the Bromwich integral with respect
to the singular points of F (s).
For example, Apelblat found new classes for the inverse Laplace transform of log-
arithmic functions [2], Puri and Kythe showed new classes for the inverse Laplace
transform of exponential functions with two or three branch points on the real axis
[19]. Also, Bobylev and Cercignani modified the well-known Titchmarsh theorem
on the Hankel contour for the inverse Laplace transform and applied it for solving
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the Boltzmann equation [8].
Now, in this paper we intend to choose the functions F (s) involving expression√

s2 + a2 with two different branch points s = ±ai (or functions involving expression
ln(s2 + a2)) and write the corresponding Bromwich integrals in terms of the Fourier
sine and cosine transforms. For this purpose, by considering two different contours
for the Bromwich integral and using the residue theorem, we state a theorem for
these classes of functions in Section 2. In Section 3, we intend to introduce classes
of dual integral equations with kernels of the Struve and Bessel functions and solve
this type of integral equations. In Section 4, as another application in the case
ln(s2 +a2), a→ 0, we introduce the Gregory-Nörlund numbers and using the associ-
ated Laguerre polynomials, we find an integral representation for these numbers in
terms of the Volterra functions. In Section 5, we obtain the semi-integrals of powers
of the Airy functions Ain(x), n = 1, 2, 3, 4, using the main theorem. Finally the main
conclusions are set.

2. Main theorem

Theorem 2.1. Let F (s) be an analytic function for <(s) > c, also it has two
conjugate branch points ±ai and F (re−iπ) = F (reiπ), where a > 0 and r > 0.
Furthermore, F (s) satisfy the conditions

F (s) = O(1), |s| → ∞,

F (s) = O(
1

|s|
), |s| → 0,

for any sector |arg(s)| < π−η, where 0 < η < π. Then the inverse Laplace transform
f(t) can be written as two integral representations

f(t) = L−1{F (s); t} = − 2

π

∫ ∞
a

sin(rt)=(F (rei
π
2 ))dr, (1)

f(t) = L−1{F (s); t} =
2

π

∫ a

0
cos(rt)<(F (rei

π
2 ))dr. (2)

Proof. We consider Figure 1 as the modifications of the Bromwich integral and
suppose that F (s) → 0 uniformly on circular arcs with radius R, when R → ∞.
In this sense, by applying the Cauchy theorem we can show on the closed contour
Γj , j = 1, 2

1

2πi

∫
Γj

estF (s)ds = 0, j = 1, 2. (3)

On the contour Γ1, if we set suitable values for lines Cj (s = rei
π
2 for Cj , j =

1, 2 and s = re−i
π
2 for Cj , j = 3, 4) and infinitesimal circles, and use the well-known
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Figure 1. Deformations of the Bromwich integral for functions in-
volving two branch points ±ai

Jordan lemma for vanishing the integral on arcs we get the relation (1) as follows

1

2πi

∫ c+i∞

c−i∞
estF (s)ds = − 1

2πi
(

∫
C1

+

∫
C3

)− 1

2πi
(

∫
C2

+

∫
C4

)

=
1

2πi

∫ ∞
a

eirtF (rei
π
2 )(idr) +

1

2πi

∫ ∞
a

e−irtF (rei
π
2 )(−idr)

+
1

2πi

∫ a

∞
eirtF (re−i

π
2 )(idr) +

1

2πi

∫ a

∞
e−irtF (re−i

π
2 )(−idr)

= − 1

2πi

∫ ∞
a

2 sin(rt)[F (rei
π
2 )− F (re−i

π
2 )](idr)

= − 2

π

∫ ∞
a

sin(rt)=(F (rei
π
2 ))dr.

In the same procedure to derive the relation (2), by writing the integral on
the contour Γ2 we can obtain

1

2πi

∫ c+i∞

c−i∞
estF (s)ds = − 1

2πi
(

∫
C1

+

∫
C3

)− 1

2πi
(

∫
C2

+

∫
C4

)

=
1

2πi

∫ a

0
eirtF (rei

π
2 )(idr) +

1

2πi

∫ a

0
e−irtF (rei

π
2 )(−idr)

+
1

2πi

∫ 0

a
eirtF (re−i

π
2 )(idr) +

1

2πi

∫ 0

a
e−irtF (re−i

π
2 )(−idr)

=
1

2πi

∫ a

0
2 cos(rt)[F (rei

π
2 ) + F (re−i

π
2 )](idr)

=
2

π

∫ a

0
cos(rt)<(F (rei

π
2 ))dr.

�

Corollary 2.1. In view of the Efros theorem for the following relation [4]

L−1{1

s
F (

1

s
);x} =

∫ ∞
0

J0(2
√
ux)f(u)du, (4)
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and applying the identities [13]∫ ∞
0

J0(2
√
xt) sin(tr)dt =

1

r
cos(

x

r
), (5)∫ ∞

0
J0(2
√
xt) cos(tr)dt =

1

r
sin(

x

r
), (6)

we get new integral representation for function L−1{1
sF (1

s );x}, as follows

f(x) = L−1{1

s
F (

1

s
);x} = − 2

π

∫ a

0
cos(rx)

(
=(F (ξei

π
2 ))
)
ξ= 1

r

dr

r
, (7)

f(x) = L−1{1

s
F (

1

s
);x} =

2

π

∫ ∞
a

sin(rx)
(
<(F (ξei

π
2 ))
)
ξ= 1

r

dr

r
. (8)

Corollary 2.2. In view of the Hilbert transform

H{f(x); y} =
1

π
P.V.

∫ ∞
−∞

f(x)

y − x
dx, (9)

of trigonometric functions, i.e., H{sin(ax); y} = − cos(ay) and H{cos(ax); y} =
sin(ay), and using relations (1) and (2), we get new integral representations as
follows

H{f(t); y} =
2

π

∫ ∞
a

cos(ry)=(F (rei
π
2 ))dr, (10)

H{f(t); y} =
2

π

∫ a

0
sin(ry)<(F (rei

π
2 ))dr. (11)

Remark 2.1. The relations (1) and (2) can be interpreted as the Fourier sine and

cosine transforms of functions − 2
π=(F (rei

π
2 ))H(r − a) and 2

π<(F (rei
π
2 ))H(a − r)

respectively, where H is the Heaviside unit step function. In this sense, we get the
following integral representations as the inverse Fourier sine and cosine transforms

−=(F (rei
π
2 ))H(r − a) =

∫ ∞
0

sin(rt)f(t)dt, (12)

<(F (rei
π
2 ))H(a− r) =

∫ ∞
0

cos(rt)f(t)dt. (13)

Example 2.1. Using the well-known relation L{J0(at); s} = 1√
s2+a2

for the Bessel

function of first kind and zero order, we have the following integral representations

J0(at) =
2

π

∫ ∞
a

sin(rt)
1√

r2 − a2
dr, (14)

J0(at) =
2

π

∫ a

0
cos(rt)

1√
a2 − r2

dr. (15)

Also, using the relations (10) and (11), we have the following integral repre-
sentations for the Bessel function of second kind and the Struve function of zero
order

Y0(ay) = − 2

π

∫ ∞
a

cos(ry)
1√

r2 − a2
dr, (16)

H0(ay) =
2

π

∫ a

0
sin(ry)

1√
a2 − r2

dr. (17)
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Remark 2.2. If we have other singularities inside the Bromwich contours (poles and
essential singularities) or branch points, then, the sum of residues of the function
F (s)esx at these singularities is added to the relations (1) and (2) in Theorem 2.1.
For example, we state the following examples.

Example 2.2. Using the fact that L{Y0(at); s} = − 2
π

ln( s+
√
s2+a2

a
)√

s2+a2
, for the Bessel

function of second kind and zero order we have the following integral representation
[13]

Y0(at) =
4

π2

∫ a

0
sin(rt)

sin−1( ra)
√
a2 − r2

dr − 4

π2

∫ ∞
a

sin(rt)
ln( r+

√
r2−a2
a )

√
r2 − a2

dr. (18)

Also, for the function F (s) = 1
ln(s2+a2)

with the poles ±
√

1− a2, a > 1, we

have the following representation [2]

L−1{ 1

ln(s2 + a2)
, t} = 2

∫ ∞
a

sin(rt)

π2 + ln2(r2 − a2)
dr +

sin(t
√
a2 − 1)√

a2 − 1
, (19)

and for L−1{ e
− xs√

s2+a2

s , t}, we have

L−1{e
− xs√

s2+a2

s
, t} = 1− 2

π

∫ a

0
cos(rt) sin(

xr√
a2 − r2

)
dr

r
, x > 0. (20)

Example 2.3. Using the well-known relation

L{H0(at); s} =
2

π

ln(a+
√
s2+a2

s )
√
s2 + a2

= −1

s
L{Y0(at);

1

s
}, (21)

for the Struve function of zero order [13]

H0(z) =
∞∑
n=0

(−1)n( z2)2n+1

Γ2(n+ 3
2)

, (22)

and applying the relations (7) and (8), we get a new integral representation for the
Struve function

H0(at) = − 4

π2

∫ ∞
a

cos(rt)
sin−1(ar )
√
r2 − a2

dr +
4

π2

∫ a

0
cos(rt)

ln(a+
√
a2−r2
r )

√
a2 − r2

dr. (23)

3. Application to dual integral equations

The dual integral equations are pairs of integral equations arising in solution
of mixed boundary problems, for example in potential theory and crack problems in
elasticity [12]. In this section, as an application of the obtained results in previous
section, we introduce dual integral equations with kernels of the Struve and Bessel
functions H0 and Y0. For this purpose, we consider the Y -transform of zero order
and its inversion formula with respect to the Bessel function of second kind and
Struve function

g(y) =

∫ ∞
0

√
xyY0(xy)f(x)dx, y > 0, (24)

f(x) =

∫ ∞
0

√
xyH0(xy)g(y)dy. (25)
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Theorem 3.1. The solution of the dual integral equations{∫∞
0 t−1f(t)H0(xt)dt = A(x), 0 < x < 1,∫∞

0 f(t)H0(xt)dt = 0, 1 < x <∞,
(26)

is given by

f(t) = t

∫ 1

0
h1(r) sin(rt)dr + t

∫ ∞
1

h2(r) sin(rt)dr, (27)

where h1 and h2 satisfy the following Abel type integral equation

A(x) =

∫ 1

x

h1(r)√
r2 − x2

dr +

∫ ∞
x

h2(r)√
r2 − x2

dr, 0 < x < 1. (28)

Proof. First we consider the second equation of (26), we use the inverse H-transform
to get the following relation

t−
1
2 f(t) =

∫ 1

0
g(x)
√
xtY0(xt)dx. (29)

Now, if we apply the integral representation (18) for the Bessel function of
second kind, we obtain

f(t) = t

∫ 1

0
h1(r) sin(rt)dr + t

∫ ∞
1

h2(r) sin(rt)dr, (30)

where h1(r) and h2(r) are auxiliary functions given by

h1(r) =
4

π2

∫ 1

r

√
xg(x)

sin−1( rx)
√
x2 − r2

dx− 4

π2

∫ r

0

√
xg(x)

ln( r+
√
r2−x2
x )

√
r2 − x2

dx, (31)

h2(r) = − 4

π2

∫ 1

0

√
xg(x)

ln( r+
√
r2−x2
x )

√
r2 − x2

dx. (32)

At this point, we set f(t) in the first equation of (26) to get an Abel type
integral equation for the unknown functions h1 and h2

A(x) =

∫ ∞
0

H0(xt)[

∫ 1

0
h1(r) sin(rt)dr +

∫ ∞
1

h2(r) sin(rt)dr]dt (33)

=

∫ 1

0
h1(r)

∫ ∞
0

sin(rt)H0(xt)dtdr +

∫ ∞
1

h2(r)

∫ ∞
0

sin(rt)H0(xt)dtdr

=

∫ 1

x

h1(r)√
r2 − x2

dr +

∫ ∞
x

h2(r)√
r2 − x2

dr, 0 < x < 1,

where we used the following fact for simplification [13]∫ ∞
0

sin(rt)H0(xt)dt =

{
1√

x2−r2 , r < x,

0, r > x.
(34)

�

Theorem 3.2. The solution of the dual integral equations{∫∞
0 t−1f(t)Y0(xt)dt = A(x), 0 < x < 1,∫∞

0 f(t)Y0(xt)dt = 0, 1 < x <∞,
(35)
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is given by

f(t) = t

∫ 1

0
h1(r) cos(rt)dr + t

∫ ∞
1

h2(r) cos(rt)dr, (36)

where h1 and h2 satisfy the following Abel type integral equation

A(x) = −
∫ x

0

h1(r)√
x2 − r2

dr −
∫ x

1

h2(r)√
x2 − r2

dr, 0 < x < 1. (37)

Proof. First we consider the second equation of (35), we use the inverse Y -transform
to get the following relation

t−
1
2 f(t) =

∫ 1

0
g(x)
√
xtH0(xt)dx. (38)

Now, if we apply the integral representation (23) for the Struve function, we
obtain

f(t) = t

∫ 1

0
h1(r) cos(rt)dr + t

∫ ∞
1

h2(r) cos(rt)dr, (39)

where h1 and h2 are auxiliary functions given by

h1(r) = − 4

π2

∫ r

0

√
xg(x)

sin−1(xr )
√
r2 − x2

dx+
4

π2

∫ 1

r

√
xg(x)

ln(x+
√
r2−x2
r )

√
r2 − x2

dx. (40)

h2(r) = − 4

π2

∫ 1

0

√
xg(x)

sin−1(xr )
√
r2 − x2

dx. (41)

At this point, we set f(t) in the first equation of (35) to get an Abel integral
equation for the unknown function h

A(x) =

∫ ∞
0

Y0(xt)[

∫ 1

0
h1(r) cos(rt)dr +

∫ ∞
1

h2(r) cos(rt)dr]dt (42)

=

∫ 1

0
h1(r)

∫ ∞
0

cos(rt)Y0(xt)dtdr +

∫ ∞
1

h2(r)

∫ ∞
0

cos(rt)Y0(xt)dtdr

= −
∫ x

0

h1(r)√
x2 − r2

dr −
∫ x

1

h2(r)√
x2 − r2

dr, 0 < x < 1,

where we used the following fact for simplification [13]∫ ∞
0

cos(rt)Y0(xt)dt =

{
− 1√

r2−x2 , r > x,

0, r < x.
(43)

�

4. Application to Gregory-Nörlund numbers

In this section, as an application of the inverse Laplace transforms of the
logarithmic functions when a→ 0, we introduce the Gregory-Nörlund numbers and
present an integral representation for it. First, we recall the definition of the Gregory
numbers. The Gregory numbers in are defined by the following formula [6, 7, 9]

x

ln(1− x)
= −1 +

∞∑
n=1

inx
n, −1 < x < 1, (44)
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and was introduced for the first time by Gregory in 1670. As an interesting repre-
sentation of the Gregory numbers, Apelblat showed these numbers with respect to
the improper integrals of the Volterra function ν(t) [2]

ν(t) =

∫ ∞
0

tu

Γ(u+ 1)
du. (45)

He used the complex inversion formula of the Laplace transform for the Volterra
function ν(t) and derived the following integral representation for the Gregory num-
bers by the Laguerre polynomials Ln(t)∫ ∞

0

e−xt

x[π2 + ln2(x)]
dx =

∞∑
n=0

in+1Ln(t). (46)

In other point of view to the Gregory numbers, we consider the generating
function of the Bernoulli numbers [1]

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
. (47)

It is obvious that the relation between the Gregory numbers and Bernoulli numbers
for −1 < x < 1 is given by

1∑∞
n=0Bn

lnn(1−x)
n!

= 1−
∞∑
n=1

inx
n. (48)

Now, in this section in view of the generating function of Nörlund’s generalized
Bernoulli numbers [16, 24](

x

ex − 1

)α
=

∞∑
n=0

B(α)
n

xn

n!
, α > 0, (49)

we intend to find the Nörlund’s generalized Gregory numbers i
(α)
n (we name it as

the Gregory-Nörlund numbers). For this purpose, we start with the reciprocal of
the Nörlund’s generalized Bernoulli numbers as the generating function of Gregory-
Nörlund numbers(

x

ln(1− x)

)α
= (−1)α +

∞∑
n=1

i(α)
n xn, −1 < x < 1, (50)

and in next stage, we try to find an integral representation for the Gregory-Nörlund
numbers in terms of the Volterra function of two parameters µ(t, α, β). This integral
representation and the associated Laguerre polynomials enable us to show a formula
for obtaining these numbers. At this point, we start with the relation (50) as an
assumption and we set x = 1 − 1

s . We see that the left hand side of the relation is
reduced to

F (s) =
(s− 1)α−1

s2α lnα(s)
=

(−1)α

(s− 1)sα

(
1− 1

s

ln(1− (1− 1
s ))

)α
, (51)

whose the inverse Laplace transform can be obtained by the Volterra function of
two parameters µ(t, α, β) for α ∈ N [3, 5]

µ(t, α, β) =

∫ ∞
0

tu+αuβ

Γ(β + 1)Γ(u+ α+ 1)
du, <(α) > −1,<(β) > −1. (52)
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Now, by substituting the relation (50) in F (s), we get

F (s) =
(−1)α

(s− 1)sα

(
1− 1

s

ln(1− (1− 1
s ))

)α
(53)

=
(−1)α

(s− 1)sα

(
(−1)α +

∞∑
n=1

i(α)
n (1− 1

s
)n

)
(54)

=
1

(s− 1)sα
+

(−1)α

sα+1

∞∑
n=0

i
(α)
n+1(1− 1

s
)n, (55)

and the inverse Laplace transform of 1
sα+1 (1− 1

s )n is given by the associated Laguerre
polynomials as [18]

L−1{ 1

sα+1
(1− 1

s
)n;x} =

n!

Γ(n+ α+ 1)
xαLαn(x), <(α) > −1. (56)

Therefore, the following identity holds for the associated Laguerre polynomials
and Gregory-Nörlund numbers

L−1{(s− 1)α−1

s2α lnα(s)
;x} = L−1{ 1

(s− 1)sα
;x}+ (−1)α

∞∑
n=0

n!
xαi

(α)
n+1

Γ(n+ α+ 1)
Lαn(x),

=
1

Γ(α)
exγ(α, x) + (−1)α

∞∑
n=0

n!
i
(α)
n+1x

α

Γ(n+ α+ 1)
Lαn(x), (57)

where γ(α, x) is the lower incomplete gamma function. Now, in order to obtain an
integral representation for the Gregory-Nörlund numbers, we use the orthogonality
relation of the associated Laguerre polynomials∫ ∞

0
e−xxαLαn(x)Lαm(x)dx =

Γ(n+ α+ 1)

n!
δm,n, (58)

to get the following integral representation for i
(α)
n+1, n = 0, 1, · · · ,

(−1)αi
(α)
n+1 =

∫ ∞
0

e−xLαn(x)

(
L−1{(s− 1)α−1

s2α lnα(s)
;x}
)
dx− 1

Γ(α)

∫ ∞
0

Lαn(x)γ(α, x)dx.

(59)
The above representation can be simplified into the following relation for α ∈ N

(−1)αi
(α)
n+1 =

∫ ∞
0

e−xLαn(x)

(
n−1∑
k=0

(−1)n−k−1

(
n− 1

k

)
µ(x, n− 1, 2n− k − 1)

)
dx

− 1

Γ(α)

∫ ∞
0

Lαn(x)γ(α, x)dx, (60)

where we used the following facts for the inverse laplace transforms of Volterra
functions

L−1{ 1

sβ lnα(s)
;x} = µ(x, α− 1, β − 1), (61)

L−1{(s− 1)n−1

s2n lnn(s)
;x} =

n−1∑
k=0

(−1)n−k−1

(
n− 1

k

)
µ(x, n− 1, 2n− k − 1). (62)
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i
(α)
n+1 i

(α)
1 i

(α)
2 i

(α)
3 i

(α)
4 i

(α)
5 i

(α)
6 i

(α)
7 i

(α)
8 i

(α)
9 i

(α)
10

α = 2 -1 1
12 0 − 1

240 − 1
240 − 221

60480 − 19
6048 − 9829

3628800 − 407
172800 − 330157

159667200
α = 3 3

2 −1
2 0 − 1

240 − 1
480 − 1

945 − 11
20160 − 47

172800 − 19
161280 − 439

15966720
α = 4 −2 7

6 −1
6 − 1

720 0 1
3024

1
3024

199
725760

79
362880

8213
47900160

α = 5 5
2 −25

12
5
8 − 1

24 0 1
6048

1
12096

19
725760 − 1

483840 − 53
3548160

Table 1. The first ten Gregory-Nörlund numbers for α = 2, 3, 4, 5.

At the end, the first ten Gregory-Nörlund numbers have been shown in Table
1 for α = 2, 3, 4, 5.

5. Semi-integrals of powers of Airy functions

In this section, we intend to show new integral representations for the powers of
Airy functions, i.e., Ain(x), n = 1, 2, 3, 4. These integral representations are written
in terms of the semi-integrals and semi-derivatives (the Riemann-Liouville fractional
integral and derivative of order 1

2) of associated functions. For this purpose, we start
with the definitions of the fractional integral and derivative, and powers of Airy
functions.

Definition 5.1. For n− 1 < α < n, n ∈ N and f ∈ L1(a, b), the Riemann-Liouville
fractional integrals and derivatives are defined as [14, 17]

(Iαa+f)(x) =
1

Γ(α)

∫ x

a
(x− s)α−1f(s)ds, (63)

(Dα
a+f)(x) = Dn(In−α

a+
f)(x), (64)

where D = d
dx . In similar way, for n − 1 < α < n, n ∈ N and f ∈ L1(R), the Weyl

fractional integrals and derivatives are defined as

(Iα+f)(x) =
1

Γ(α)

∫ x

−∞
(x− s)α−1f(s)ds, (65)

(Wα
+f)(x) = Dn(In−α+ f)(x). (66)

Definition 5.2. The following integral representations hold for the powers of Airy
functions [20, 21, 22]

Ai(x) =
1

π

∫ ∞
0

cos(xt+
t3

3
)dt, (67)

Ai2(x) =
1

2π
3
2

∫ ∞
0

t−
1
2 cos(xt+

t3

12
+
π

4
)dt, (68)

Ai3(x) =
1

(18π3)
1
2

∫ ∞
0

t−
1
2J− 1

6
(

4

27
t3)[cos(

5

27
t3 + xt)− sin(

5

27
t3 + xt)]dt, (69)

Ai4(x) = − 3

16π2

∫ ∞
0

J0(
1

32
t3) sin(

5

96
t3 + xt)dt

− 3

16π2

∫ ∞
0

Y0(
1

32
t3) cos(

5

96
t3 + xt)dt, (70)
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Theorem 5.1. The following semi-integrals and semi-derivatives hold for the powers
of Airy functions

fn(
√
x) =

√
π

2
I

1
2
0 Ain(

√
x), Ain(

√
x) =

2
√
x√
π
D

1
2
0 fn(

√
x), n = 1, 2, 3, 4, (71)

where

f1(x) =
1

π

∫ ∞
0

(
J0(ξx) cos(

ξ3

3
)−H0(ξx) sin(

ξ3

3
)

)
dξ, (72)

f2(x) =
1

4
√
π

∫ ∞
0

ξ−
1
2

(
J0(ξx)(cos(

ξ3

12
)− sin(

ξ3

12
))−H0(ξx)(cos(

ξ3

12
) + sin(

ξ3

12
))

)
dξ,

(73)

f3(x) = (6
√

2π)−1

∫ ∞
0

ξ
1
2

(
J0(ξx)J− 1

6
(

4

27
ξ3) cos(

5ξ3

27
)−H0(ξx)J− 1

6
(

4

27
ξ3) sin(

5ξ3

27
)

)
dξ,

− (6
√

2π)−1

∫ ∞
0

ξ
1
2

(
J0(ξx)J 1

6
(

4

27
ξ3) sin(

5ξ3

27
) + H0(ξx)J 1

6
(

4

27
ξ3) cos(

5ξ3

27
)

)
dξ,

(74)

f4(x) = − 3

32π

∫ ∞
0

(
J0(ξx)J0(

1

32
ξ3) sin(

5ξ3

96
) + H0(ξx)J0(

1

32
ξ3) cos(

5ξ3

96
)

)
dξ,

− 1

32π

∫ ∞
0

(
J0(ξx)Y0(

1

32
ξ3) cos(

5ξ3

96
)−H0(ξx)Y0(

1

32
ξ3) sin(

5ξ3

96
)

)
dξ.

(75)

Proof. We use the relations (15) and (17) to construct the Airy function Ai(x) in
terms of its addition formula in integral (67). After a little algebra, we get∫ ∞

0

(
J0(ξx) cos(

ξ3

3
)−H0(ξx) sin(

ξ3

3
)

)
dξ =

2

π

∫ x

0

1√
x2 − ξ2

Ai(ξ)dξ, (76)

which by applying the suitable change of variables, we obtain the result (71) for
n = 1. In the same procedures, we can show other representations for Ain(x), n =
2, 3, 4. �

Remark 5.1. If we start by the relations (14) and (16) to construct the powers
of Airy functions, then we get new representations in terms of the Weyl fractional
integral (65) and fractional derivative (66), see [15].

6. Concluding remarks

This papers provides new integral representations for the inverse Laplace trans-
form of multivalued functions involving two conjugate branch points on imaginary
axis. These representations were given in terms of the Fourier sine and cosine
transforms. In this sense, we obtained new integral representation for some spe-
cial functions and we get an Abel type integral equation for certain dual integral
equations. Also, we presented an integral representation for the Gregory-Nörlund
numbers and showed new identities for the powers of the Airy functions with respect
to the Riemann-Liouville fractional integrals of order 1

2 . This representation for the
Airy function can be extended to order α, 0 < α < 1, by obtaining new integral
representations for the Bessel functions in future works.
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