
U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 1, 2018 ISSN 2286-3540

INITIALIZATION TIME OPTIMIZATION OF A WIRELESS
TRANSPORT EMULATOR USED FOR SDN APPLICATIONS

DEVELOPMENT

Alexandru Stancu1, Alexandru Vulpe2, Simona Halunga3

Software-Defined Networking (SDN) is a novel network archi-
tecture that emerged in order to mitigate the limitations proven by tradi-
tional networks. It is not yet a mature solution, some standardization
activities being still in progress. Having the appropriate tools for helping
this process is an important advantage. The Wireless Transport Emulator
(WTE) is a software tool that offers the possibility of simulating wireless
transport network elements and links between them, while exposing some in-
formation models proposed by the Open Networking Foundation (ONF), like
TR-532 and TR-512. This paper presents an evaluation of the time needed
for the simulator initialization and proposes a solution for optimizing this
time.

Keywords: Software-Defined Networking, Open Networking Foundation,
Wireless Transport Networks

1. Introduction

Software-Defined Networking (SDN) is a paradigm that emerged around
the year 2009, from the activity conducted in the OpenFlow project in the
Stanford University [1]. It appeared as a solution for mitigating the limitations
demonstrated by traditional networks, such as: complex management, slow
network innovation, vendor dependency or network policies inconsistencies.

SDN proposes the decoupling of the data and control planes, centralizing
the network control in a logical entity represented by the SDN controller [2].
With this approach, network elements become simple forwarding elements that
are instructed by the controller about where to forward the packets in the
network. This enables network programmability, through software applications
that can run on top of the SDN controller, having a network-wide view [3].

1PhD Student, Faculty of Electronics, Telecommunications and Information Technology,
University “Politehnica” of Bucharest, Romania, e-mail: alex.stancu@radio.pub.ro

2Lecturer, Faculty of Electronics, Telecommunications and Information Technology, Uni-
versity “Politehnica” of Bucharest, Romania

3Professor, Faculty of Electronics, Telecommunications and Information Technology,
University “Politehnica” of Bucharest, Romania

89



90 Alexandru Stancu, Alexandru Vulpe, Simona Halunga

SDN aims to be applicable in all types of networks, from campus [4], or
data-center networks [5], to optical [6], wireless transport [7] or, more recently,
vehicular networks [8]. In some cases, production deployments already exist,
but in other cases standardization activities are still ongoing.

The Open Networking Foundation (ONF) is an organization that pro-
motes the adoption of SDN through the development of open standards and
open-source software ecosystems. The Wireless Transport (WT) project, which
is part of this organization, focuses on enabling SDN in WT networks. The
group created an information model to be used for managing wireless trans-
port devices: the Microwave Information Model (TR-532) [9]. Several Proofs
of Concept (PoCs) were conducted in order to validate the proposed model [10,
11, 12]. It is transformed in the Yet Another Next Generation (YANG) [13]
modeling language, for providing the ability to be used by the Network Con-
figuration Protocol (NETCONF) [14]. This approach implies that the wireless
transport devices would need a NETCONF interface for communicating with
the SDN controller.

For providing an easy and flexible approach for testing the Microwave In-
formation Model, a simulator was developed by the main author of this paper:
the Wireless Transport Emulator (WTE). This enables users to simulate wire-
less transport devices, while exposing the TR-532 information model and to
emulate links between such equipment. Its functionality is best suited for SDN
applications developers that want to use TR-532, which can simulate wireless
transport networks, thus eliminating the need of owning real, expensive de-
vices. It can be used also by network operators for testing SDN applications
that are based on TR-532 and their interactions in an emulated environment,
without needing to alter the production network for testing.

This paper is organized as follows: section 2 presents a high-level overview
of the WTE, section 3 illustrates the initialization time of the simulator be-
fore and after the optimization, while describing the improvements that were
implemented to achieve faster initialization time, and section 4 concludes the
paper.

2. Wireless Transport Emulator Overview

The purpose of the Wireless Transport Emulator is to enable emulation
of wireless transport devices and links between them, while exposing the infor-
mation models proposed by ONF: TR-532, the Microwave Information Model,
and TR-512, the Core Information Model [15]. The simulation is done on a
single Linux host. A high-level overview of a network element simulated with
WTE is illustrated in Figure 1.

WTE uses a JavaScript Object Notation (JSON) file that describes the
topology to be simulated. Each Network Element (NE) is represented as a
docker container, inside which a Linux Operating System (OS) runs, along



Initialization Time Optimization of a Wireless Transport Emulator used for SDN... 91

Fig. 1. High-level overview of an NE simulated with WTE.

with a NETCONF server implementation. The latter is responsible for pro-
viding the NETCONF interface to SDN controllers and for advertising the
aforementioned information models. This implementation is called Default
Values Mediator (DVM) and it is based on the OpenYuma framework, its
architecture being described in [16].

The interfaces of each simulated NE, that reside on different transport
layers, as described in the information models, are represented in the simula-
tor as Linux interfaces inside each docker container. The links are represented
using virtual Ethernet pairs (veth pairs), which are actually tunnels inside the
Linux host OS. The characteristics, such as the bandwidth, delay or packet loss
of the interfaces that form the link are altered according to device attributes,
like channel bandwidth, or modulation used, in order to emulate wireless links.
Each docker container can be run inside a docker network, for achieving net-
work isolation between the simulated NEs.

The initialization of the WTE uses the following workflow: the file con-
taining the topology to be simulated is analyzed, then the docker networks and
docker containers associated with each NE are created. The following step is
adding the needed interfaces for each simulated device in the corresponding
Linux OS from the docker container, and then creating the connections be-
tween the interfaces that define links between NEs.

3. Initialization time optimization

The initialization time of the WTE represents the duration, in seconds,
between the moment when the user issues the start command and the mo-
ment when the simulator finishes representing all the elements that form the
topology and waits for commands in its Command Line Interface (CLI).



92 Alexandru Stancu, Alexandru Vulpe, Simona Halunga

The initialization time is given by the duration of executing the com-
mands of creating the docker networks, containers, adding the necessary Linux
interfaces inside each of them and creating the links between the containers.
This time influences only the user experience, because it is not relevant any-
more after WTE is ready and the network is being simulated. The docker
engine does not permit the parallelization of commands like network or con-
tainer creation, so it is not possible to optimize the initialization time by
running those commands in parallel. A sequence diagram representing the
initialization of the WTE can be seen in Figure 2. As illustrated there, the op-
timization could be implemented in the loop that creates the Linux interfaces
in the docker containers.

Fig. 2. Sequence diagram for the initialization phase of the WTE.

Optimizing the initialization time of the WTE was done with regards
to the creation of Linux interfaces inside each docker container. The previ-
ous implementation behaved in the following manner: the interfaces from the
topology file were iterated, and for each interface defined there, a command
was sent to the associated container in order to create that specific object in-
side the Linux OS. This approach introduced a lot of overhead represented by
sending multiple very small commands. The optimization introduced in this
article consists in changing this approach. Instead of sending each command
to the docker container, it is written inside a script file associated with the
simulated NE. For each of the corresponding interfaces of that specific device,
the commands that would create the Linux objects were written in that spe-
cific file. After iterating over all the interfaces of a device, the script file would



Initialization Time Optimization of a Wireless Transport Emulator used for SDN... 93

contain all the commands necessary for adding the Linux objects inside the
container. This script file was executed and all the interfaces were added as a
batch. The execution time associated with these operations decreases signifi-
cantly, compared to the previous approach. An illustration of the relevant part
of the sequence diagram of the initialization, before and after the optimization
was introduced can be seen in Figure 3.

Fig. 3. Relevant part of the sequence diagram of the initial-
ization phase of the WTE: a) before optimization, b) after the
optimization.

For measuring the benefits introduced by this optimization, the follow-
ing method was used: the simulator environment was installed in two cloud
environments: Orbit Cloud, which represents a wireless network testbed, as
described in [17], and in a cloud provided by Deutsche Telekom (DT) for the 4th

WT PoC [12]. The measurements were conducted on a two types of topologies:
ring and full mesh, while varying the number of simulated devices.

In the case of the ring topology, the number of simulated devices varied
from 10 to 200, with a pace of 10. This implies also varying the number of
simulated interfaces, because, in this case, each device contains a number of 8
interfaces, according to the information models proposed by ONF. This implies
a variation of the interfaces between 80 and 1600.

For the full mesh topology, the number of devices varied between 3 and
10, with a pace of 1. In this type of topology, the number of interfaces does
not depend in a linear manner anymore on the number of NEs, but a quadratic
dependency exists. This means that the number of interfaces varied between
18 and 270.



94 Alexandru Stancu, Alexandru Vulpe, Simona Halunga

The values for the initialization time were collected both before and af-
ter implementing the optimization described previously. The results of the
measurements are illustrated in Figures 4, 5, 6 and 7.

Fig. 4. Initialization times in the Orbit Cloud environment in
a ring topology.

It was chosen to use two different simulation environments for verifying
that the improvements given by the optimization are applicable in a general
manner and do not depend on the system used for the simulation. The mea-
sured results differ slightly between the two systems, Orbit and DT, with
regards to the absolute values. This is caused by the processing power of the
two systems, which is different for those cloud environments. This difference
is not applicable with regards to relative values. We observe an approximately
linear dependency between the number of simulated interfaces and the number
of seconds necessary for the initialization of the WTE in both cases.

The charts reveal fairly high values for the initialization time, before the
optimization was implemented. This time could reach values around 400-450
seconds for ring topologies containing approximately 800 simulated interfaces,
and reach values higher than 1000 seconds for big topologies, containing around
1600 simulated interfaces. In the case of full mesh topologies, it can be seen
that the improvement is even bigger, because for this topology type, for the
same number of simulated interfaces, there are less NEs, hence the time needed
for starting the associated docker networks and containers is smaller.

After implementing the previously described optimization, the values for
the initialization time decrease. The average improvement, regardless of the



Initialization Time Optimization of a Wireless Transport Emulator used for SDN... 95

Fig. 5. Initialization times in the DT Cloud environment in a
ring topology.

Fig. 6. Initialization times in the Orbit Cloud environment in
a mesh topology.

system used for running the evaluation or the number of simulated interfaces
in the topology, is around 37%, in the case of ring topologies. For the full mesh



96 Alexandru Stancu, Alexandru Vulpe, Simona Halunga

Fig. 7. Initialization times in the DT Cloud environment in a
mesh topology.

topologies, given the fact that the number of simulated interfaces depends in a
quadratic manner on the number of devices, the improvement reaches almost
47%. Reducing the initialization time with such a high percentage greatly
improves user experience, even though this is irrelevant after the simulator is
started.

4. Conclusions

Software-Defined Networking is a paradigm with a high momentum given
by the research and standardization activities that are revolving around it. It is
a key enabler for novel technologies, like the Internet of Things (IoT), vehicular
networks or 5G.

Having the right tools to support the research and standardization activ-
ities is an important advantage. Mininet is a great example in this direction,
enabling the simulation of software-defined networks that use the OpenFlow
protocol as a southbound interface. The Wireless Transport Emulator is a
complementary tool that can be used for simulating WT networks, while using
a NETCONF southbound interface that exposes the newly emerged informa-
tion models proposed by ONF: TR-532, the Microwave Information Model and
TR-512, the Core Information Model.

The WTE can be extended to incorporate other information models as
well, through its modular and flexible architecture, with the observation that



Initialization Time Optimization of a Wireless Transport Emulator used for SDN... 97

these models need to be translated into the YANG modeling language before-
hand.

In this paper, an optimization for the initialization process of the WTE
was implemented. In a nutshell, instead of adding the relevant Linux interfaces
inside the docker containers representing NEs one at a time, the improvement
was using a batch approach, adding all interfaces at once in every simulated
device. This method eliminated the overhead given by the duration of sending
the commands to the docker containers. Instead of triggering multiple short
instructions, only one batch command is given to each simulated device, this
approach being, as shown in the results, faster by approximately 37%, in the
case of ring topologies, and up to 47% in the case of full mesh topologies.

Further research directions could be represented by investigations in the
newer versions of the docker engine about enabling parallelization when creat-
ing docker networks or containers. These would bring a great advantage from
the initialization time of the WTE point of view. Also, a comparison for this
characteristic, between mininet and WTE could be interesting.

R E F E R E N C E S

[1] N. Feamster, J. Rexford and E. Zegura, The Road to SDN: An intellectual history of

programmable networks, ACM Queue, XI(2013), No. 12.

[2] D. Kreutz, F. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky and S. Uh-

lig, Software-defined networking: A comprehensive survey, Proceedings of the IEEE,

103(2015), No. 1, 14-76.

[3] A. Stancu, S. Halunga, G. Suciu, and A. Vulpe, An Overview Study of Software Defined

Networking, Proceedings of the IE 2015 International Conference, (2015), 50-55.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, OpenFlow: enabling innovation in campus networks, ACM

SIGCOMM Computer Communication Review, 38(2008), No. 2, 69-74.

[5] D. Li, Y. Shang, and C. Chen, Software defined green data center network with exclu-

sive routing, INFOCOM, 2014 Proceedings IEEE, (2014), 1743-1751.

[6] D. Simeonidou, R. Nejabati, and M.P. Channegowda, Software defined optical networks

technology and infrastructure: Enabling software-defined optical network operations,

Optical Fiber Communication Conference and Exposition and the National Fiber Optic

Engineers Conference (OFC/NFOEC), (2013), 1-3.

[7] C.J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L.M. Contreras, H. Jin, and

J.C. Zúñiga, An architecture for software defined wireless networking,IEEE wireless

communications, 21(2014), No. 3, 52-61.

[8] Y. Cao, J. Guo and Y. Wu, SDN enabled content distribution in vehicular networks,

Fourth International Conference on Innovative Computing Technology (INTECH),

(2014), 164-169.

[9] Open Networking Foundation, TR-532: Microwave Information Model, December

2016, [Online], https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/

wp-content/uploads/2013/05/TR-532-Microwave-Information-Model-V1.pdf.

[10] Open Networking Foundation, Wireless Transport SDN Proof of Concept 2 Detailed

Report, June 2016, [Online], https://rs.opennetworking.org/wiki/download/



98 Alexandru Stancu, Alexandru Vulpe, Simona Halunga

attachments/262144003/2nd_Wireless%20Transport_PoC_White_Paper.pdf?api=

v2.

[11] Open Networking Foundation, Third Wireless Transport SDN Proof of Concept White

Paper, December 2016, [Online], https://rs.opennetworking.org/wiki/download/

attachments/262144003/3rd_Wireless%20Transport_PoC_White_Paper.pdf?api=

v2.

[12] Open Networking Foundation, Fourth Wireless Transport SDN Proof of Concept White

Paper, August 2017, [Online], https://rs.opennetworking.org/wiki/download/

attachments/262144003/4th_Wireless_Transport_PoC_White%20Paper.docx?

api=v2.

[13] Internet Engineering Task Force, RFC 6020: YANG - A Data Modeling Language

for the Network Configuration Protocol (NETCONF), October 2010, [Online], https:

//tools.ietf.org/html/rfc6020.

[14] Internet Engineering Task Force, RFC 6241: Network Configuration Protocol (NET-

CONF), June 2011, [Online], https://tools.ietf.org/html/rfc6241.

[15] Open Networking Foundation, TR-512: Core Information Model, November

2015, [Online], https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/

wp-content/uploads/2014/10/ONF-CIM_Core_Model_base_document_1.1.pdf.

[16] A. Stancu, A. Avram, M. Skorupski, A. Vulpe, and S. Halunga, Enabling SDN appli-

cation development using a NETCONF mediator layer simulator, Ninth International

Conference on Ubiquitous and Future Networks (ICUFN), (2017), 658-663.

[17] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Sira-

cusa, H. Liu, and M. Singh, Overview of the ORBIT radio grid testbed for evaluation of

next-generation wireless network protocols, Wireless Communications and Networking

Conference, 3(2005), 1664-1669.


