
U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 1, 2013 ISSN 1454-234x

AN AGENT-ORIENTED AND SERVICE-ORIENTED
ARCHITECTURE IN MEDICINE

Florica MOLDOVEANU1, Sorin-Alexandru CRISTESCU2

Până de curând, sistemele informatice medicale erau proprietatea anumitor
instituţii, lucru care a avut un impact negativ asupra calităţii serviciilor medicale.
Odată cu introducerea standardului HL7 v3 s-au creat premizele abordării
problemei interoperabilităţii. Din păcate, folosirea standardului HL7 este limitată şi
defectuos înţeleasă, în timp ce vechile aplicaţii încă domină lumea medicală.
Această lucrare propune o arhitectură bazată pe sisteme multiagent şi web semantic
care abordează problema interoperabilităţii între sistemele din domeniul medical,
având ca nucleu un motor de căutare semantică pentru servicii web şi agenţi
software.

Traditionally, medical information systems have been proprietary to certain
institutions, with a negative impact on the quality of medical services. The
introduction of the HL7 standard version 3, helps in defining a better approach to
the issue of interoperability. However, the usage of the HL7 standard is limited and
misunderstood, while the traditional proprietary applications still dominate the
medical world. This paper proposes an architecture based on multiagent systems
and semantic web that addresses the interoperability between medical information
systems, having as kernel a semantic web service as a solution to the registration
and discovery of web services and software agents.

Keywords: multiagent systems, semantic web, HL7, semantic search engine

1. Introduction

After the interoperability issue has been neglected for a long time, in the
todays medical world there is a trend to develop and use standards that allow
medical institutions or devices to exchange medical data. Such standards, like
DICOM [1] (Digital Imaging and Communications in Medicine) and HL7 [2]
(Health Level 7) are used by an increasing number of applications in various
domains: patient monitoring, electronic patient record, exchange of medical
images among devices produced by different vendors, etc.

1 Prof., Faculty of Automatic Control and Computer Science, University POLITEHNICA of

Bucharest, Romania, e-mail: fm@cs.pub.ro
2 PhD student, Faculty of Automatic Control and Computer Science, University POLITEHNICA

of Bucharest, Romania, e-mail: sorincalex@gmail.com

4 Florica Moldoveanu, Sorin-Alexandru Cristescu

Moreover, HL7 version 3 has introduced real semantic interoperability
through its new Reference Information Model (RIM). This opens up new
possibilities in the way medical entities communicate.

This paper shows how the standards can be used in architecting a solution
based on software agents and web services.

As an example we take as use case a solution for monitoring the state of
health for elderly people. Such a person could wear a watch that functions as an
embedded device on which a software agent is installed. The role of this agent is
to monitor the patient’s vital signals, such as blood pressure and pulse and inform
an emergency service when necessary. For example if the patient faints without
the possibility to alert the ambulance service, the agent would observe that the
vital signs get beyond certain safety limits and thus communicate to an emergency
service via wireless or 3G Internet.

The patient’s personal agent would help in the same way in other similar
circumstances, e.g. a car accident: as soon as the patient’s vital signs deteriorate,
the agent can contact the emergency service. Moreover, an agent embedded in the
car could also take action, e.g. informing the police, the insurance company, etc.
Agents make sense in such scenarios because of their autonomous behavior, i.e.
they take actions based on observing the environment, without human
intervention.

A service is basically an operation that obeys to a certain contract. Due to
the heterogeneous character of the medical world, we can’t expect to have the
same services with the same input and output types being used by all medical
institutions. The communication between medical institutions needs semantic
interoperability, which can be obtained by employing ontologies. For example,
when a certain hospital asks a service for the electronic patient record (EPR) of a
certain patient, it needs to provide certain identification data for that patient and it
needs to understand/interpret the received patient record. All pieces of information
exchanged need to be expressed in ontologies understood by all parties involved.
Likewise, when a doctor writes the diagnosis in the patient’s medical record, the
symptoms have to be mapped to certain ontology (e.g. SNOMED-CT [3]
(Systematized Nomenclature of Medicine -- Clinical Terms)) such that they are
understood by any other entity (human or not) which can interpret that ontology.

Web services have been around for quite a while now, including in the
medical domain. We can leverage the power of the immense number of existing
web services by integrating them into the new scenarios proposed in this paper.
For example one can reuse existing web services for semantic interoperability
between medical stakeholders by semantically annotating these web services.

As it will result from next chapters, the issues of semantically annotating,
registering, discovering and consuming services and agents are similar. There are

An agent-oriented and service-oriented architecture in medicine 5

thus many similarities between agents and services used for semantic
interoperability. The backbone for their interoperability is the usage of ontologies.

2. Semantic Annotations, Publication and Discovery

Semantic annotations have been around for some time now in various
forms. Probably the most familiar form of annotation is a tag, i.e. a keyword or a
group of keywords attached to a piece of text published online aiming to speed up
the search, helping at the same time in finding more relevant and precise
information.

However, there is hardly anything semantic in tagging. The real semantic
annotation implies going at a deeper level and enhancing the unstructured data
online with a context linked with a structured domain. The ultimate goal of
semantic annotation is to enable not only better aimed search, but to transform a
simple information retrieval (i.e. based on textual matching) into structured data
retrieval (i.e. based on concepts from a domain).

Web services are described in WSDL [4] (Web Service Definition
Language), using a format based on XML. This description is registered into a
repository (traditionally UDDI-based) and thus a web service can be discovered
and consumed, as shown in Error! Reference source not found.. Or at least this
is the theory. In practice the step of registering the service in a UDDI [5]
(Universal Description, Discovery and Integration) repository is skipped and
instead the address of the service is hard-coded into the client. Also, a proxy is
generated based on the WSDL file; the proxy is then compiled together with the
client of the web service and thus the client can invoke the web service using the
local proxy.

Fig. 1. Registering, discovering and consuming a web service

UDDI repository

WSDL
Web service

client

2. look up service

3. receive endpoint

4. invoke service

 JAXR

1. register service

6 Florica Moldoveanu, Sorin-Alexandru Cristescu

There are several issues with “standard” WSDL-described web services.
First and foremost, WSDL is a purely syntactic representation of the web service
operations with their parameters and results. WSDL doesn’t say anything about
the service behavior or about the semantics of its operations.

Just as one can add semantic annotations to a document, web services can
also be semantically annotated. The W3C recommendation is SAWSDL [6],
which stands for Semantic Annotations for WSDL and XML Schema, based on the
older W3C submission WSDL-S. Briefly, SAWSDL provides means to
semantically annotate certain elements of a WSDL.

For example, let’s define an emergency service operation of giving advice
based on patient’s symptoms, medical record and location. This is a simplified
excerpt from the WSDL description of such an operation:

<wsdl:binding name="EmergencyServiceSoapBinding"
 type="es:EmergencyServicePortType">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetAdvice">
 <soap:operation soapAction="http://www.emergencyservice.org/GetPatientAdvice"/>
 <wsdl:input messageLabel="In" element="Patient"/>
 <soap:body use="literal" namespace="http://schemas. emergencyservice.org
 /GetPatientAdvice.xsd"/>
 </wsdl:input>
 <wsdl:output messageLabel="Out" element="Procedure">
 <soap:body use="literal" namespace="http://schemas. emergencyservice.org
 /GetPatientAdvice.xsd"/>
 </wsdl:output>
 <wsdl:fault>
 <soap:body use="literal" namespace="http://schemas. emergencyservice.org
 /GetPatientAdvice.xsd"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

This excerpt defines the operation, with its input, output and fault

messages. The actual types of the inputs, outputs and fault are defined in the XML
Schema document GetPatientAdvice.xsd (but could also be embedded in the
WSDL file):

 <xsd:schema targetNamespace="http://namespaces.emergencyservice.org"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <xsd:element name="Patient">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="string"/>
 <xsd:element name="addr" type="string"/>
 <!— many other fields, corresponding to HL7-RIM ontology

An agent-oriented and service-oriented architecture in medicine 7

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 ….
</xsd:schema>
This is the not annotated WSDL that describes the service. In order to give

semantic meaning to this WSDL description and to the search process, one would
add SAWSDL annotations, e.g.:

 <xsd:element name="Patient">
 <xsd:complexType sawsdl:modelReference=”http://www.hl7.org/spec
 /ontology/rim#Patient”>
 <xsd:sequence>
 <xsd:element name="name" type="string"/>
 <xsd:element name="addr" type="string"/>
 <!— many other fields, corresponding to HL7-RIM ontology
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The sawsdl:modelReference in this example says that the Patient type of

our service, maps in fact to the Patient concept from the HL7-RIM ontology (note
that the URL is fictional, it’s meant only to illustrates the idea).

The more semantic information we introduce in the matching process, the
more accurate the matching is. There is ongoing research in the area of enhancing
SAWSDL with more semantic information [7]. Typically, the extra information
refers to inputs, outputs, preconditions and effects (referred to as IOPE from now
on).

Similar to web services, an agent has a description that tells what the agent
can do. The description is standardized by FIPA [8] (Foundation for Intelligent
Physical Agents) and it is registered in a so-called Directory Facilitator (DF) [9], a
kind of Yellow Pages system similar to UDDI for web services. Below we show a
hospital reception agent’s description. The typical service of such an agent is to
receive the patient’s symptoms and in turn look up a specialist within the hospital.

(df-agent-description
 :name
 (agent-identifier
 :name ReceptionHospitalXYZ@xyz.com
 :addresses (sequence iiop://xyz.com/acc))
 :services (set
 (service-description
 :name reception
 :type reception
 :ontology (set SNOMED)
 :properties (set
 (property
 :name “hospital reception area”
 :value 224890005)

8 Florica Moldoveanu, Sorin-Alexandru Cristescu

 (property
 :name “temperature symptoms”
 :value 271399003)

....
)))
 :protocol (set FIPA-Request FIPA-Query)
 :ontology (set SNOMED FIPA-Agent-Management)
 :language (set FIPA-RDF))

In this agent description, notice that SNOMED ontology is used. Among

the interesting properties of the service offered by the hospital reception agent, we
show here the “hospital reception area”, which has the value 224890005 in
SNOMED. Then, we enumerate all symptom types that can be sent to this agent
with their corresponding SNOMED code values. These properties (i.e. “hospital
reception area”, the symptoms) are in fact the annotations we are employing in
the case of agents.

A common scenario is when a personal agent looks up a hospital reception
agent: all symptoms sent by the personal agent are matched and interpreted by the
hospital reception agent (the “….” in the agent description above represent the
symptoms according to the SNOMED terminology recognized by this agent; some
of them will be filled in by the personal agent).

What we really need is semantic matching, as is the case with semantic
web services. Our proposal is to extend the FIPA standard such that it allows that
some new parameters be specified for the description of an agent registered with
DF. These new parameters should be optional and should include at least the
aforementioned IOPE (inputs, outputs, preconditions, effects).

Using this idea, the example hospital reception agent could be rewritten as:

(service-description
:name reception

 :type reception
 :ontology (set SNOMED)
 :properties (set
 (property
 :name “hospital reception area”
 :value 224890005)
 (property
 :name “temperature symptoms”
 :value 271399003)

....
)
 :inputs (set
 (input
 :name “symptoms”
 :value “http://www.ihtsdo.org/snomed/ontology#Symptom”
)
)
 :otputs (set

An agent-oriented and service-oriented architecture in medicine 9

 (output
 :name “specialist”
 :value “http://www.fipa.org/agents/ontology#Specialist”
)
)
)

We’ve added here the inputs and outputs – this is how we propose to
extend the FIPA DF standard. Also the preconditions and effects can be added in
a similar way.

The previous example can be used to perform the following query: “I’m
interested in the agent that represents the code 224890005 in the SNOMED
ontology” (such an agent would be the hospital reception agent). With this
extension (annotated IOPE), a more interesting query can be made: “I’m
interested in an agent that accepts Symptom inputs as described by the SNOMED
ontology and returns a specialist agent’s address, as described by FIPA”. As you
can see, the latter query is more abstract than the former, since it’s not constrained
to a specific SNOMED code. We could even make a more abstract query, by not
specifying the target ontology: “I’m interested in an agent that accepts Symptom
inputs as described by my medical ontology and returns a specialist agent’s
contact data”. In order to properly find the service described above with such a
query, an ontology mapping must exists between “my medical ontology” and
SNOMED. Also there must exist an ontology mapping between the specialist
agent’s contact data (as specified in my query) and FIPA Specialist ontology term.

However, the discovery process needs to be extended with semantic
matching of IOPE. Semantic discovery of agents whose FIPA service descriptions
have been annotated with IOPE means in fact a semantic match between the IOPE
annotations of the advertised (registered) agents and the required ones. In order to
do this, one of the following approaches can be taken:

- the KB (knowledge base) used by the DF needs to be extended with
semantic matching capabilities for IOPE; this might include ontology
matching when the ontologies of the advertised and required agent
descriptions are different

- another layer of semantic matching needs to be added on top of the DF;
thus, the DF would remain unchanged, but the semantic matching of IOPE
would happen outside the DF

- the descriptions of the agents are not registered to DF any more, but they
are instead indexed by a search engine with semantic capabilities; this is
the solution we propose and it is the topic of the next section
What’s important to notice is that, in order to create a semantic-based

platform for interoperability between services and agents, we need to approach
similar issues, solved in similar ways: both services and agents need semantic
annotations of IOPEs, both need to be registered in certain repositories and be

10 Florica Moldoveanu, Sorin-Alexandru Cristescu

discovered there, both need to be consumed by their clients. The backbone for
interoperability is the ontologies. We propose using existing standards, such as
SAWSDL with HL7 semantic annotations for web services and OWL [10] (Web
Ontology Language) for describing the ontologies. For agents, we propose
extending the FIPA agent description with annotated IOPE. Once annotated, the
services and agents need to be registered and discovered in order to be consumed.
In the next section we highlight our idea of registration and semantic discovery of
services and agents.

3. Semantic Search Engine

The UDDI initiative has been the de facto standard for publishing web
services. The idea is to be able to register a web service, so that it can be
discovered by a client. Once it is discovered, the WSDL is retrieved and a proxy
for client-service communication could be generated dynamically. This is how the
UDDI has been used so far (if at all).

Moreover, mapping SAWSDL to UDDI has been researched ([11], [12])
and it’s relatively straightforward:

- either directly annotate UDDI concepts with SAWSDL annotations; for
example, the semantic annotations of SAWSDL are translated to UDDI
categoryBags [11]; this is a simple approach, i.e. no semantic reasoning is
needed, but some of the flexibility is lost (e.g. the search in UDDI is still
syntactic)

- or semantically-enabled processing modules are layered on top of UDDI;
they perform the actual semantic search – OWL ontology processing and
DL reasoning
However, Microsoft, IBM and SAP dropped their support for UDDI in

2007; they were in fact the major supporters of this standard. In effect, it is time
for something new, something that addresses the main limitations of UDDI:

1. Overwhelming complexity
2. Ignoring security
3. Lack of good tooling – it took us a lot of time and energy to be able to

finally install locally a working UDDI implementation: jUDDI for
Tomcat 3.0.1

In the authors’ opinion, the future of semantic web service registration and
discovery lays in semantic search engines, e.g. a semantic Google-like service
[13]. The essential characteristics of such a semantic search engine should be:

1. simplicity – it should offer a simple, clear to use interface through
which either a user or a program can search and find the desired services

2. it should offer a secure way to access a web service

An agent-oriented and service-oriented architecture in medicine 11

3. it should offer APIs to be able to register and discover (semantic) web
services

4. it should be scalable to millions of simultaneous users and yet answer
within a few hundred milliseconds – like the Google search engine behaves
nowadays

The idea of the semantic search engine can be extended to software agents.
In the previous section we proposed annotating the agents’ FIPA profiles with
semantic knowledge, just the way we annotate WSDL descriptions for web
services. Then we can use the same matching process for services and for agents:
we perform semantic matching of inputs, outputs, preconditions and effects.

In the area of semantic matching for web services, most of the research
focuses on matching based on a semantic distance between the concepts. There
are many flavors of semantic matching algorithms, i.e. including only the web
service inputs and outputs or taking into account preconditions and effects as well,
logic-based or non-logic based matching, hybrid, etc.

In [14], the authors propose matchmaking between web services based on
the so-called Tversky model, in which similarity is based on the properties of
concepts (expressed in their given ontologies). They argue that this method offers
more accurate results than the traditional methods based on semantic distance.
Moreover, their method can be used with concepts from different ontologies, thus
the ontology matching is also taken into account. In short, Tversky defines the
semantic similarity of two concepts such that the more properties they have in
common, the more similar they are. Tversky similarity measure is 1 for identical
or perfectly matching concepts and 0 for completely disjoint concepts.

In this section, using the research already done, we focus on a realistic
alternative to UDDI (for web services) and to FIPA DF (for agents). We envision
that as a semantic search engine.

Fig. 2 shows the building blocks of the proposed semantic search engine.
The three main functions of a search engine are covered by the blocks Crawler,
Indexer and Searcher.

We’ve implemented a prototype of this architecture based on open source
tools. The crawlers are implemented with Crawler4J [15]. We’ve programmed our
crawlers to retrieve WSDLs from various websites, such as http://www.service-
repository.com. However, note that most of the service repositories online don’t
contain annotated WSDL (such as SAWSDL).

Thus, we feed the crawlers manually with SAWSDL files. Note also that
the SAWSDL pages typically don’t have links to other SAWSDL pages (as it is
the case with regular web pages).

However, the crawlers parse the SAWSDL pages looking for ontologies,
pointed to by sawsdl:modelReference attributes. Then they also retrieve the
ontology pages, e.g.:

12 Florica Moldoveanu, Sorin-Alexandru Cristescu

http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder.
Every file retrieved by a crawler is brought to a repository.

Fig. 2. The building blocks of the semantic search engine

The repository is implemented using BerkeleyDB [16], an Oracle product

which can be used for free for non-commercial purposes. Its architecture is based
on storing (key, value) pairs in efficient data structures (e.g. B-trees), providing
high concurrency and speed along with simplicity in programming. It supports
ACID transactions and offers support for replication, enhancing thus the
availability and scalability of the data store. These characteristics make it a good
candidate for implementing the repository and the indexes in a search engine
system.

The crawlers use Apache Woden [17] combined with some extensions for
SAWSDL to parse the WSDL service descriptions. With this we can parse WSDL
2.0 files, which is good enough for demonstration purposes. However, in the real
world we need to be able to parse both WSDL 1.1 and 2.0. Luckily, one of the
latest Woden versions comes with a converter from WSDL 1.1 to 2.0, which we
use in our prototype. The crawlers create the forward indexes and store them in

Crawler

SAWSDL
docs

Ontologies

retrieve

retrieve

Repository

add

Indexer

parse SAWSDL
and ontologies

Jena

use

Forward index:
docID to IOPE

produce

calculate Tversky
semantic distance

Inverted index:
IOPE to docID

transform

produce

Searcher

An agent-oriented and service-oriented architecture in medicine 13

the repository. Such an index maps the documents (WSDLs) to their inputs,
outputs, preconditions and effects, respectively.

The indexers read the forward indexes and create the reverted indexes,
also stored in the repository. The indexers use Jena [18], an open source inference
engine, in order to pre-calculate the Tversky semantic distances for each two
concepts of the retrieved ontologies and store them in the repository. This greatly
enhances the performance of the searcher (whose algorithm is described in the
next section).

The searcher is itself a web service written in Java, which accesses the
inverted indexes (there is an index for the inputs, one for outputs, one for
preconditions and one for effects) in order to find the matching WSDL files. The
search algorithm is described in the next section. The key issue with the searcher
is its performance, so we use the optimized data structures of BerkleyDB to create
indexes as B-trees in memory and thus minimize the disk access, the most time
consuming operation.

4. Search Algorithm

The first important requirement to the data our search engine works with is
that the WSDL descriptions of the services be annotated with semantic
information. Our semantic search engine deals with services whose descriptions
(WSDL files) contain IOPE annotated with ontological concepts using SAWSDL.
Our crawlers are fed with URLs pointing to semantically annotated WSDL
documents. They fetch the documents and store them compressed in a repository.
Each document is assigned a unique docID, derived from its URL. Importantly,
the crawlers also fetch the ontology files used to annotate the WSDLs. Since they
parse the SAWSDL files, the crawlers also create the forward indexes.

As mentioned before, for each ontology referred by the IOPE concepts, the
indexer involves the inference engine Jena to calculate the Tversky matching
values between each two concepts of that ontology. This list of matches is sorted
in descending order by the matching values (the best matches first) and is stored
together with the corresponding ontology file.

Then the forward index is converted into four inverted indexes, each
corresponding to I, O, P and E respectively. For each concept from IOPE, a
unique wordID is generated. The indexes are sorted by this wordID.

With these preparations in place, the search process needs to return the
best matching web service for a given profile. By profile we mean a set of IOPEs
representing the desired characteristics of a service. The preconditions and effects
are not mandatory, but the inputs and outputs are.

The search algorithm is structured on three levels:

14 Florica Moldoveanu, Sorin-Alexandru Cristescu

1. First a syntactic (textual) matching is done with the IOPEs of the given
profile; this is the same as what a traditional search engine would do,
but it only returns the most relevant match (preferably one that covers
all IOPEs)

2. If there was no result, a first kind of semantic matching is done: for
each output concept in the given (requested) profile, we take each
subclass in its ontology in increasing order of the semantic distance, as
defined in [19] (below we explain why we consider the subclasses for
outputs and superclasses for inputs); we compute the wordID for the
current subclass and look it up in the corresponding index; thus, we try
to find the best matches for all outputs according to the semantic
distance; if at least one output can’t be matched, the algorithm moves
to step 3; then we do the same for inputs, but now we take the
superclasses of each given (requested) input; if we have at least one
input matched, we find the matches common for the outputs and the
inputs; finally, we check which of these also match the preconditions
and effects of the given profile, if they exist

3. If there was no result from the previous step, more complex semantic
matching is performed: for each output concept in the given profile, we
take all concepts from the same ontology (except the subclasses
covered at step 2) in decreasing order of Tversky distance pre-
calculated for the current output; we compute the wordID for each
such concept and look it up in the corresponding index; if at least one
output can’t be matched, the algorithm stops and no match is returned;
then we do the same for inputs; if we have at least one input matched,
we find the matches (services) common to the outputs and the inputs;
finally, we check which of these also match the preconditions and
effects of the given profile, if they exist

Note that in step 1 we do a standard, textual match. This helps when an
advertised web service is annotated with a concept such as:

http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#OrderRe
quest, which is also part of the required profile and where the namespace and the
name of the concept match textually. This alleviates the need for a semantic
match, since we can assume both the required profile and the advertised service
mean the same thing.

Step 2 does a first semantic match. Note that we need all outputs of a
required profile to be matched. If any output is not matched by an advertised web
service, we’d remain with a partial answer, which is not acceptable, since the
outputs are used to compose and further invoke web services. As for the inputs,
the requirement is less strict: we need at least an input to match, not necessarily
all. In order to match an input, we use the covariance principle: if the required

An agent-oriented and service-oriented architecture in medicine 15

profile’s input is a subclass of the advertised service’s input, they match.
Intuitively this means that if an advertised service can deal with a certain concept,
it can also deal with its derived concepts, since they are just restrictions of the
original concept. That’s why in our algorithm we look for the superclasses of
required inputs among the advertised inputs.

However, for the outputs we have the dual principle (contravariance): if
an advertised service outputs a certain concept, we can never require a more
restrictive version (i.e. a subclass) of that. Only a superclass of that concept will
match.

Finally, if there are no matches so far, Tversky model is used, which
provides a matching value for any two concepts of an ontology. We start with the
best Tversky match (e.g. two concepts which differ by just a property) and then, if
no match is found, we proceed with lower matches, until a certain threshold. The
threshold is necessary to eliminate really bad matches and it is a parameter of the
search process.

5. Conclusions

In this paper we’ve presented the building blocks of a system based on
software agents and web services, which is designed to assist in improving the
quality of the medical act.

The system is based on semantic capabilities, which are supposed to
enhance the interoperability among medical systems.

We’ve tried to unify the view on agents and services by showing that both
present the same challenges:

- they need to be semantically annotated; in order to do that, we need to
employ ontologies
- they need to be registered in certain repositories
- they need to be semantically discovered
- they need to be consumed, i.e. they communicate
We’ve proposed the extensions of FIPA service description to allow

annotation with IOPE (inputs, outputs, preconditions and effects), similar to the
research with the same purpose for SAWSDL in the world of web services. Our
prototype shows that just by adding IOPE semantic annotations, the search
process is dramatically enhanced in terms of accuracy, while at the same time it is
still scalable and efficient (i.e. the IOPE annotations don’t affect significantly the
search efficiency).

We’ve also proposed and prototyped a semantic search engine used
typically to index WSDL service descriptions whose IOPEs are annotated
according to the SAWSDL standard. The search engine can be extended to index

16 Florica Moldoveanu, Sorin-Alexandru Cristescu

agent descriptions as well, thus further unifying the world of agents and the world
of services.

R E F E R E N C E S

[1] *** DICOM - http://medical.nema.org/
[2] *** HL7 - http://www.hl7.org/
[3] *** SNOMED-CT, http://www.ihtsdo.org/
[4] *** WSDL, http://www.w3.org/TR/wsdl
[5] *** UDDI version 3.0.2, http://uddi.org/pubs/uddi_v3.htm
[6] *** SAWSDL, http://www.w3.org/2002/ws/sawsdl/spec/
[7] Y. Chabeb, S. Tata, A. Ozanne, “YASA-M: A Semantic Web Service Matchmaker”, in: 24th

IEEE International Conference on Advanced Information Networking and Applications
(AINA'10), pp. 966-973 (2010)

[8] *** FIPA, http://www.fipa.org/
[9] *** FIPA DF, http://www.fipa.org/specs/fipa00023/SC00023K.html#_Toc75950983
[10] *** OWL, http://www.w3.org/2004/OWL/
[11] P. Chatel, “Toward a semantic Web service discovery and dynamic orchestration based on

the formal specification of functional domain knowledge”, International Conference on
Software & Systems Engineering and their Applications (ICSSEA), 2007

[12] D. Kourtesis, I. Paraskakis, “Combining SAWSDL, OWL-DL and UDDI for Semantically
Enhanced Web Service Discovery”, in ESWC'08 Proceedings of the 5th European semantic
web conference on The semantic web: research and applications, 2008

[13] S. Brin, L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search Engine”,
Computer Networks and ISDN Systems 30, pp. 107-117, 1998

[14] J. Cardoso, J. Miller, S. Emani, “Web Services Discovery Utilizing Semantically Annotated
WSDL”, Reasoning Web, Springer-Verlag Berlin, Heidelberg, 2008

[15] *** Crawler4J, http://code.google.com/p/crawler4j/
[16] *** BerkeleyDB,, http://www.oracle.com/technetwork/database/berkeleydb/
[17] *** Apache Woden, http://ws.apache.org/woden/
[18] *** Jena, http://incubator.apache.org/jena/
[19] P. Pukkasenung, P. Sophatsathit, C. Lursinsap, “An Efficient Semantic Web Service

Discovery Using Hybrid Matching”, in Lecture Notes in Computer Science, Volume
6162, 110-119, 2010

