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In this paper, we present an inertial extragradient algorithm for solving a gener-

alized equilibrium problem with constraints of a split fixed point problem and a variational
inequality problem, in which the process exploits the contractiveness of one operator at

the upper-level problem and the pseudomonotonicity of another mapping at the lower

level. Strong convergence result of the proposed process is established under some mild
assumptions.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ψ : C×C →
R be a bifunction. Recall that the equilibrium problem (EP) is to find x∗ ∈ C such that

Ψ(x∗, y) ≥ 0, ∀y ∈ C. (1)

The solution set of (1) is denoted by EP(Ψ). To solve (1), The following conditions need
to be known in advance: (H1): Ψ(y, y) = 0,∀y ∈ C; (H2): Ψ(x, y) + Ψ(y, x) ≤ 0,∀x, y ∈ C;
(H3): limλ→0+ Ψ((1 − λ)y + λx, z) ≤ Ψ(y, z),∀x, y, z ∈ C; (H4) z 7→ Ψ(y, z) is convex and
lower semicontinuous (l.s.c.) for every y ∈ C.

In (1), if Ψ(x, y) = ⟨Ax, y − x⟩,∀x, y ∈ C, then we have the well known variational
inequality problem (VIP) which is to find x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, ∀y ∈ C. (2)

The solution set of the VIP is denoted by VI(C,A). An important method to solve (1) and
(2) is extragradient method introduced by Korpelevich [9]. Consequently, many algorithms
and techniques were designed for finding the solution set of (1) and (2), see [13, 15, 16, 18–
23].

Now, we consider the following a system of generalized equilibrium problems (SGEP)
([2]) which is to find (x∗, y∗) ∈ C × C such that{

Ψ1(x
∗, x) + ⟨φ1y

∗, x− x∗⟩+ 1
µ1
⟨x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ C,

Ψ2(y
∗, y) + ⟨φ2x

∗, y − y∗⟩+ 1
µ2
⟨y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ C,

(3)

where Ψ1,Ψ2 : C × C → R are two bifunctions, φ1, φ2 : H → H are two mappings and
µ1, µ2 are two positive constants.
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Setting Ψ1 = Ψ2 = 0, we have the following general system of variational inequalities
(GSVI) ([3]) which is to find (x∗, y∗) ∈ C × C such that{

⟨µ1φ1y
∗ + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨µ2φ2x
∗ + y∗ − x∗, y − y∗⟩ ≥ 0, ∀y ∈ C.

(4)

For any x ∈ H, define TΨ
r (x) := {y ∈ C : Ψ(y, z) + 1

r ⟨z − y, y − x⟩ ≥ 0,∀z ∈ C} and set

G = TΨ1
µ1

(I−µ1φ1)T
Ψ2
µ2

(I−µ2φ2). Let φ1, φ2 : H → H be α-inverse-strongly monotone and
β-inverse-strongly monotone, respectively. Let µ1 ∈ (0, 2α) and µ2 ∈ (0, 2β). If (H1)-(H4)
hold, then (x∗, y∗) is a solution of SGEP (3) ([4]) if and only if x∗ ∈ Fix(G) := {x ∈ H :
G(x) = x} where y∗ = TΨ2

µ2
(I − µ2φ2)x

∗.
Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and

H2, respectively. Let W : H1 → H2 be a bounded linear mapping and A,F : H1 → H1

and B : H2 → H2 be nonlinear operators. Recall that the bilevel split variational inequality
problem (BSVIP) ([2]) is to find z∗ ∈ Ω such that

⟨Fz∗, z − z∗⟩ ≥ 0, ∀z ∈ Ω , (5)

where Ω := {z ∈ VI(C,A) : Wz ∈ VI(Q,B)} is the solution set of the split variational
inequality problem (SVIP) ([5]) of finding x∗ ∈ C such that

⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C, (6)

and y∗ = Wx∗ ∈ Q such that

⟨By∗, y − y∗⟩ ≥ 0, ∀y ∈ Q. (7)

To solve SVIP, Censor et al. [5] proposed the following iterative algorithm: for any initial
x1 ∈ H1, the sequence {xn} is generated by

xn+1 = PC(I − λA)(xn + γW∗(PQ(I − λB)− I)Wxn), ∀n ≥ 1. (8)

Consequently, the split problems have been investigated in the literature, see [7, 8, 10, 12,
17, 24, 25].

Very recently, Abuchu et al. [1] consider a bilevel split quasimonotone variational
inequality problem (BSQVIP) ([1]): find z∗ ∈ Ω := {z ∈ VI(C,A) : Wz ∈ Fix(S)} such that

⟨Fz∗, z − z∗⟩ ≥ 0, ∀z ∈ Ω (9)

where A : H1 → H1 is quasimonotone and L-Lipschitz continuous, F : H1 → H1 is
κ-Lipschitzian and η-strongly monotone and S : H2 → H2 is τ -demimetric mapping with
τ ∈ (−∞, 1). The authors [1] proposed a modified relaxed inertial subgradient extragradient
iterative algorithm for solving the BSQVIP (9). Under suitable conditions, they proved the
strong convergence of the proposed algorithm to a unique solution of the BSQVIP (9).

In this paper, we investigate the following SGEP with a bilevel split fixed point
problem (BSFPP) and VIP constraint which is formulated as:

find z∗ ∈ Ξ such that PΞ (I − f)z∗ = z∗, (10)

where Ξ := Fix(G) ∩ Ω ∩ VI(C,A) and Ω = {z ∈ Fix(S) : Wz ∈ Fix(S)}. We propose
hybrid inertial subgradient extragradient rule with line-search process for finding a solution
of (10) in real Hilbert spaces, where the rule exploits the contractiveness of the operator
f at the upper-level problem and the pseudomonotonicity of the mapping A at the lower
level. The strong convergence result for the proposed algorithm is established under some
mild restrictions.
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2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. For each
x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that ∥x − PCx∥ ≤
∥x− y∥,∀y ∈ C. It is well known that PC has the following properties: (i) ∥PCx−PCy∥2 ≤
⟨x − y, PCx − PCy⟩,∀x, y ∈ H; (ii) z = PCx ⇔ ⟨x − z, y − z⟩ ≤ 0,∀x ∈ H, y ∈ C; (iii)
∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2,∀x ∈ H, y ∈ C.

Recall that a mapping S : C → H is called
(1) L-Lipschitz continuous if ∃L > 0 such that ∥Sx− Sy∥ ≤ L∥x− y∥,∀x, y ∈ C.
(2) α-strongly monotone if ∃α > 0 such that ⟨Sx− Sy, x− y⟩ ≥ α∥x− y∥2,∀x, y ∈ C.
(3) monotone if ⟨Sx− Sy, x− y⟩ ≥ 0,∀x, y ∈ C.
(4) pseudomonotone if ⟨Sx, y − x⟩ ≥ 0 ⇒ ⟨Sy, y − x⟩ ≥ 0,∀x, y ∈ C.
(5) quasimonotone if ⟨Sx, y − x⟩ > 0 ⇒ ⟨Sy, y − x⟩ ≥ 0,∀x, y ∈ C.
(6) η-strictly pseudocontractive if ∃ η ∈ [0, 1) such that ∥Sx − Sy∥2 ≤ ∥x − y∥2 + η∥(I −
S)x− (I − S)y∥2,∀x, y ∈ C.
(7) τ -demicontractive if ∃τ ∈ [0, 1) such that ∥Sx − y∥2 ≤ ∥x − y∥2 + τ∥x − Sx∥2,∀x ∈
C, y ∈ Fix(S) ̸= ∅.
(8) τ -demimetric if ∃τ ∈ (−∞, 1) such that ⟨x − Sx, x − y⟩ ≥ 1−τ

2 ∥x − Sx∥2,∀x ∈ C, y ∈
Fix(S) ̸= ∅.
(9) sequentially weakly continuous if ∀{xn} ⊂ C, the relation holds: xn ⇀ x⇒ Sxn ⇀ Sx.

If S : C → C is an η-strictly pseudocontractive mapping, then (i) for all x, y ∈ C,
∥γ(x − y) + δ(Sx − Sy)∥ ≤ (γ + δ)∥x − y∥, where γ ≥ 0, δ ≥ 0 and (γ + δ)η ≤ γ; (ii)
∥Sx− Sy∥ ≤ 1+η

1−η∥x− y∥,∀x, y ∈ C.

If B : H → H is a ζ-inverse-strongly monotone mapping, then ∥(I − µB)y − (I −
µB)z∥2 ≤ ∥y − z∥2 − µ(2ζ − µ)∥By − Bz∥2. In particular, if 0 ≤ µ ≤ 2ζ, then I − µB is
nonexpansive.

Lemma 2.1 ([6]). Assume that A : C → H is pseudomonotone and continuous. Then
u ∈ C is a solution to the VIP ⟨Au, v−u⟩ ≥ 0,∀v ∈ C if and only if ⟨Av, v−u⟩ ≥ 0,∀v ∈ C.

Lemma 2.2 ([14]). Let {an} be a sequence of nonnegative numbers satisfying the conditions:
an+1 ≤ (1−λn)an+λnγn,∀n ≥ 1, where {λn} and {γn} are sequences of real numbers such
that (i) {λn} ⊂ [0, 1] and

∑∞
n=1 λn = ∞, and (ii) lim supn→∞ γn ≤ 0 or

∑∞
n=1 |λnγn| <∞.

Then limn→∞ an = 0.

Lemma 2.3 ([11]). Let {Φm} be a sequence of real numbers that does not decrease at infinity
in the sense that, ∃{Φmk

} ⊂ {Φm} such that Φmk
< Φmk+1,∀k ≥ 1. Let the sequence

{ψ(m)}m≥m0 of integers be formulated as ψ(m) = max{k ≤ m : Φk < Φk+1} with integer
m0 ≥ 1 satisfying {k ≤ m0 : Φk < Φk+1} ̸= ∅. Then, (i) ψ(m0) ≤ ψ(m0 + 1) ≤ · · · and
ψ(m) → ∞; (ii) Φψ(m) ≤ Φψ(m)+1 and Φm ≤ Φψ(m)+1,∀m ≥ m0.

3. Main results

Let H1 and H2 be two real Hilbert spaces and C be a nonempty, closed and convex
subset of H1. Suppose that the following conditions hold:
(C1): Ψ1,Ψ2 : C × C → R are two bifunctions satisfying (H1)-(H4) and W : H1 → H2 is a
non-zero bounded linear operator with the adjoint W∗.
(C2): f : H1 → H1 is a δ-contraction, S : H1 → H1 is an η-strictly pseudocontractive
mapping and S : H2 → H2 is a τ(∈ (−∞, 1))-demimetric mapping such that I − S is
demiclosed at zero.
(C3): A : H1 → H1 is a pseudomonotone and L-Lipschitz continuous mapping satisfying the
condition: ∥Ax∥ ≤ lim infn→∞ ∥Axn∥ for each {xn} ⊂ C with xn ⇀ x, φ1, φ2 : H1 → H1

are α-inverse-strongly monotone and β-inverse-strongly monotone, respectively.
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(C4): Ξ := Fix(G) ∩ Ω ∩ VI(C,A) ̸= ∅, where Ω := {z ∈ Fix(S) : Wz ∈ Fix(S)} and
G := TΨ1

µ1
(I − µ1φ1)T

Ψ2
µ2

(I − µ2φ2) for µ1 ∈ (0, 2α) and µ2 ∈ (0, 2β).
Let {εn} ⊂ [0, 1], {αn} ⊂ (0, 1), {βn} ⊂ (0, 1), {γn} ⊂ (0, 1) and {δn} ⊂ (0, 1)

satisfying
(i) supn≥1

εn
αn

<∞, βn + γn + δn = 1 and (γn + δn)η ≤ γn,∀n ≥ 1;

(ii) limn→∞ αn = 0 and
∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and lim infn→∞ δn > 0.

Algorithm 3.1. Let λ > 0, ℓ ∈ (0, 1), σ ≥ 0, µ ∈ (0, 1) and x1, x0 ∈ H1 be arbitrary.
Calculate xn+1 as follows:

Step 1. Set wn = xn + εn(xn − xn−1) and calculate yn = PC(wn − ξnAwn), where ξn
is chosen to be the largest ξ ∈ {λ, λℓ, λℓ2, ...} satisfying

ξ∥Awn −Ayn∥ ≤ µ∥wn − yn∥. (11)

Step 2. Construct the half-space Cn := {y ∈ H1 : ⟨wn − ξnAwn − yn, yn − y⟩ ≥ 0},
and compute vn = PCn

(wn − ξnAyn).
Step 3. Calculate zn = αnf(xn) + (1 − αn)[vn − σnW

∗(I − S)Wvn], where for any
fixed ϵ > 0, σn is chosen to be the bounded sequence satisfying

0 < ϵ ≤ σn ≤ (1− τ)∥Wvn − SWvn∥2

∥W∗(Wvn − SWvn)∥2
− ϵ if Wvn ̸= SWvn, (12)

otherwise set σn = σ ≥ 0.
Step 4. Calculate

xn+1 = βnxn + γnGzn + δnSGzn. (13)

Set n := n+ 1 and return to Step 1.

Remark 3.1. The line-search process (11) is well defined and min{λ, µℓL } ≤ ξn ≤ λ.

Lemma 3.1. Let {xn} be the sequence generated by Algorithm 3.1. Then, the stepsize σn
formulated in (12) is well-defined.

Proof. It is sufficient to show ∥W∗(Wvn − SWvn)∥2 ̸= 0. Pick a q ∈ Ξ arbitrarily. Since S
is τ -demimetric mapping, one gets

∥vn − q∥∥W∗(Wvn − SWvn)∥ ≥ ⟨vn − q,W∗(Wvn − SWvn)⟩ ≥
1− τ

2
∥Wvn − SWvn∥2. (14)

If Wvn ̸= SWvn, one has ∥Wvn − SWvn∥2 > 0. Therefore, ∥W∗(Wvn − SWvn)∥2 > 0. □

Lemma 3.2. Let {wn}, {yn}, {vn} be the sequences constructed in Algorithm 3.1. Then,

∥vn − q∥2 ≤ ∥wn − q∥2 − (1− µ)∥yn − wn∥2 − (1− µ)∥yn − vn∥2,∀q ∈ Ξ . (15)

Proof. First, for each q ∈ Ξ ⊂ C ⊂ Cn, one has

∥vn − q∥2 ≤ 1

2
∥vn − q∥2 + 1

2
∥wn − q∥2 − 1

2
∥vn − wn∥2 − ⟨vn − q, ξnAyn⟩.

So, it follows that ∥vn − q∥2 ≤ ∥wn − q∥2 − ∥vn − wn∥2 − 2⟨vn − q, ξnAyn⟩, which together
with (11) and the pseudomonotonicity of A, implies that ⟨Ayn, yn − q⟩ ≥ 0 and

∥vn − q∥2 ≤ ∥wn − q∥2 − ∥vn − wn∥2 + 2ξn(⟨Ayn, q − yn⟩+ ⟨Ayn, yn − vn⟩)
≤ ∥wn − q∥2 − ∥vn − yn∥2 − ∥yn − wn∥2 + 2⟨wn − ξnAyn − yn, vn − yn⟩.

Since vn = PCn
(wn − ξnAyn) with Cn := {y ∈ H1 : ⟨wn − ξnAwn − yn, yn − y⟩ ≥ 0}, we

have ⟨wn − ξnAwn − yn, yn − vn⟩ ≥ 0, which together with (11), implies that

2⟨wn − ξnAyn − yn, vn − yn⟩ = 2⟨wn − ξnAwn − yn, vn − yn⟩
+ 2ξn⟨Awn −Ayn, vn − yn⟩ ≤ 2µ∥wn − yn∥∥vn − yn∥ ≤ µ(∥yn − wn∥2 + ∥yn − vn∥2).

(16)
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Consequently, we obtain the desired result. □

Lemma 3.3. Let {xn} be the sequence constructed in Algorithm 3.1. Then, {xn} is bounded
provided supn≥1 ∥xn − xn−1∥ <∞.

Proof. Set zn = αnf(xn) + (1 − αn)un where un := vn − σnW
∗(I − S)Wvn,∀n ≥ 1. Since

0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, we may assume, without loss of generality, that
{βn} ⊂ [a, b] ⊂ (0, 1). It is clear that PΞ ◦ f is a contraction with the unique fixed point
z∗ ∈ H1. So, there exists the unique solution z∗ ∈ Ξ = Fix(G) ∩ Ω ∩VI(C,A) to the VIP

⟨(I − f)z∗, y − z∗⟩ ≥ 0,∀y ∈ Ξ . (17)

Hence, there exists the unique solution z∗ ∈ Ξ to the SGEP (10) with the BSFPP and VIP
constraint. Note that ∥wn − z∗∥ ≤ ∥xn − z∗∥+ αn · εnαn

∥xn − xn−1∥. From supn≥1
εn
αn

< ∞
and supn≥1 ∥xn− xn−1∥ <∞, it follows that { εnαn

∥xn− xn−1∥} is bounded. Thus, ∃M1 > 0

s.t. εn
αn

∥xn − xn−1∥ ≤M1,∀n ≥ 1. Hence,

∥wn − z∗∥ ≤ ∥xn − z∗∥+ αnM1,∀n ≥ 1. (18)

Moreover,

∥zn − z∗∥ ≤ αnδ∥xn − z∗∥+ (1− αn)∥un − z∗∥+ αn∥f(z∗)− z∗∥. (19)

Observe that ∥un−z∗∥2 = ∥vn−z∗∥2−2σn⟨W(vn−z∗), (I−S)Wvn⟩+σ2
n∥W∗(I−S)Wvn∥2.

Since the operator S is τ -demimetric, we have

∥un − z∗∥2 ≤ ∥vn − z∗∥2 + σn[σn∥W∗(I − S)Wvn∥2 − (1− τ)∥(I − S)Wvn∥2]. (20)

Taking into account (12), we get σn + ϵ ≤ (1−τ)∥Wvn−SWvn∥2

∥W∗(I−S)Wvn∥2 which implies that

σn(σn∥W∗(I − S)Wvn∥2 − (1− τ)∥Wvn − SWvn∥2) ≤ −σnϵ∥W∗(I − S)Wvn∥2. (21)

Using 0 < ϵ ≤ σn in (12), we have that −ϵ2 ≥ −σnϵ and hence

−σnϵ∥W∗(I − S)Wvn∥2 ≤ −ϵ2∥W∗(I − S)Wvn∥2. (22)

Combining (20), (21) and (22), we obtain

∥un − z∗∥2 ≤ ∥vn − z∗∥2 − σnϵ∥W∗(I − S)Wvn∥2 ≤ ∥vn − z∗∥2. (23)

In addition, by Lemma 3.2, we get

∥vn − z∗∥2 ≤ ∥wn − z∗∥2 − (1− µ)∥yn − wn∥2 − (1− µ)∥yn − vn∥2 ≤ ∥wn − z∗∥2. (24)

Combining (18), (23) and (24), we obtain

∥un − z∗∥ ≤ ∥vn − z∗∥ ≤ ∥wn − z∗∥ ≤ ∥xn − z∗∥+ αnM1,∀n ≥ 1. (25)

From (19) and (25), we have

∥xn+1 − z∗∥ = ∥βn(xn − z∗) + γn(Gzn − z∗) + δnS(Gzn − z∗)∥

≤ βn∥xn − z∗∥+ (1− βn)∥
1

1− βn
[γn(Gzn − z∗) + δnS(Gzn − z∗)]∥

≤ [1− αn(1− βn)(1− δ)]∥xn − z∗∥+ αn(1− βn)[M1 + ∥f(z∗)− z∗∥]

≤ max{∥xn − z∗∥, M1 + ∥f(z∗)− z∗∥
1− δ

}.

(26)

By induction, we obtain ∥xn− z∗∥ ≤ max{∥x1− z∗∥, M1+∥f(z∗)−z∗∥
1−δ },∀n ≥ 1. Thus, {xn} is

bounded, and so are the sequences {un}, {vn}, {wn}, {yn}, {zn}, {f(xn)}, {Gzn}, {SGzn}.
□



8 Lu-Chuan Ceng, Zhangsong Yao, Tzu-Chien Yin

Lemma 3.4. Let {vn}, {xn}, {zn} be the sequences generated by Algorithm 3.1. Suppose
that xn − xn+1 → 0, vn − zn → 0 and zn − Gzn → 0. Then ωw({xn}) ⊂ Ξ provided
supn≥1 ∥xn − xn−1∥ <∞ where ωw({xn}) = {z ∈ H1 : xnk

⇀ z for some {xnk
} ⊂ {xn}}.

Proof. Observe that ∥wn − xn∥ = εn∥xn − xn−1∥ ≤ αnM1 → 0(n → ∞). Take a fixed
z ∈ ωw({xn}) arbitrarily. Then, ∃{xnk

} ⊂ {xn} s.t. xnk
⇀ z ∈ H1. Thanks to wn−xn → 0,

we know that ∃{wnk
} ⊂ {wn} s.t. wnk

⇀ z ∈ H1. Next we show that

∥zn − z∗∥2 ≤ αnδ∥xn − z∗∥2 + (1− αn)∥wn − z∗∥2 − (1− αn)(1− µ)[∥yn − wn∥2

+ ∥yn − vn∥2] + 2αn⟨(f − I)z∗, zn − z∗⟩.
(27)

Indeed, from Algorithm 3.1, we have zn − z∗ = αn(f(xn) − f(z∗)) + (1 − αn)(un − z∗) +
αn(f(z

∗)− z∗). From (15) and (25), we have

∥zn − z∗∥2 ≤ ∥αn(f(xn)− f(z∗)) + (1− αn)(un − z∗)∥2 + 2αn⟨(f − I)z∗, zn − z∗⟩
≤ αnδ∥xn − z∗∥2 + (1− αn)∥wn − z∗∥2 − (1− αn)(1− µ)[∥yn − wn∥2

+ ∥yn − vn∥2] + 2αn⟨(f − I)z∗, zn − z∗⟩.

By (25) and (27), we have

∥xn+1 − z∗∥2 ≤ βn∥xn − z∗∥2 + (1− βn)∥
1

1− βn
[γn(Gzn − z∗) + δn(SGzn − z∗)]∥2

≤ (∥xn − z∗∥+ αnM1)
2 − (1− βn)(1− αn)(1− µ)[∥yn − wn∥2

+ ∥yn − vn∥2] + αnM2,

(28)

where supn≥1 2∥(f − I)z∗∥∥zn− z∗∥ ≤M2 for some M2 > 0. This immediately implies that

(1− βn)(1− αn)(1− µ)[∥yn − wn∥2 + ∥yn − vn∥2]
≤ (αnM1 + ∥xn − xn+1∥)(αnM1 + ∥xn − z∗∥+ ∥xn+1 − z∗∥) + αnM2.

It follows that limn→∞ ∥yn−wn∥ = limn→∞ ∥yn−vn∥ = 0 which together with wn−xn → 0
and vn − zn → 0, leads to

∥xn − zn∥ ≤ ∥xn − wn∥+ ∥wn − yn∥+ ∥yn − vn∥+ ∥vn − zn∥ → 0(n→ ∞). (29)

Consequently, this yields ∥vn − xn∥ ≤ ∥vn − zn∥+ ∥zn − xn∥ → 0(n→ ∞).
In what follows, we claim that z ∈ Ξ . In fact, from yn = PC(wn − ξnAwn), we have

⟨wn − ξnAwn − yn, yn − y⟩ ≥ 0,∀y ∈ C, and hence

1

ξn
⟨wn − yn, y − yn⟩+ ⟨Awn, yn − wn⟩ ≤ ⟨Awn, y − wn⟩,∀y ∈ C. (30)

Note that ξn ≥ min{λ, µℓL }. So, from (30) we get lim infk→∞⟨Awnk
, y − wnk

⟩ ≥ 0,∀y ∈ C.
Meantime, observe that ⟨Ayn, y−yn⟩ = ⟨Ayn−Awn, y−wn⟩+⟨Awn, y−wn⟩+⟨Ayn, wn−yn⟩.
Since wn − yn → 0, from L-Lipschitz continuity of A we obtain Awn − Ayn → 0, which
together with (30) arrives at lim infk→∞⟨Aynk

, y − ynk
⟩ ≥ 0,∀y ∈ C.

Take a sequence {κk} ⊂ (0, 1) satisfying κk ↓ 0 as k → ∞. For all k ≥ 1, we denote
by mk the smallest positive integer such that

⟨Ayni
, y − yni

⟩+ κk ≥ 0,∀i ≥ mk. (31)

Since {κk} is decreasing, it is clear that {mk} is increasing. From the assumption on
A, we know that lim infk→∞ ∥Aynk

∥ ≥ ∥Az∥. If Az = 0, then z is a solution, i.e., z ∈
VI(C,A). Let Az ̸= 0. Then we have 0 < ∥Az∥ ≤ lim infk→∞ ∥Aynk

∥. Without loss
of generality, we may assume that Aynk

̸= 0,∀k ≥ 1. Noticing that {ymk
} ⊂ {ynk

} and

Aynk
̸= 0,∀k ≥ 1, we set ℏmk

=
Aymk

∥Aymk
∥2 , we get ⟨Aymk

, ℏmk
⟩ = 1,∀k ≥ 1. So, from (31)
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we get ⟨Aymk
, y + κkℏmk

− ymk
⟩ ≥ 0,∀k ≥ 1. Again from the pseudomonotonicity of A we

have ⟨A(y + κkℏmk
), y + κkℏmk

− ymk
⟩ ≥ 0,∀k ≥ 1. This immediately yields

⟨Ay, y − ymk
⟩ ≥ ⟨Ay −A(y + κkℏmk

), y + κkℏmk
− ymk

⟩ − κk⟨Ay, ℏmk
⟩,∀k ≥ 1. (32)

We claim that limk→∞ κkℏmk
= 0. Indeed, from ynk

⇀ z (due to xn − yn → 0), {yn} ⊂ C
guarantees z ∈ C. Note that {ymk

} ⊂ {ynk
} and κk ↓ 0 as k → ∞. So it follows that

0 ≤ lim supk→∞ ∥κkℏmk
∥ = lim supk→∞

κk

∥Aymk
∥ ≤ lim supk→∞ κk

lim infk→∞ ∥Aynk
∥ = 0. Hence we get

κkℏmk
→ 0.
Next we show that z ∈ Ξ . Indeed, letting k → ∞, we deduce that the right-hand

side of (32) tends to zero by the uniform continuity of A, the boundedness of {wmk
}, {ℏmk

}
and the limit limk→∞ κkℏmk

= 0. Thus, we get ⟨Ay, y − z⟩ = lim infk→∞⟨Ay, y − ymk
⟩ ≥

0,∀y ∈ C. By Lemma 2.1 we have z ∈ VI(C,A). Furthermore, we claim Tz ∈ Fix(S). In
fact, since zn = αnf(xn)+ (1−αn)un where un := vn−σnW∗(I−S)Wvn, using 0 < ϵ ≤ σn
and vn− zn → 0, we obtain that ∥un− vn∥ ≤ ∥zn− vn∥+αn∥un− vn∥+αn∥f(xn)− vn∥ →
0(n→ ∞) and hence

ϵ∥W∗(I − S)Wvn∥ ≤ σn∥W∗(I − S)Wvn∥ = ∥vn − un∥ → 0 (n→ ∞),

which together with the τ -demimetricness of S, leads to

1− τ

2
∥(I − S)Wvn∥2 ≤ ∥W∗(I − S)Wvn∥∥vn − z∗∥ → 0 (n→ ∞). (33)

It follows that

∥SGzn − xn∥ =
1

δn
∥xn+1 − xn − γn(Gzn − xn)∥

≤ 1

δn
(∥xn+1 − xn∥+ ∥Gzn − zn∥+ ∥zn − xn∥) → 0 (n→ ∞),

and

∥Sxn − xn∥ ≤ ∥Sxn − SGzn∥+ ∥SGzn − xn∥

≤ 1 + η

1− η
(∥xn − zn∥+ ∥zn −Gzn∥) + ∥SGzn − xn∥ → 0 (n→ ∞).

Since I − S is demiclosed at zero, xn − Sxn → 0 and xnk
⇀ z, we have z ∈ Fix(S). Also,

noticing vn − xn → 0 and xnk
⇀ z, we get vnk

⇀ z. Since W is bounded linear operator,
it is easy to see that W is weakly continuous on H1. So, we obtain that Wvnk

⇀ Wz. By
the assumption on S, we know that I −S is demiclosed at zero. Hence, from (33) we derive
Wz ∈ Fix(S), which immediately yields z ∈ Ω . In addition, noticing xn − zn → 0 and
xnk

⇀ z, we get znk
⇀ z. Therefore, z ∈ VI(C,A) ∩ Ω = Ξ . □

Theorem 3.1. Let {xn} be the sequence generated by Algorithm 3.1. Then {xn} converges
strongly to the unique solution z∗ ∈ Ξ of the SGEP (10) with the BSFPP and VIP constraint,
provided supn≥1 ∥xn − xn−1∥ <∞.

Proof. In terms of Lemma 3.3 we obtain that {xn} is bounded. Note that there exists the
unique solution z∗ ∈ Ξ of the SGEP (10) with the BSFPP and VIP constraint, that is, the
VIP (17) has the unique solution z∗ ∈ Ξ . For convenience, we write y∗ := TΨ2

µ2
(I−µ2φ2)z

∗,

qn := TΨ2
µ2

(I − µ2φ2)zn and pn := TΨ1
µ1

(I − µ1φ1)qn. Then z∗ = Gz∗ = TΨ1
µ1

(I − µ1φ1)y
∗

and pn = Gzn.
Note that ∥qn − y∗∥2 ≤ ∥zn − z∗∥2 − µ2(2β − µ2)∥φ2zn − φ2z

∗∥2 and ∥pn − z∗∥2 ≤
∥qn − y∗∥2 − µ1(2α− µ1)∥φ1qn − φ1y

∗∥2. Combining these two inequalities, we obtain

∥pn − z∗∥2 ≤ ∥zn − z∗∥2 − µ2(2β − µ2)∥φ2zn − φ2z
∗∥2 − µ1(2α− µ1)∥φ1qn − φ1y

∗∥2. (34)
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According to (23), (25) and (28), we have

∥zn − z∗∥2 ≤ αnδ∥xn − z∗∥2 + (1− αn)∥un − z∗∥2 + 2αn⟨(f − I)z∗, zn − z∗⟩
≤ αnδ∥xn − z∗∥2 + (1− αn)[∥wn − z∗∥2 − ϵ2∥W∗(I − S)Wvn∥2]
+ 2αn⟨(f − I)z∗, zn − z∗⟩,

which together with (34), arrives at

∥xn+1 − z∗∥2 ≤ βn∥xn − z∗∥2 + (1− βn)∥
1

1− βn
[γn(pn − z∗) + δn(Spn − z∗)]∥2

≤ βn∥xn − z∗∥2 + (1− βn)[αnδ∥xn − z∗∥2 + (1− αn)(∥wn − z∗∥2

− ϵ2∥W∗(I − S)Wvn∥2) + αnM2 − µ2(2β − µ2)∥φ2zn − φ2z
∗∥2

− µ1(2α− µ1)∥φ1qn − φ1y
∗∥2],

(35)

where supn≥1 2∥(f − I)z∗∥∥zn − z∗∥ ≤M2 for some M2 > 0. Moreover, from (25) we have

∥wn − z∗∥2 ≤ ∥xn − z∗∥2 + αnM3, (36)

where supn≥1(2M1∥xn − z∗∥ + αnM
2
1 ) ≤ M3 for some M3 > 0. Combining (35) and (36),

we obtain

∥xn+1 − z∗∥2 ≤ ∥xn − z∗∥2 − (1− βn)[(1− αn)ϵ
2∥W∗(I − S)Wvn∥2

+ µ2(2β − µ2)∥φ2zn − φ2z
∗∥2 + µ1(2α− µ1)∥φ1qn − φ1y

∗∥2] + αnM4,

where M4 :=M2 +M3. This immediately implies that

(1− βn)[(1− αn)ϵ
2∥W∗(I − S)Wvn∥2 + µ2(2β − µ2)∥φ2zn − φ2z

∗∥2

+ µ1(2α− µ1)∥φ1qn − φ1y
∗∥2] ≤ ∥xn − z∗∥2 − ∥xn+1 − z∗∥2 + αnM4.

(37)

Observe that

∥wn − z∗∥2 ≤ ∥xn − z∗∥2 + εn∥xn − xn−1∥(2∥xn − z∗∥+ εn∥xn − xn−1∥). (38)

By (25), (35) and (38), we have

∥xn+1 − z∗∥2 ≤ βn∥xn − z∗∥2 + (1− βn)[αnδ∥xn − z∗∥2 + (1− αn)∥wn − z∗∥2

+ 2αn⟨(f − I)z∗, zn − z∗⟩]
≤ [1− αn(1− βn)(1− δ)]∥xn − z∗∥2 + αn(1− βn)(1− δ)

× { 3M

1− δ

εn
αn

· ∥xn − xn−1∥+
2⟨(f − I)z∗, zn − z∗⟩

1− δ
},

(39)

where supn≥1{∥xn − z∗∥, εn∥xn − xn−1∥} ≤M for some M > 0.

Set Φn = ∥xn − z∗∥2. Now, we show the convergence of {Φn} to zero by two cases.
Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Φn} is nonincreasing.

Then the limit limn→∞ Φn = d < +∞ and limn→∞(Φn − Φn+1) = 0. From (37) we obtain

(1− βn)[(1− αn)ϵ
2∥W∗(I − S)Wvn∥2 + µ2(2β − µ2)∥φ2zn − φ2z

∗∥2

+ µ1(2α− µ1)∥φ1qn − φ1y
∗∥2] ≤ Φn − Φn+1 + αnM4.

Since αn → 0, Φn − Φn+1 → 0, µ1 ∈ (0, 2α) and µ2 ∈ (0, 2β), one has

lim
n→∞

∥φ2zn − φ2z
∗∥ = lim

n→∞
∥φ1qn − φ1y

∗∥ = lim
n→∞

∥W∗(I − S)Wvn∥ = 0. (40)
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Furthermore, by the firm nonexpansivity of TΘ1
µ1

we obtain that

∥pn − z∗∥2 ≤ ⟨qn − y∗, pn − z∗⟩+ µ1⟨φ1y
∗ − φ1qn, pn − z∗⟩

≤ 1

2
[∥qn − y∗∥2 + ∥pn − z∗∥2 − ∥qn − pn + z∗ − y∗∥2]

+ µ1∥φ1y
∗ − φ1qn∥∥pn − z∗∥,

which hence arrives at

∥pn − z∗∥2 ≤ ∥qn − y∗∥2 − ∥qn − pn + z∗ − y∗∥2 + 2µ1∥φ1y
∗ − φ1qn∥∥pn − z∗∥.

In a similar way, one gets

∥qn − y∗∥2 ≤ ∥zn − z∗∥2 − ∥zn − qn + y∗ − z∗∥2 + 2µ2∥φ2z
∗ − φ2zn∥∥qn − y∗∥.

Combining the last two inequalities, one deduces that

∥pn − z∗∥2 ≤ ∥zn − z∗∥2 − ∥zn − qn + y∗ − z∗∥2 − ∥qn − pn + z∗ − y∗∥2

+ 2µ2∥φ2z
∗ − φ2zn∥∥qn − y∗∥+ 2µ1∥φ1y

∗ − φ1qn∥∥pn − z∗∥,

which together with (25) and (35), leads to

∥xn+1 − z∗∥2 ≤ (∥xn − z∗∥+ αnM1)
2 − (1− βn)[∥zn − qn + y∗ − z∗∥2

+ ∥qn − pn + z∗ − y∗∥2] + 2µ2∥φ2z
∗ − φ2zn∥∥qn − y∗∥

+ 2µ1∥φ1y
∗ − φ1qn∥∥pn − z∗∥.

This immediately ensures that

(1− βn)[∥zn − qn + y∗ − z∗∥2 + ∥qn − pn + z∗ − y∗∥2]

≤ (
√
Φn + αnM1)

2 − Φn+1 + 2µ2∥φ2z
∗ − φ2zn∥∥qn − y∗∥+ 2µ1∥φ1y

∗ − φ1qn∥∥pn − z∗∥.

From (40) and the boundedness of {pn}, {qn}, one has

lim
n→∞

∥zn − qn + y∗ − z∗∥ = lim
n→∞

∥qn − pn + z∗ − y∗∥ = 0,

which hence yields

∥zn −Gzn∥ = ∥zn − pn∥ ≤ ∥zn − qn + y∗ − z∗∥+ ∥qn − pn + z∗ − y∗∥ → 0 (n→ ∞). (41)

Observe that ∥wn − xn∥ = αn · εnαn
∥xn − xn−1∥ ≤ αnM1 → 0(n→ ∞). By (40), we get

∥zn − vn∥ ≤ αn∥f(xn)− vn∥+ (1− αn)σn∥W∗(I − S)Wvn∥
≤ αn(∥f(xn)∥+ ∥vn∥) + σn∥W∗(I − S)Wvn∥ → 0 (n→ ∞).

Using (28) one has that

(1− βn)(1− αn)(1− µ)[∥yn − wn∥2 + ∥yn − vn∥2]

≤ (
√

Φn + αnM1)
2 − ∥xn+1 − z∗∥2 + αnM2.

Hence, limn→∞ ∥yn − wn∥ = limn→∞ ∥yn − vn∥ = 0 which together with wn − xn → 0 and
zn−vn → 0, leads to ∥xn−zn∥ ≤ ∥xn−wn∥+∥wn−yn∥+∥yn−vn∥+∥vn−zn∥ → 0 (n→ ∞).
From (41) it follows that

∥Gzn − xn∥ ≤ ∥Gzn − zn∥+ ∥zn − xn∥ → 0 (n→ ∞). (42)
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On the other hand, using (28) we deduce that

∥xn+1 − z∗∥2 = βn∥xn − z∗∥2 + (1− βn)∥
1

1− βn
[γn(pn − z∗) + δn(Spn − z∗)]∥2

− βn(1− βn)∥
1

1− βn
[γn(xn − pn) + δn(xn − Spn]∥2

≤ (∥xn − z∗∥+ αnM1)
2 + αnM2

− βn(1− βn)∥
1

1− βn
[γn(xn − pn) + δn(xn − Spn]∥2,

which hence yields

βn(1− βn)∥
1

1− βn
[γn(xn − pn) + δn(xn − Spn]∥2 ≤ (

√
Φn + αnM1)

2 − Φn+1 + αnM2.

It follows that

lim
n→∞

∥ 1

1− βn
[γn(xn − pn) + δn(xn − Spn]∥ = 0. (43)

Note that

δn∥xn − SGzn∥ ≤ δn
1− βn

∥xn − SGzn∥

≤ ∥ 1

1− βn
[γn(xn − pn) + δn(xn − Spn]∥+

1

1− βn
∥xn −Gzn∥.

From (42) and (43) we obtain that limn→∞ ∥xn − SGzn∥ = 0. So,

∥xn+1 − xn∥ ≤ ∥Gzn − xn∥+ ∥SGzn − xn∥ → 0 (n→ ∞).

In addition, from the boundedness of {xn} it follows that there exists a subsequence {xnk
}

of {xn} such that

lim sup
n→∞

⟨(f − I)z∗, xn − z∗⟩ = lim
k→∞

⟨(f − I)z∗, xnk
− z∗⟩. (44)

Since H1 is reflexive and {xn} is bounded, we may assume, without loss of generality, that
xnk

⇀ z̃. Thus, from (44) one gets

lim sup
n→∞

⟨(f − I)z∗, xn − z∗⟩ = lim
k→∞

⟨(f − I)z∗, xnk
− z∗⟩

= ⟨(f − I)z∗, z̃ − z∗⟩.
(45)

Applying Lemma 3.4, we deduce that z̃ ∈ ωw({xn}) ⊂ Ξ . From (17) and (45) one gets

lim sup
n→∞

⟨(f − I)z∗, xn − z∗⟩ = ⟨(f − I)z∗, z̃ − z∗⟩ ≤ 0,

which together with xn − zn → 0, leads to

lim sup
n→∞

⟨(f − I)z∗, zn − z∗⟩ ≤ lim sup
n→∞

[∥(f − I)z∗∥∥zn − xn∥+ ⟨(f − I)z∗, xn − z∗⟩] ≤ 0.

Note that lim supn→∞{ 3M
1−δ ·

εn
αn

·∥xn−xn−1∥+ 2⟨(f−I)z∗,zn−z∗⟩
1−δ } ≤ 0. Consequently, applying

Lemma 2.2 to (39), one has limn→∞ ∥xn − z∗∥2 = 0.
Case 2. Suppose that ∃{Φnk

} ⊂ {Φn} s.t. Φnk
< Φnk+1,∀k ∈ N, where N is the set of

all positive integers. Define the mapping ψ : N → N by ψ(n) := max{k ≤ n : Φk < Φk+1}.
By Lemma 2.3, we get Φψ(n) ≤ Φψ(n)+1 and Φn ≤ Φψ(n)+1. From (37), we have

(1− βψ(n))[(1− αψ(n))ϵ
2∥W∗(I − S)Wvψ(n)∥2 + µ2(2β − µ2)∥φ2zψ(n) − φ2z

∗∥2

+ µ1(2α− µ1)∥φ1qψ(n) − φ1y
∗∥2] ≤ Φψ(n) − Φψ(n)+1 + αψ(n)M4,
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which immediately yields

lim
n→∞

∥φ2zψ(n) − φ2z
∗∥ = lim

n→∞
∥φ1qψ(n) − φ1y

∗∥ = lim
n→∞

∥W∗(I − S)Wvψ(n)∥ = 0.

So it follows that

∥zψ(n) − vψ(n)∥ ≤ αψ(n)(∥f(xψ(n))∥+ ∥vψ(n)∥) + σψ(n)∥W∗(I − S)Wvψ(n)∥ → 0 (n→ ∞).

Using the same inferences as in the proof of Case 1, we deduce that limn→∞ ∥zψ(n) −
Gzψ(n)∥ = limn→∞ ∥xψ(n)+1 − xψ(n)∥ = 0 and lim supn→∞⟨(f − I)z∗, zψ(n) − z∗⟩ ≤ 0. On
the other hand, from (39) we obtain

αψ(n)(1− βψ(n))(1− δ)Φψ(n) ≤ Φψ(n) − Φψ(n)+1 + αψ(n)(1− βψ(n))(1− δ)[
3M

1− δ
·
εψ(n)

αψ(n)

× ∥xψ(n) − xψ(n)−1∥+
2⟨(f − I)z∗, zψ(n) − z∗⟩

1− δ
]

≤ αψ(n)(1− βψ(n))(1− δ)[
3M

1− δ
·
εψ(n)

αψ(n)
· ∥xψ(n) − xψ(n)−1∥

+
2⟨(f − I)z∗, zψ(n) − z∗⟩

1− δ
],

which hence arrives at lim sup
n→∞

Φψ(n) ≤ 0. Thus, limn→∞ ∥xψ(n) − z∗∥2 = 0. Also, note that

∥xψ(n)+1 − z∗∥2 − ∥xψ(n) − z∗∥2 ≤ 2∥xψ(n)+1 − xψ(n)∥∥xψ(n) − z∗∥+ ∥xψ(n)+1 − xψ(n)∥2.
Owing to Φn ≤ Φψ(n)+1, we get

∥xn − z∗∥2 ≤ ∥xψ(n) − z∗∥2 + 2∥xψ(n)+1 − xψ(n)∥∥xψ(n) − z∗∥+ ∥xψ(n)+1 − xψ(n)∥2 → 0.

That is, xn → z∗ as n→ ∞. This completes the proof. □

4. Conclusion

In this paper, we introduce hybrid inertial subgradient extragradient rules with line-
search process for solving a system of generalized equilibrium problems with a bilevel split
fixed point problem and a variational inequality constraint, where the rule exploits the
contractiveness of one operator at the upper-level problem and the pseudomonotonicity of
another mapping at the lower level. The bounded linear operator in the bilevel split fixed
point problem involves a fixed-point problem of a strict pseudocontraction mapping in its
domain space and a demimetric mapping in its range space. The strong convergence result
for the proposed algorithm is established under some additional conditions.
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