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MODIFIED SIT ALGORITHM FOR MULTIOBJECTIVE
QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING

Hossein SALMEI1 and Mohammad Ali YAGHOOBI2∗

Most of existing methods for solving multiobjective quadratic pro-
gramming problems consider convex objective functions and linear constraints.
We suppose that objective functions are either convex or nonconvex. Moreover,
constraints can be stated in both linear and quadratic forms. To solve these prob-
lems, a modified version of the SIT algorithm is proposed which converges to a
finite subset of essential epsilon-efficient solutions. Further, we use polyblocks
which their upper boundaries approximate the efficient frontier of the problem.

Keywords: multiobjective programming, the constraint method, minmax optimization, quadratic
programming, essential ε-optimal solution, the SIT algorithm.

1. Introduction

We consider the following problem:

min f (x) = ( f1(x), ..., fp(x))
s.t. fk(x)> 0 k = p+1, ...,m, (1)

x ∈ [a,b],

where a and b are n dimensional vectors of nonnegative real numbers, x ∈ [a,b]
means ai 6 xi 6 bi for all i = 1, ...,n, and each function fk : Rn→ R is of the form,

fk(x) =
n

∑
i=1

ck
i x2

i +
n

∑
i, j=1;i< j

ck
i jxix j +

n

∑
i=1

dk
i xi +dk, k = 1, ...,m. (2)

Problem (1) is a multiobjective quadratically constrained quadratic programming
(MQCQP) problem. If p = 1, it involves a single objective and we use the term
SQCQP instead of MQCQP. In either case, the feasible set of problem (1) is denoted
by F := {x ∈ Rn | fk(x) > 0, k = p+ 1, ...,m, x ∈ [a,b]} and the set Y := {y ∈
Rp | y = f (x), x ∈ F} called the image of F under f in the objective space.

Quadratically constrained quadratic programming is an important and well-
known technique for formulating and dealing with different mathematical program-
ming problems. Many programming problems such as mixed integer, fractional,
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bilevel, and polynomial programming problems can be written as instances of SQC-
QP [6, 9]. Hladik [5] computed the optimal value range of convex SQCQP problems
when the coefficients are subject to perturbations in given intervals. Tuy and Hoai-
Phuong [10] developed the SIT algorithm in order to solve SQCQP problems in
nonconvex case. Their algorithm is stable under small perturbations.

On the other hand, in many real world problems more than one objective func-
tion should be considered. Thus, multiobjective programming problems occur dur-
ing the modelling of those problems [3]. In the literature, most of researches in the
field of multiobjective quadratic programming deal with convex quadratic objective
functions and linear constraints. Beato-Moreno et al. [1] proposed a technique for
calculating the equations of the efficient points of an unconstrained multiobjective
quadratic programming with strictly convex functions. In the case of convex objec-
tive functions, Beato-Moreno et al. [2] obtained some conditions for (weakly) effi-
cient solutions. Goh and Yang [4] presented an analytical method for computing the
exact efficient solution set of multiobjective convex quadratic programs with linear
constraints. Oberdieck and Pistikopoulos [8] suggested an approximate algorithm
for the explicit calculation of the efficient frontier of a multiobjective optimization
problem with convex quadratic cost functions and linear constraints.

In this paper, we introduce a technique for solving an MQCQP problem gen-
erally in nonconvex case. In fact, we convert problem (1) to an SQCQP prob-
lem based on combination of the well-known minmax optimization and constraint
method [3]. Then, we solve the SQCQP problem by developing the SIT algorithm
[10] to multiobjective functions. The rest of the paper is organized as follows. Sec-
tion 2 introduces preliminaries and explains the basic concepts of the SIT algorithm
briefly. Main results are given in Section 3. The modified SIT algorithm for solving
problem (1) is developed in Section 4. Finally, Section 5 is devoted to conclusions.

2. Preliminaries

At first we introduce some basic notations and definitions from [3, 9, 10].
Throughout the paper, Rn denotes the n dimensional Euclidean space, ei is the i-
th unit vector of Rn, and 1 ∈ Rn is a vector with all components equal to one. If
x,y ∈Rn then x5 y (x < y) if and only if xi 6 yi (xi < yi), ∀ i = 1, ...,n. In addition,
x≤ y means that x5 y and x 6= y. We will denote by Rn

= the set {x ∈ Rn | 05 x}.

Definition 2.1. ([3]) Consider an MQCQP problem. The feasible solution x̂ ∈ F

is called efficient (weak efficient) if there is no another x ∈ F such that f (x) ≤
f (x̂) ( f (x) < f (x̂)). If x̂ ∈ F is efficient (weak efficient) then ŷ = f (x̂) is called
a nondominated (weak nondominated) point. The set of all efficient solutions and
nondominated points are called the efficient set and efficient frontier, respectively.

Definition 2.2. ([9]) A function h : Rn −→R is said to be increasing on the orthant
Rn
= if h(x)5 h(y) whenever 05 x5 y. It is a dm (difference of monotonic) function

on Rn
= if h(x) = h+(x)−h−(x), where h+,h− are increasing on Rn

=.
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Clearly a polynomial of n variables with positive coefficients is increasing on
Rn
=. Since a polynomial can be represented as a difference of two polynomials with

positive coefficients, it is a dm function on Rn
=. Consequently, every quadratic func-

tion of form (2) is also a dm function on Rn
=.

Definition 2.3. ([9])
(i) A set P ⊆ Rn

= is called polyblock if P = ∪z∈V [0,z] whenever the set V , called
the vertex set, is a finite subset of P. A point z∈V is called a proper vertex of P
if there is no z′ ∈V\{z} such that z′ 5 z. Otherwise, z ∈V is called improper.

(ii) Let P⊆ [ā, b̄] be a polyblock. A point y ∈ P is called an upper boundary point
if there does not exist another point x∈P such that x= ā+λ (y− ā) with λ > 1.
We denote the set of all upper boundary points of P by ∂+P.

Proposition 2.1. ([9]) Let P⊆ [ā, b̄] be a polyblock with proper vertex set V and let
x ∈ [ā, b̄] satisfy Vx := {z ∈V | x < z} 6= /0. Then:
(i) P′ := P\(x, b̄] is a polyblock with vertex set

V ′ = (V\Vx)∪{zi = z+(xi− zi)ei | z ∈Vx, i = 1, ...,n}.
(ii) The proper vertex set of P′ is obtained from V ′ by removing improper elements

according to the rule: “For every pair z∈Vx,y∈V+
x := {y∈V | x5 y} compute

J(z,y) := { j | z j > y j}. If J(z,y) = {i} then zi is an improper element of V ′.”

In the reminder of this section, we consider problem (1) with p = 1, i.e. an
SQCQP problem. Since f1, f2, ..., fm are dm functions on Rn

=, the SQCQP problem
can be converted, without loss of generality, to the following problem [10]:

min{h(x)|g(x)> 0,x ∈ [a,b]} (3)

where h : Rn −→R is an increasing quadratic function of form (2) with positive co-
efficients and g(x) =mink=1,...,m{gk(x) := uk(x)−vk(x)}where uk,vk are increasing
quadratic functions with the same form as (2).

2.1. Essential optimal solutions

It has been argued in [9, 10] that an isolated optimal solution of problem (3)
is often difficult to be implemented in practice because of its instability under small
perturbations of the constraints. This is the motivation of the following definition.

Definition 2.4. ([9, 10]) Consider Problem (3). Assume that {x | g(x) > 0, x ∈
[a,b]} 6= /0 and let ε > 0 be given. A vector x ∈ Rn is an ε-essential (nonisolated)
feasible solution if x ∈ Fε := {x | g(x)> ε, x ∈ [a,b]}. A solution x? ∈ Fε is called
an essential ε-optimal solution if:

h(x?)− ε 6min{h(x) | x ∈ Fε}. (4)

We call x? an essential strictly ε-optimal solution if inequality (4) is strict.
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Theorem 2.1. ([9, 10]) Suppose that z? and x? are the optimal value and the optimal
solution of the following auxiliary problem, respectively:

max{g(x)| h(x)6 γ− ε, x ∈ [a,b]}. (5)

If z? > 0 then x? is a nonisolated feasible solution of problem (3) with h(x?)6 γ−ε.
If z? < ε and γ = h(x̄) for some x̄ ∈ Fε , then x̄ is an essential ε-optimal solution of
problem (3). If z? < ε and γ = h(b)+ ε then problem (3) is ε-essentially infeasible
(i.e problem (3) has no ε-essential feasible solution).

To solve the auxiliary problem (5), an approach is developed in [10] which is
based on three operations: Branching, Reducing and Bounding.
• Branching produces a sequence of nested partition sets that shrinks to a single-

ton. It can be done by the popular standard bisection technique.
• Reduction reduces a box M = [p,q] ⊆ [a,b] to [p′,q′] without losing any de-

sirable feasible point. The box [p′,q′] is called valid reduction and denoted by
redM. We use Lemma 1 of [10] to calculate [p′,q′].
• Bounding consists of estimating an upper bound β (M) to problem (5) over a

valid reduction [p′,q′]. We use LP(M) of [10] to estimate β (M) as the optimal
value of a linear relaxation of problem (5).

3. Main results

The well-known minmax approach converts problem (1) to a single opti-
mization problem with the objective function “min max{ f1(x), ..., fp(x)}” without
changing the constraint set [3]. Another well-known approach to deal with problem
(1) is the constraint method. It chooses one objective function (for instance, f j) and
considers upper bounds for the other objective functions. In fact, it solves [3]:

min f j(x)
s.t. fk(x)6 f u

k k = 1, ..., p, k 6= j,
fk(x)> 0 k = p+1, ...,m; x ∈ [a,b], (6)

where f u
k is an arbitrary upper bound of the k-th objective function. A candidate for

such an upper bound is f u
k = f+k (b)− f−k (a).

The minmax approach and the constraint method are known as scalarization
techniques [3]. In what follows, we propose another scalarization technique. In
fact, we combine the above two methods and convert problem (1) to:

min max{ f1(x), ..., fp(x)}
s.t. fk(x)6 f u

k k = 1, ..., p,
fk(x)> 0 k = p+1, ...,m; x ∈ [a,b]. (7)
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If xn+1 :=max{ f1(x), ..., fp(x)}, model (7) can be rewritten equivalently as follows:

min xn+1

s.t. xn+1− fk(x)> 0 k = 1, ..., p,
f u
k − fk(x)> 0 k = 1, ..., p, (8)

fk(x)> 0 k = p+1, ...,m,

(x,xn+1) ∈ [(a,an+1),(b,bn+1)],

where an+1 = max{ f+k (a)− f−k (b)}p
k=1, bn+1 = max{ f+k (b)− f−k (a)}p

k=1.
The objective function of problem (8) is a strictly increasing quadratic func-

tion and the left hand side of its constraints are quadratic functions. Thus, problem
(8) is an SQCQP problem of the form (3) and can be solved by the approach dis-
cussed in Section 2 for each fixed vector ( f u

1 , ..., f u
p). We develop that approach

to approximate the efficient frontier of problem (1). To this end, initially, we use
the definition of ε-efficient solutions [7] for extending the concept of essential ε-
optimality to essential ε-efficiency in the case of multiobjective functions.

Definition 3.1. Consider problem (1) and let ε > 0 be given.
• A point x̂ ∈ Fε is called an essential ε-efficient (ε-weak efficient) solution if

there is no another x ∈ Fε such that f (x)+ ε1≤ (<) f (x̂).
• If x̂ ∈ Fε is an essential ε-efficient (ε-weak efficient) solution then ŷ = f (x̂) is

called an essential ε-nondominated (ε-weak nondominated) point.

Theorem 3.1. Suppose that (x?,x?n+1) is an essential ε-optimal solution of problem
(8). Then x? is an essential ε-weak efficient solution of problem (1). If (x?,x?n+1) is
an essential strictly ε-optimal solution then x? is an essential ε-efficient solution.

Proof. Suppose that x? is not an essential ε-weak efficient solution of problem (1).
Then, there exists x̄ ∈ Fε such that fk(x̄)+ ε < fk(x?) for k = 1, ..., p. Thus, there
is ε0 > 0 such that fk(x̄)+ ε + ε0 < fk(x?) for all k = 1, ..., p. Since (x?,x?n+1) is an
essential ε-optimal solution of problem (8), we have:

• f u
k − fk(x̄)> f u

k − fk(x?)+ ε + ε0 > f u
k − fk(x?)> ε, k = 1, ..., p. (9)

• x?n+1− ε0− fk(x̄)> x?n+1− fk(x?)+ ε > x?n+1− fk(x?)> ε, k = 1, ..., p. (10)
• x?n+1− ε0 > fk(x?)+ ε− ε0 > fk(x̄)+2ε

> fk(x̄)> f+k (a)− f−k (b), k = 1, ..., p. (11)
• x?n+1− ε0 6 bn+1− ε0 6 bn+1. (12)

Define x̄n+1 = x?n+1− ε0. Inequalities (11) and (12) imply that x̄n+1 ∈ [an+1,bn+1].
Since x̄ ∈ Fε , we conclude, by (9) and (10), that (x̄, x̄n+1) is an ε-essential feasible
solution of problem (8). We also have x̄n+1− ε = x?n+1− ε0− ε < x?n+1− ε , which
contradicts the essential ε-optimality of (x?,x?n+1) to problem (8). This completes
the proof of the first statement. For the second part, we conclude similarly that
(x̄, x̄n+1 = x?n+1) is an ε-essential feasible solution of problem (8). Now, x̄n+1−ε =
x?n+1− ε contradicts the essential strictly ε-optimality of (x?,x?n+1). �



32 Hossein SALMEI, Mohammad Ali YAGHOOBI

The next theorem shows that problem (8) is able to obtain any essential ε-
efficient solution of an arbitrary MQCQP problem.

Theorem 3.2. Consider problem (1) and let x̂ ∈ Fε be an essential ε-efficient solu-
tion. Then, there is a vector ( f u

1 , ..., f u
p) such that (x̂, x̂n+1) is an essential ε-optimal

solution of problem (8) where x̂n+1 = max{ f1(x̂), ..., fp(x̂)}+ ε .

Proof. Define f u
k = fk(x̂) for k = 1, ..., p and, on the contrary, suppose that (x̂, x̂n+1)

is not an essential ε-optimal solution of problem (8). Then, there exists an ε-
essential feasible solution (x̄, x̄n+1) of problem (8) such that x̄n+1 < x̂n+1−ε . Thus,
f u
k − fk(x̄)> ε, k = 1, ..., p which implies that fk(x̄)+ε 6 fk(x̂), k = 1, ..., p. More-

over, the constraints of problem (8) imply that x̄n+1>max{ f1(x̄), ..., fp(x̄)}+ε . Let
max{ f1(x̂), ..., fp(x̂)}= ft(x̂). Then we have:

ft(x̄)+ ε 6max{ f1(x̄), ..., fp(x̄)}+ ε 6 x̄n+1 < x̂n+1− ε = ft(x̂).
Therefore, ft(x̄)+ε < ft(x̂). Consequently, f (x̄)+ε1≤ f (x̂), which contradicts the
essential ε-efficiency of x̂. It completes the proof. �

Theorem 3.3. Let (x?,x?n+1) be an essential ε-optimal solution of problem (8).
Then, the polyblock P? ⊆ Y with vertex set V ? = { f (x?)} involves at least one non-
dominated point of problem (1).

Proof. Consider the problem:

min f1(x)+ f2(x)+ ...+ fp(x)
s.t. x ∈Ω = {x ∈ F | f (x) ∈ P?}. (13)

Since f1, f2, ..., fp are continuous functions and F,P? are compact sets then Ω is a
compact set and the objective function of problem (13) is continuous. By Weier-
strass Theorem there is x̂ ∈ F such that f (x̂) ∈ P? and ∑

p
k=1 fk(x̂) 6 ∑

p
k=1 fk(x),

∀ x ∈ Ω. Then, ŷ = f (x̂) is a nondominated point. Since otherwise there is x̄ ∈ F

such that f (x̄) ≤ f (x̂). This implies that f (x̄) ∈ P? ( f (x̄)≤ f (x̂)5 f (x?)) and
∑

p
k=1 fk(x̄)< ∑

p
k=1 fk(x̂), which is a contradiction. It completes the proof. �

Indeed, Theorem 3.3 shows that the polyblock made by an essential ε-optimal
solution of problem (8) includes a part of efficient frontier. In the next section, we
will show that the whole efficient frontier is a subset of a polyblock made by only a
finite number of essential ε-optimal solutions of problem (8).

Proposition 3.1. Consider M = [p,q] ⊆ [a,b]. Suppose that L is a lower bound
of the function f on M. Then, M does not contain any essential ε-weak efficient
(ε-efficient) solution if there is x̄ ∈ [a,b] such that f (x̄)< L− ε1 ( f (x̄)≤ L− ε1).

Proof. Let x ∈ M. Then f (x) = L. If f (x̄) < L− ε1 then L > f (x̄) + ε1 which
implies that f (x) > f (x̄) + ε1. Therefore, x is not an essential ε-weak efficient
solution. Similarly, If f (x̄)≤ L− ε1 then f (x)≥ f (x̄)+ ε1 and thus x cannot be an
essential ε-efficient solution. �
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4. Modified SIT Algorithm

In this section, we present a modification of the SIT algorithm to approximate
the efficient set and the efficient frontier of problem (1). In fact, we convert the
MQCQP problem (1) to the SQCQP problem (8). Then, the new algorithm assigns
different upper bound vectors ( f u

1 , ..., f u
p) to problem (8) and runs the steps of SIT

algorithm [10] for each individual upper bound vector to obtain different essential
ε-weak efficient solutions. The set of those solutions approximates the efficient set.

Algorithm 4.1.
Input a, b, ε, f = ( f1 = f+1 − f−1 , ..., fp = f+p − f−p ).

Step 0 (Initialization) Let f u0 :=( f+1 (b)− f−1 (a), ..., f+p (b)− f−p (a)), U := { f u0},
an+1 :=max{ f+k (a)− f−k (b)}p

k=1, bn+1 :=max{ f+k (b)− f−k (a)}p
k=1, and

Xout := /0.
Step 1 Set γ := bn+1+ε, M1 := [(a,an+1),(b,bn+1)], P1 := {M1},R1 := /0, k :=

1, and select a vector f u ∈ U.
Step 2 For each box M ∈ Pk related to problem (8) with the selected f u ∈ U:

2-1 Compute valid reduction, redM. If redM = /0 then Pk := Pk \{M}.
Otherwise, substitute M by redM.

2-2 If redM = [p′,q′] then obtain β (M) by solving LP([p′,q′]).
If β (M)< 0 then Pk := Pk \{M}.

Step 3 Set Rk := Rk∪Pk. If Rk = /0 then go to Step 6; otherwise obtain:

[pk,qk] := Mk ∈ argmax{β (M) |M ∈ Rk}.
Step 4 If β (Mk)< ε then go to step 6; otherwise compute

λk := max{α|pk
n+1+α(qk

n+1− pk
n+1)6 γ−ε} and xk := pk+λk(qk− pk).

4-1 If g(xk)> 0 then xk is a new nonisolated feasible solution of problem
(8) with xk

n+1 6 γ− ε . If g(pk)< 0 then compute the point x̄k where
the line segment joining pk to xk meets the surface g(x) = 0, and set
x̄ := x̄k; otherwise set x̄ := pk. Let γ := x̄n+1 and go to Step 5.

4-2 If g(xk)6 0 then go to Step 5.
Step 5 Divided Mk into two subboxes M1

k and M2
k , by the standard bisection (or

any bisection consistent with the bounding β (M)). Let L1 and L2 be the
lower bounds of f on M1

k and M2
k , respectively (without considering the

n+1-th dimension).
5-1 Set Pk+1 := {M1

k ,M
2
k} and Rk+1 := Rk \{Mk}.

5-2 If f (x̄1, ..., x̄n)< Li− ε1 then Pk+1 := Pk+1 \{Mi
k}, for i=1,2.

5-3 Let k := k+1 and go to Step 2.
Step 6 Set U := U \ { f u}. If γ = bn+1 + ε then problem (8) with the selected

f u ∈ U is ε-essentially infeasible. Otherwise:
U :=U∪{ f u j | f u j =( f u

1 , ..., f u
j−1, f j(x̄1, ..., x̄n)−ε, f u

j+1, ..., f u
p), j = 1, ..., p},

Xout := Xout ∪{(x̄1, ..., x̄n)}.
If U= /0 then stop; otherwise go to Step 1.
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Output The set Xout and Yout := {y ∈ Rp | y = f (x), x ∈ Xout} as discrete ap-
proximations to the efficient set and the efficient frontier of problem (1),
respectively.

Note that in Algorithm 4.1 all vectors xk, pk,qk, x̄k, x̄ belong to Rn+1 and the
function g defines as in problem (3) according to the constraints of problem (8).

Remark 4.1. Steps 1-5 of Algorithm 4.1 are taken from Steps 0-7 of the SIT algo-
rithm [10] and are rewritten in a relevant way to solve problem (8) for a selected
f u ∈ U. Therefore, these steps, based on Proposition 2 of [10], terminate after a
finite number of iterations and converge to an essential ε-optimal solution or show
that the underling problem is ε-essentially infeasible. It should be noted that, based
on Proposition 3.1 and Theorem 3.1, we delete some boxes in Step 5 which do not
contain any ε-optimal solutions.

In what follows, we discuss some properties of Algorithm 4.1. Initially, we
prove that it is convergent.

Theorem 4.1. Algorithm 4.1 terminates after a finite number of iterations.

Proof. On the contrary suppose that Algorithm 4.1 does not terminate in finitely
many iterations. Based on Remark 4.1, steps 1-5 terminate after a finite number of
iterations. Thus, Step 6 will be visited infinitely many times. This means that the
set U should involve infinite number of elements. Moreover, the upper bound of at
least one objective function should be changed infinitely. Without loss of generality,
suppose that it is the function ft (1 6 t 6 p) and the corresponding upper bounds
are { f u1

t , f u2
t , ...} with the corresponding essential ε-optimal solutions {x̄1, x̄2, ...}.

By Step 6 of Algorithm 4.1, f ui+1
t = ft(x̄i

1, ..., x̄
i
n)− ε, ∀ i > 1. Since x̄1, x̄2, ... are

essential ε-optimal solutions of problem (8), we have:

ft(x̄i
1, ..., x̄

i
n)6 f ui

t − ε = ft(x̄i−1
1 , ..., x̄i−1

n )−2ε 6 ...6 ft(x̄1
1, ..., x̄

1
n)− iε. (14)

From (14), we conclude that ft(x̄i
1, ..., x̄

i
n)→−∞ as i→ +∞, which is a contradic-

tion, since f+t (a)− f−t (b) is a lower bound of ft . This completes the proof. �

Let āi := f+i (a)− f−i (b) and b̄i := f+i (b)− f−i (a) for i = 1,2, ..., p. Then,
it is clear that Yout ⊆ Y ⊆ [ā, b̄]. Without loss of generality, we suppose that [ā, b̄]
is a polyblock. Since otherwise the simple shift Y− ā makes the desired feature.
Therefore, the polyblock P0 := [ā, b̄] with the proper vertex set {b̄} involves the
efficient frontier. Suppose that Yout = {y1,y2, ...,yN}. By using Proposition 2.1,
we can generate new polyblocks by considering the points of Yout one by one. In
fact, we obtain N polyblocks P1,P2, ...,PN such that Pi = Pi−1\(yi, b̄], i = 1,2, ...,N.
Next theorem shows that all these polyblocks contain the efficient frontier.

Theorem 4.2. If the efficient frontier of problem (1) is nonempty then it is a subset
of all polyblocks Pi, i = 0,1, ...,N.

Proof. The proof is by induction on i. It is clear that the efficient frontier is a
subset of P0 = [ā, b̄]. Suppose that the efficient frontier is a subset of Pi−1 and,
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on the contrary, it is not a subset of Pi. Therefore, there is a nondominated point
ỹ = f (x̃) such that ỹ /∈ Pi. Thus, ỹ ∈ (yi = f (x), b̄] where x ∈ Xout . It means that
yi = f (x)< ỹ = f (x̃), which contradicts ỹ being a nondominated point. �

Indeed, by Theorem 4.2, the upper boundaries of the polyblocks P0,P1, ...,PN
can be considered as approximations to the efficient frontier of problem (1). How-
ever, ∂+PN approximates the efficient frontier more precisely since it involves the
most points. The following proposition shows an interesting feature of the set Yout
in biobjective case. It states that the minimum Euclidean distance among all points
of Yout is ε , which approves that the approximation points are well dispersed.

Proposition 4.1. Consider a biobjective instance of problem (1). If Yout is nonempty
then the Euclidean distance between any two points of it is at least ε .

Proof. Let yr = f (xr) and ys = f (xs) be two points of Yout where 1 6 r,s 6 N and
xr,xs ∈Xout with corresponding vectors f ur , f us ∈U. Then, by Step 6 of Algorithm
4.1 and the constraints of problem (8), the following three cases are possible:
(i) there is 16 j 6 2 such that f j(xr)6 f ur

j − ε 6 f j(xs)−2ε ,
(ii) there is 16 j 6 2 such that f j(xs)6 f us

j − ε 6 f j(xr)−2ε ,
(iii) there exist xq ∈ Xout and f uq ∈ U such that:

(1) f j(xr)6 f uq
j − ε = f j(xq)−2ε , (2) fh(xs)6 f uq

h − ε = fh(xq)−2ε ,
where either j = 1,h = 2 or j = 2,h = 1.

Case (i) happens when Algorithm 4.1 attains xs first and f j(xs)−ε induces an upper
bound on f j(xr) based on problem (8). Case (ii) is the opposite of case (i). If none
of cases (i) and (ii) happen then there will be xq such that f j(xq)− ε induces an up-
per bound on both f j(xr) and f j(xs). Cases (i) and (ii) imply that f j(xs)− f j(xr)> ε

or f j(xr)− f j(xs) > ε . We show that case (iii) also leads to a similar result. Since
(xq,xq

n+1) is an essential ε-optimal solution of problem (8), we have:
max{ f1(xq), f2(xq)}= xq

n+1− ε 6min xn+1, ∀ (x,xn+1) ∈ Fε ,
where Fε is the set of all ε-essential feasible solutions of problem (8). Moreover:

min xn+1 = max{ f1(x), f2(x)}+ ε, ∀ (x,xn+1) ∈ Fε .
Therefore, since (xr,xr

n+1) and (xs,xs
n+1) are ε-essential feasible solutions of prob-

lem (8) with corresponding f uq ∈ U, we obtain:

max{ f1(xq), f2(xq)}− ε 6 max{ f1(xr), f2(xr)}, (15)
max{ f1(xq), f2(xq)}− ε 6 max{ f1(xs), f2(xs)}. (16)

Now, suppose that j = 1 and h = 2. Then, max{ f1(xs), f2(xs)} = f1(xs). Since
otherwise, by (16), we obtain:

f2(xq)− ε 6max{ f1(xq), f2(xq)}− ε 6max{ f1(xs), f2(xs)}= f2(xs).
Thus, f2(xq)− f2(xs) 6 ε , which is a contradiction with (iii-2). From (iii-1) and
(16), we have ε 6 f1(xq)−ε− f1(xr), which implies that ε 6max{ f1(xs), f2(xs)}−
f1(xr). Therefore, ε 6 f1(xs)− f1(xr).
By similar arguments, j = 2 and h = 1 leads to f2(xr)− f2(xs)> ε . Consequently,
in all cases (i)-(iii) we have either | f1(xs)− f1(xr)| > ε or | f2(xs)− f2(xr)| > ε .
Hence,

√
( f1(xs)− f1(xr))2 +( f2(xs)− f2(xr))2 > ε . �
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4.1. Numerical examples

In this section two examples are solved by Algorithm 4.1. The first example
considers a nonconvex MQCQP problem where the objective functions are convex
but the feasible set is not convex. In the other example a convex problem is solved.

Example 4.1. Consider the following nonconvex biobjective quadratically con-
straint programming problem (taken from [3]):

min f (x) = ( f1(x) = x1, f2(x) = x2)

s.t. x2
1 + x2

2 > 1; x ∈ [(0,0),(2,2)]. (17)

It is easy to see that in problem (17) the efficient set coincides with the efficient
frontier. In fact, the efficient set is {(x1,x2) | x2

1 + x2
2 = 1, x1 > 0, x2 > 0}. Figures

1 and 2 show the output of Algorithm 4.1 with ε = 0.02 (19 generated points) and
ε = 0.01 (39 generated points), respectively. The minimum Euclidean distance
among 19 and 39 points of Yout are 0.042 and 0.018, respectively, which approve
Proposition 4.1. Figures 3 and 4 show the approximated efficient frontiers by ∂+P19
and ∂+P39, respectively. Figures 3 and 4 illustrate that as ε decreases the upper
boundary of polyblocks tend to the efficient frontier.

FIGURE 1. The set Xout for
problem (17) with ε = 0.02.

FIGURE 2. The set Xout for
problem (17) with ε = 0.01.

FIGURE 3. The approx-
imated efficient frontier of
problem (17) with ε = 0.02.

FIGURE 4. The approx-
imated efficient frontier of
problem (17) with ε = 0.01.
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Example 4.2. Consider a biobjective quadratic programming problem as follows
(taken from [4]):

min f (x) = ( f1(x) = 0.5(5x2
1 + x2

2), f2(x) = 0.5(x2
1 +5x2

2))

s.t. fk(x)> 0, k = 3,4,5; x ∈ [(0.5,0.5),(2,2)], (18)

where f3(x) = 2x1 + x2−3, f4(x) = x1 +2x2−3, f5(x) = 2x1−3x2 +3.
Since f1, f2 are convex functions and constraints are linear, problem (18) is a

convex problem. In [4], the efficient set is obtained as two line segments between
the points of {(0.75,1.5),(1,1)} and {(1,1),(5/3,2/3)}. Figures 5 and 6 show the
output of Algorithm 4.1 with ε = 0.01 in feasible and objective spaces, respectively.
The minimum Euclidean distance among 28 points of Yout is 0.082, which approves
Proposition 4.1. Figure 7 depicts the approximated efficient frontier by ∂+P28.

FIGURE 5. The set Xout for prob-
lem (18) with ε = 0.01.

FIGURE 6. The set Yout for prob-
lem (18) with ε = 0.01.

FIGURE 7. The approximated efficient frontier of problem (18) with ε = 0.01.

5. Conclusions

We introduced and studied the concept of essential epsilon-efficient (epsilon-
weak efficient) solutions to multiobjective quadratic programming problems with
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quadratic constraints. It was done based on the concept of essential epsilon-optimal
solutions in monotonic optimization. These solutions are stable under small pertur-
bations of the objective functions and the constraints. To obtain essential epsilon-
efficient solutions, we suggested a single objective quadratically constraint qua-
dratic model which was obtained by combining the well-known constraint method
and minmax approach of multiobjective programming. We proved that the sug-
gested model is able to obtain all essential epsilon-efficient solutions. Then, we
modified the SIT algorithm of [10] for solving the single objective programming
model. The new algorithm terminates after a finite number of iterations and con-
verges to a finite subset of essential epsilon-weak efficient or epsilon-efficient so-
lutions. The output of the algorithm approximates the efficient set and the efficient
frontier of the multiobjective problem in a reasonable way.
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