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HIGHLY ORDER COMPACT FINITE DIFFERENCE METHODS

COMBINED WITH SMOOTHING SCHEME FOR SOLVING

KURAMOTO- SIVASHINSKY EQUATION

A. Mokhtari Naseri1, H. Saberi Najafi2, H.Aminikhah3

In this paper, we develop a numerical solution for the well-known Ku-
ramotoSivashinsky equation. The equation is a fourth-order nonlinear partial differen-

tial equation with a non-negative coefficient parameter. We use a highly order compact
finite difference method for spatial discretization,and then apply smoothing ETD (1,3)-

Pade scheme in time. We will also study the effect of the coefficient parameter of the

nonlinear term on the behavior of the numerical solution. The numerical results and
the figures show good agreement with the expected asymptotic behavior of the coefficient

parameter.

Keywords: Kuramoto- Sivashinsky equation ,Compact finite difference, ETD(1,3)-Pade

scheme

1. Introduction

There has been considerable attention to the K-S equation in recent years (see for
example, [1,2,3,4,5,6,7,8]).The K-S equation was originally derived by Kuramoto in con-
text of angular-phase turbulence, for a system of reaction-diffusion equations modeling the
Belouzov- Zabotinskii reaction in three space dimensions [9,10]; he considered u(x1, x2, x3, t)
to be a small perturbation of a global periodic solution , just beyond the parameter domain,
where the Hopf bifurcation has occurred . The K- S equation was also derived independently
by Sivashinsky , while modelling small thermal diffusive instabilities in laminar flame fronts
[11,12,13]. In this case, u(x1, x2, x3, t) is the perturbation of an unstable planar flame front
in the direction of propagation ; therefore, both the work of Kuramoto and Sivashinsky
were motivated by the study of nonlinear stability of traveling waves. Hence, the qualitative
and quantitative study of the K-S equation is of great interest, analogizing the Burgers and
Navier - Stocks equations. The K-S equation has been used also in pattern formation model-
ing and other areas of applications. A list of references related to these applications, is given
in [14]. In addition to the physical motivations, the K-S equation because of its rich dynam-
ical properties is of significant mathematical interest [15, 16]. Of particular significance is
the connection with the theory of inertial manifolds. When used as a model or when seen as
a mathematically relevant dynamical system ,the K-S equation requires numerical solutions.
Various numerical methods have been introduced by researchers to solve K-S equation. See
[17,18,19,20] for more information in that regard. In the current study , it is aimed to
employ the high-order compact finite difference methods for discretizing spatial derivatives
and modified Exponential Time Differencing (ETD )(1,3)-Pade scheme[21,22] in time. The
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compact method needs three nodes to obtain a fourth-order which has less truncation error
in comparison to the conventional finite difference schemes .Various versions of the compact
finite difference schemes were analyzed and implemented successfully by the same researchers
to deal with their own problems[23,24] and references therein. The ETD(1,3)-Pade scheme
is based on Exponential Time Differencing Runge-Kutta fourth-order (ETDRK4 )with sub-
diagonal Pade scheme to matrix exponential functions that offers an algorithm in parallel
forms . Combination of the high- order compact finite difference in space with ETD(1,3)-
Pade scheme provides accurate solutions for the K-S equation. This method does not require
specific transformations for nonlinear terms as required by some existing techniques. We
consider the following one -dimensional K-S equation:

ut + µuux + µuxx + 4uxxxx = 0 0 ≤ x ≤ b, 0 ≤ t ≤ T (1)

Subject to the periodic boundary condition:

u(x+ b, t) = u(x, t) 0 ≤ t ≤ T (2)

with initial condition:

u(x, 0) = f(x) 0 ≤ x ≤ b (3)

where µ is a nonnegative parameter and f(x) is a known function. Eq(1) contains both sec-
ond and fourth-order derivatives; therefore, it produces complex behavior. The secondorder
term acts as an energy source and has a destabilizing effect, and the nonlinear term transfers
energy from low to high wave numbers where the fourth-order term has a stabilizing effect.It
is a PDE that can exhibit chaotic solutions.
The paper is organized as follows: In section 2 we describe the compact finite difference
method. The smoothing scheme is presented in section3. In section 4 a numerical example
is provided and section5 deals with the conclusions.

Discretization
We begin first by subdividing the range a ≤ x ≤ b into N subintervals of width h = (b−a)/N .
We use xi to denote the points of subdivision, where xi = a+ ih for i = 0, 1, 2, ..., N , so that
x0 = a, xN = b.

Next,we subdivide the time range 0 ≤ t ≤ T into M subintervals.In the temporal
dimension, the uniform increment 4t is used;thus,tn = n4t is the time level for nth step.
The quantity uni represents the numerical solution at (xi, tn).

2. Compact finite difference method

The usual objection to fourth and sixth-order schemes comes from the additional
nodes necessary to achieve the higher order accuracy. Besides the attendant difficulties of
having to consider two fictitious nodes when a boundary point is being computed, the ad-
ditional nodes almost preclude the use of fourth and sixth-order implicit methods since the
matrix which arises is not the simple tridiagonal form produced by secondorder schemes.
We propose fourth and sixth-order tridiagonal forms.The first, second, and fourthorder de-
rivative values are evaluated by the compact difference formulae. Much works has been done
in deriving such formulae.We quote the formulae in Ref [21].We omit the time level symbol
for convenience.

2.1. Fourth- order compact finite difference method(FOCM)
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In [21],values of a function on a set of nodes of the finite difference approximation to
the derivative of the function is expressed as a linear combination of the given function values.

For the firstorder derivative, the generalization form is

βu′i−2 + αu′i−1 + u′i + αu′i+1 + βu′i+2 = c
ui+3 − ui−3

6h
+ b

ui+2 − ui−2

4h
+ a

ui+1 − ui−1

2h
(4)

for β = 0, a = 2/3(α+ 2), b = 1/3(4α− 1), c = 0 in (4) we have :

αu′i−1 +u′i+αu′i+1 =
α

3h
(ui+2 +ui+1−ui−1−ui−2)+

1

12h
(8ui+1−8ui−1−ui+2 +ui−2) (5)

by setting α = 1/4 in (5), we arrive to the fourth-order central difference scheme.

u′i−1 + 4u′i + u′i+1 =
3

4h
(ui+1 − ui−1) i = 2, ..., N − 1 (6)

where u′i =
duxi

dx ,and the truncation error for Eq(6)is fourth order. The matrix form with
considering periodic boundary condition is

M1 =



4 1 0 . . . 1

a1 4 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 4 1
1 . . . 0 1 4


, A1 =



0 1 0 . . . −1

−1 0 1 . . .
...

...
. . .

. . .
. . .

...
... . . . −1 0 1
1 . . . 0 −1 0



U =

 u1

...
un

 , U ′ =

 u′1
...
u′n

 , U ′ = M−1
1 A1U (7)

For secondorder derivatives,

βu
′′

i−2 + αu
′′

i−1 + u
′′

i + αu
′′

i+1 + βu
′′

i+2 =

c
ui+3 − 2ui + ui−3

9h2
+ b

ui+2 − 2ui + ui−2

4h2
+ a

ui+1 − 2ui + ui−1

h2

(8)

for,β = 0, a = 4/3(1− α), b = 1/3(−1 + 10α), c = 0

αui+1 + ui + αui−1 =
10α− 1

12h2
(ui+2 − 2ui + ui−2)

4(1− α)

3h2
(ui+1 − 2ui + ui−1) (9)

by setting α = 1/10 in (9) we have

ui−1 + 10ui + ui−1 =
12

h2
(ui+2 − 2ui + ui−2) i = 1, 2, ..., N − 1 (10)

M2 =



10 1 0 . . . 1

1 10 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 10 1
1 . . . 0 1 10


, A2 =

12

h2



−2 1 0 . . . 1

1 −2 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 −2 1
1 . . . 0 1 −2


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where

U
′′

=

 u
′′

1
...

u
′′

n

 , U ′′
= M−1

2 A2U (11)

And for the fourth-order derivatives formulae:

αu
(4)
i+1 + u

(4)
i + αu

(4)
i−1 = a

ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

h4
(12)

for a = 2(1− α), b = 4α− 1 in (12),

αu
(4)
i+1 + u

(4)
i + αu

(4)
i−1 =

4α− 1

6h4
(ui+3 − 9ui+1 + 16ui − 9ui−1 + ui−3)

+
2(1− α)

h4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)

(13)

by setting α = 1/4 in (13),we have

u
(4)
i+1 + 4u

(4)
i + u

(4)
i−1 =

6

h4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2) (14)

Then, the matrix forms is

M4 =



4 1 0 . . . 1

1 4 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 4 1
1 . . . 0 1 4


, A4 =



6 −4 1 0 . . . 1 −4
−4 6 −4 1 . . . 0 1

1 −4 6 −4 1 . . .
...

0
. . .

. . .
. . . . . . . . .

...
... . . . 1 −4 6 −4 1
1 . . . 0 1 −4 6 −4
−4 1 . . . 0 1 −4 6


where

U (4) =


u

(4)
1
...

u
(4)
n

 , U (4) = M−1
4 A4U (15)

3. Sixth order compact finite difference method (SOCM)

Similarly, for α = 1/3 in (5), α = 2/11 in (9) and α = 7/26 in (13), the leading order
truncation error coefficient vanishes, and the scheme is formally sixth-order accurate.

u
′

i−1 + 3u
′

i + u
′

i+1 =
1

12h
(ui+2 − ui+2) +

7

3h
(ui+1 − ui−1) i = 1, ..., N − 1 (16)

u
′′

i−1 + (11/2)u
′′

i +u
′′

i+1 =
3

8h2
(ui+2 − 2ui + ui−2) +

6

h2
(ui+1 − 2ui + ui−1) i = 1, ..., N − 1

(17)
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u
(4)
i−1 + (26/7)u

(4)
i + u

(4)
i−1 =

1

21h2
(ui+3 − 9ui+1 + 16ui − 9ui−1 + ui−3)

+
38

7h4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)

(18)

Then we have the following matrix forms

M1 =



3 1 0 . . . 1

1 3 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 3 1
1 . . . 0 1 3



A1 =



0 7/3 1/12 0 . . . −1/12 −7/3
−7/3 0 7/3 1/12 . . . 0 −1/12

−1/12 −7/3 0 7/3 1/12 . . .
...

0
. . .

. . .
. . . . . . . . .

...
... . . . −1/12 −7/3 0 7/3 1/12

1/12 . . . 0 −1/12 −7/3 0 7/3
7/3 1/12 . . . 0 −1/12 −7/3 0



M2 =



11/2 1 0 . . . 1

1 11/2 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 11/2 1
1 . . . 0 1 11/2



A2 =



−51/4 6 3/8 0 . . . 3/8 6
6 −51/4 6 3/8 . . . 0 3/8

3/8 6 −51/4 6 3/8 . . .
...

0
. . .

. . .
. . . . . . . . .

...
... . . . 3/8 6 −51/4 6 3/8

3/8 . . . 0 3/8 6 −51/4 6
6 3/8 . . . 0 3/8 6 −51/4


and

M4 =



26/7 1 0 . . . 1

1 26/7 1 . . .
...

...
. . .

. . .
. . .

...
... . . . 1 26/7 1
1 . . . 0 1 26/7


A4 =
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

100/3 −155/7 38/7 1/21 0 . . . 0 1/21 38/7 −155/7
−155/7 100/3 −155/7 38/7 1/21 0 . . . 0 1/21 38/7

38/7 −155/7 100/3 −155/7 38/7 1/21 0 . . . 0 1/21
1/21 38/7 −155/7 100/3 −155/7 38/7 1/21 0 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1/21 0 . . . 0 1/21 38/7 −155/7 100/3 −155/7 38/7
38/7 1/21 0 . . . 0 1/21 38/7 −155/7 100/3 −155/7
−155/7 38/7 1/21 0 . . . 0 1/21 38/7 −155/7 100/3



4. Smoothing scheme for solving nonlinear ODEs

By replacing(7),(11),(15)in equation (1)with considering periodic boundary condi-
tions, we get the system of ODEs

dui
dt

= −µuiM−1
1 A1ui − µM−1

2 A2ui − 4M−1
4 A4ui i = 1, ..., N (19)

Briefly,

Ut +AU = F (u, t) (20)

whereA = µM−1
2 A2ui+ 4M−1

4 A4ui is a matrix representing a spatial discretization of linear
terms and F (u, t) = −µuiM−1

1 A1ui is the discretization vector of the nonlinear term.
Let k = tn+1 − tn be the time step size, then using a variation of constant formulae, we
come up with the following recurrence formulae :

u(tn+1) = e−kAu(tn) + k

∫ 1

0

e−kA(1−τ)F (u(k + τk), tn + τk)dτ (21)

The expression (21) is an exact solution to (20) and is the basis of different time-stepping
schemes, depending on how one approximates the matrix exponential functions and the
integral term.The ETD (exponential time differencing) schemes solve the linear part ex-
actly and then explicitly approximates the integral part by polynomial approximation. Cox
and Matthews [19] developed a class of Exponential Time Differencing Runge-Kutta type
schemes for nonlinear stiff systems.These schemes suffer from computational difficulties be-
cause matrix inverses and matrix exponential functions are needed to compute. In[1] Khaliq
and Vaquero introduced a modification of the (ETDRK4)Cox and Matthews scheme. This
scheme not only solve the problem of numerical instability but also computational difficul-
ties. They utilized diagonal Pade schemes to approximate matrix exponential functions.
To deal with the problem of non-smooth data, they combined diagonal Pade schemes with
the positivity- preserving sub-diagonal schemes and used partial fraction decomposition of
the rational matrix functions, which makes their scheme efficient and allows one instead to
solve several well-conditioned linear problems. Unfortunately, they were unable to provide
a threshold value for the number of initial steps of the smoothing scheme required to damp
spurious oscillations due to the non-smooth data. In [13] Khaliq, et al. proposed a modifi-
cation of [1]and introduced the most efficient and stable algorithm without the problem of
threshold value.
3.1. The ETD(1,3)-Pade scheme parallel algorithm

In order to implement scheme ETD (1,3)-Pade scheme in a computationally efficient
manner, we present a description of the algorithm by implementing a partial fraction splitting
technique. See[1,13]for more information on this regard.
for i = 1, ..., q1 + q2

step1. Solve

(kA− c̃iI)Rai = w̃iUn + kΩiF (un, tn),
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For Rai compute an as:

an =

q1∑
i=1

Rai + 2

q1+q2∑
1+q1

Re(Rai).

step2. Solve
(kA− c̃iI)Rbi = w̃iUn + kΩiF (an, tn + k/2),

For Rbi compute bn as:

bn =

q1∑
i=1

Rbi + 2

q1+q2∑
1+q1

Re(Rbi).

step3 .Solve

(kA− c̃iI)Rci = w̃ian + kΩi(2F (bn, tn + k/2)− F (Un, tn),

For Rci compute cn as:

cn =

q1∑
i=1

Rci + 2

q1+q2∑
1+q1

Re(Rci).

step4 .Solve

(kA− c̃iI)Rui
= w̃iun + kω1i(2F (Un, tn) + kω2i(F (an, tn + k/2) + F (bn, tn + k/2))

+kω3iF (cn, tn + k)

For Rui
compute un+1 as:

Un+1 =

q1∑
i=1

Rui
+ 2

q1+q2∑
1+q1

Re(Rui
).

The poles and corresponding weights are as follows:

c1 = −2.6258168189584667160,

c2 = −1.6870915905207666420− i2.5087317549248805108,

ω1 = 5.5407990186788211678,

ω2 = −2.7703995093394105839− i0.1591864442851235025,

ω11 = 0.92346650311313686128,

ω12 = −0.46173325155656843064− i0.026531074047520583750,

ω21 = 0.38305077592917562056,

ω22 = −0.19152538796458781028 + i0.47027336073401897817,

ω31 = 0.42055591813817669094,

ω32 = 0.28972204093091165453− i0.18298527878713726274,

c̃1 = −5.2516336379169334320,

c̃2 = −3.3741831810415332840− i5.0174635098497610217,

ω̃1 = 11.081598037357642334,

ω̃2 = −5.5407990186788211672− i0.31837288857024700490,

Ω̃1 = 2.1101239731096647932,

Ω̃2 = −0.55506198655483239660 + i0.73103036863338010983.

The ETD(1,3)-Pade scheme contains 4 stages and requires the solution of eight backward
Euler type linear systems at each time step. Each of these stages contain two sub-steps and
they are independent of each other. This design of ETD(1,3)-Pade scheme offers parallel
implementation of the algorithm on a two processor computer.
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Linear stability analysis
The linear stability of the ETD(1,3)-Pade scheme for nonlinear ODE investigated in [13] by
adopting an approach is discussed in [11,20,19].

5. Numerical example

We seek the numerical solution for the following problem for µ = 3&1 ,

ut + µuux + µuxx + 4uxxxx = 0 0 ≤ x ≤ 2π, 0 ≤ t ≤ T (22)

subject to the periodic boundary condition

u(x+ 2π, t) = u(x, t) 0 ≤ t ≤ T (23)

with initial condition
u(x, 0) = cos(x) 0 ≤ x ≤ 2π (24)

We carried out various numerical experiments to investigate the behavior of the solution of
the K-S equation. We solved the K-S equation by second-order compact finite difference
method using 1000 point. Considered as an exact solution, and compare with solutions
obtained using the fourth and sixth order compact methods (FOCM and SOCM), for these
two methods, we took 100 points.

u(x, t) x = 0 x = π/5 x = π/2 x = π x = 3π/2 x = 2π
FOCM 0.40904598 0.33852930 0.01548713 −0.38934408 −0.00752176 0.40770864
SOCM 0.40904600 0.33852932 0.01548713 −0.38934410 −0.00752176 0.40770866

Table 1. Values of u by using FOCM and SOCM methods with
ETD(1,3)scheme for =3,at t=1s.

Figure 1. Values of K-S equation by FOCM (Left)and SOCM(Right)
methods with ETD(1,3)-Pade scheme, for µ = 3, at t = 1s.

u(x, t) x = 0 x = π/5 x = π/2 x = π x = 3π/2 x = 2π
FOCM 0.06718259 0.055767246 0.00956788 −0.04739023 0.00845336 0.06714397
SOCM 0.06718259 0.05576724 0.00956788 −0.04739023 0.00845336 0.06714397

Table 2. Values of u by using FOCM and SOCM methods with ETD (1,3)
Pade scheme, for =1, at t=1s.
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Table1 and 2 shows the values ofu obtained by FOCM and SOCM methods for µ = 3, 1
,for x ∈ [0, π] at t = 1s. The values of errors are presented in table3 and 4. They have the
fourth-order accuracy. As we see , the errors of SOCM method with ETD(1,3)-Pade scheme
are almost the same as FOCM method with ETD(1,3)-Pade scheme. Therefore , the FOCM
method is better than SOCM because of less computational cost . We look at the behavior
solution of various values of µ . Figure 3 shows the solutions of the K-S equation by using
FOCM att = 1s for parameter values µ = 0, 3, 6, 8, 15 and 20. In the range 0 : 8 ,the
maximum amplitude of the solution increases. We confirmed that the maximum amplitude
of the solution is highly dependent on. Either, for µ values exceeding 15, the maximum
amplitude continuously increases with increasing µ, while for smaller values the maximum
amplitude decreases with increasing values of µ .The study showed the FOCM method with
ETD(1,3)-Pade scheme give the best results both in terms of accuracy and efficiency as we
found in the others.

Figure 2. Values of K-S equation by FOCM (Left)and SOCM(Right)
methods with ETD(1,3)-Pade scheme, for µ = 1, at t = 1s.

Error x = 0 x = π/5 x = π/2 x = π x = 3π/2 x = 2π
FOCM 6.209× 10−4 5.251× 10−4 1.584× 10−4 6.219× 10−4 1.820× 10−4 6.169× 10−4

SOCM 6.209× 10−4 5.251× 10−4 1.582× 10−6 6.219× 10−4 1.820× 10−5 6.169× 10−4

Table 3. Error of FOCM ,SOCM methods with ETD(1,3)-pade scheme
for µ = 3,at t = 1s

FOCM 1.240× 10−4 9.927× 10−5 1.080× 10−6 1.241× 10−4 2.772× 10−6 1.240× 10−4

SOCM 1.240× 10−4 9.927× 10−5 1.080× 10−6 1.241× 10−4 2.772× 10−6 1.240× 10−4

Table 4. Error of FOCM ,SOCM methods with ETD(1,3)-pade scheme
for µ = 1,at t = 1s
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Figure 3. The solutions of K-S equation for µ = 0, 3, 6, 8, 15 and 20 at t = 1s.

Figure 4. The values of K-S equation by FOCM with ETD (1,3)-Pade
scheme,for µ = 15 , at t=1s.



Highly Order Compact Finite Difference Methods 143

Figure 5. The values of K-S equation by FOCM with ETD(1,3)-Pade
scheme,for µ = 20 ,at t=1s.

6. Conclusions

In this article, two high-order compact finite difference methods have been developed
for the numerical solution of Kuramoto- Sivashinsky equation . By using these methods the
problem is reduced to a system of ODEs which are solved by ETD(1,3)- Pade scheme .We
investigated the performance of compact schemes including fourth and sixth-order methods
in order to discretization of spatial derivatives , and for ODEs system , we have used from
the ETD(1,3)-Pade scheme in the form of partial fraction splitting technique .This method
solved the difficulties of high-order methods and nonsmooth data . Moreover , the method
work with good accuracy and efficiency ,the given numerical example support this claim.
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