U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 3, 2022 ISSN 2286-3540

SOFTWARE ARCHITECTURE OF DATA AGGREGATION
SYSTEM

Claudia Ifrim', Bogdan Costel Mocanu?, Florin Pop®%, Valentin Cristea?®,
Manolis Wallace®

The complexity of real world problems today are pushing the
limits of software architectures. In this paper we present a novel software
architecture that enables aggregation of data from multiple sources while
giving granular access and privacy to data via access policies. The proposed
software architecture is evaluated in two real life use cases. The first use
case creates a large data set of scientific articles by aggregating three data
sources. Clitation lists of scientific papers are analyzed in order to quantify
and understand the impact of the work, tracing the ”footprints” of the author
in science. The second use case analyze an Automatic Identification System
(AIS) large data set, proposing a data reduction technique specific to AIS
data. Granular access is provided to third party consumers. Through these
we see that the proposed approach is able to easily enriching data knowledge
and can provide granular data access to third party consumers.

Keywords: software architecture, access policy, large data sets

1. Introduction

Technology is strongly related to progress and is the prime ingredient for
progress nowadays. Progress, in its turn, forces technology to adapt itself, to
become better, more useful and respond in real time, to surpass its original
design and provide new outcomes. Today we have an impressive explosion
of available information that must be analyzed and efficiently used to take
rational and concrete decisions for the near or long term future.

'PhD Student, Automatic Control and Computers Faculty, University ”Politehnica” of
Bucharest, Romania, e-mail: claudia.ifrim@upb.ro

2Lecturer, Automatic Control and Computers Faculty, University ”Politehnica” of
Bucharest, Romania, e-mail: bogdan_costel.mocanu@upb.ro

3Professor, Automatic Control and Computers Faculty, University ”Politehnica” of
Bucharest, Romania, e-mail: florin.pop@upb.ro, / “Scientific Researcher, 15¢ degree,
National Institute for Research & Development in Informatics - ICI Bucharest, e-mail:
florin.pop@ici.ro

5Professor, Automatic Control and Computers Faculty, University ”Politehnica” of
Bucharest, Romania, e-mail: valentin.cristea@upb.ro

6Professor, Knowledge and Uncertainty Research Laboratory, University of the Pelopon-
nese, Greece, e-mail: wallace@uop.gr

4 Claudia Ifrim, Bogdan Costel Mocanu, Florin Pop,Valentin Cristea, Manolis Wallace

The main issue we address is the modern application requirements, the
traditional computing paradigms and monolithic application architecture are
becoming inefficient. With this in mind, this paper propose an improved soft-
ware architecture model that can be applied in software development of domain
specific applications used for analytics on large data sets.

The rest of the paper is structured as follows. In Section 2 we present
the main challenges faced in building software applications based on domain
specific large data sets that are trying to solve real world complex problems.
In Section 3 we present a novel software architecture that offers an easy way
to enrich the data knowledge and granular access to it. Section 4 outlines our
case studies used to evaluate the efficiency of the proposed architecture, cases
presented in our published papers ” Scientific Footprints in Digital Libraries” [7]
and ”Data reduction techniques applied on automatic identification system
data” [5]. The final Section presents our conclusions and future work.

2. Challenges

We outline the challenges that we are now facing in complex real world
problems and we focus on only three main directions: how frameworks, tech-
nologies and architectures affect software engineers design decisions, how large
data sets are managed, pre-processed, analyzed, stored and shared, how com-
plex real world problems request new software architecture models.

2.1. Challenges on Software Architecture and Software Design

A software architecture is an important property of a software system.
Therefore, a solution for the challenges mentioned above is to separate as much
as possible the requirements of an application from the implementation of the
domain. This idea is used in industry products, especially those that use
the Hexagonal Architecture (also known as Ports and Adapters architecture),
interface discovery [3] or layered architecture and bounded context [2].

A challenge nowadays could be considered also the ”modern monolith”.
The monolithic architectural style can still be seen even in the modern appli-
cations. This approach can work well even for a large application until you
will need: different programming languages, independent deployability and in-
dependent scalability. Another important aspect that need to be taken into
consideration is the complexity of the real world domains.

In ”Domain-Driven Design” [2] we find a set of design patterns that solves
the division of large models. The solution for easily maintain a large model
is to split it into different "Bounded Contexts” and create a ”Context Map”
that will trace the relationships between prior defined bounded contexts.

Researchers are aware that modeling large complex systems to solve real
world domain problems is, indeed, an open challenge [1]. Nowadays, microser-
vices are promoted as a possible solution to reduce the complexity and the
coupling between the systems and specific technologies.

Software Architecture of Data Aggregation System 5

2.2. Challenges on Large Data Sets

Exploring large data sets has become a necessity today. It is a difficult
problem and information visualization techniques can help in solving it and
can also bring improvements in data analysis [8]. The rapid fast evolution
of Internet related technologies have provided the opportunity to collect huge
data volumes from various domains [9]. Exploring this opportunity it’s easy
to reach a state of information overload. The collection and analysis of large
data sets is a widely spread practice in the last decades in various domains like
economics, marketing, health or sociology. In the last year this process was
accelerated in security, molecular biology and health as we can see in [10], [4].

Even if it is not easy to define a large data set, we can outline the three
most important characteristics: requires digital storage; humans do not have
the cognitive capacity to process it; sufficiently large to encourage data mining.
We have to keep in mind that large data sets are targeted to a specific domain
or topic. They are analyzed by data mining techniques, not by hypothesis
testing. The wide variety of the data stakeholders, available large data sets
specific to a given domain and different way of data usage pushed us to think to
a more efficient way to share it. Every system that provide access to it’s data
has authorization policies governing the data access and operations allowed.

2.3. Data Privacy and Data Ethics

First of all, we must define ” Data Privacy” and ” Data Ethics”. Data pri-
vacy is meant to protect the security issues that can be generated by exposing
personal identifiable information. Data ethics related to proper handling of
data. Data must be preserved and promoted in a responsibly manner. Most
common ethical problem example is related to the healthcare system.

Our work is meant to contribute to the privacy of the data stored in a
system based on our proposed architecture. We propose a solution that will
manage the authorization and attributes accessed by third parties based on
policies. This component is described in Section 3.

3. Software Architecture for Specialized Large Data Sets

In this section, we propose a hexagonal architecture model that can suc-
cessfully be used for domain specific applications that are using large data sets
that are continuously enriched and are also exposing the data to third parties
in a secure manner, using a privacy policy data access component. For sure in
the following years our attention should be focused on software architectures.
We have Big Data, Data Lakes, various devices from IoT that are generating
huge amount of data. We developed various tools for data analysis and now
a high demand for data scientists has arisen in industry and research field. A
real problem is in fact the way software products are created and how the data

is used and shared. The need of real time processing and analysis was clearly
observed in 2020 due to COVID-19 pandemics.

6 Claudia Ifrim, Bogdan Costel Mocanu, Florin Pop,Valentin Cristea, Manolis Wallace

The most common used software architecture nowadays is the Layered
Architecture. It’s known from the university, tutorials and even best practices
or frameworks that we use in developing new applications.

By 2005, thanks to Entity-Boundary-Interactor (EBI) Architecture and
Domain-Driven Design, we managed to realize the importance of the inner
layers in a system. In 2005, Alistair Cockburn outlined the idea that the top
and bottom layers, on the other hand, were simply entry and exit points.

Email lib

le— Emailib g
API Controllers 4>~

(Use Case)

SOLR lib SOLR Search

Consumer GUI

Views & Business
Controllers (Use Logic

Case)

Admin GUI

Views & ORM lib

Controllers (Use PostgreSQL
Case) DB

Fig. 1. A layered architecture perspective.

Before trying to find a solution for a problem, the case study/business
context must be well framed and the large data set that will be analyzed must
be well understood (if already exists) or should be properly created to fit our
needs. If the problem is not well framed, all the efforts in analytics can lead
to misleading or incorrect results. This step will help us in designing also the
domain application. In order to consider that, we have a well defined case
study problem we must consider previous findings, we need to have a clear
definition of our scope, we should know the targeted audience and we must
establish a set of measurement metrics for our results. This process flow must
be followed prior implementation of the system as follows: framing which
includes problem identification, review of previous findings and case study
definition (scope); solving which includes data collection and understanding,
data analysis and preparation, model building and components definition and
external tools; presenting and reporting which includes actionable insights,
communication, processing, access policies definition and share.

Therefore, having the case study framed and considering the idea pro-
moted by Alistair Cockburn, we can change the classic layering diagram and
represent in Figure 1 the two sides of the system as left and right, instead of
the well known top and bottom. We can now easily observe that each side can
have multiple entry and exit ports (API, ORM, Search engine, etc.).

Using this architecture we bring the application in the center of the
system, allowing us to keep the application isolated from the implementation
details like changing technologies or tools. This architecture empower us to
mock the ports, making the development process of a prototype easy and

Software Architecture of Data Aggregation System 7

faster. Using the ports and adapters architecture we can easily change the
data repository or the search engine used by the system.

Another relevant example of the benefits of using this architecture is the
need of having in our application a web user interface and an API that need
to have the same new functionality in place. Using ports and adapters we
implement the desired functionality in an application service method that can
be designed as a use case. Our service implements an interface specifying the
inputs, outputs and methods. Both the user web interface and the API have
controllers (representing the Adapter). The controllers use the above defined
interface that is injected with the service implementation.

3.1. Architecture Requirements

In order to address different usage scenarios, different types of queries,
serve various data consumers and assure data privacy, we define an architecture
for applications that relies on large data sets has a number of requirements:
technology agnostic, access attributes based on privacy policy authorization,
easily plug-in multiple data sources and data consumers, easily query the data,
specify data access policy, support analysis of historical data.

3.2. Architecture Description

The main idea of this architecture is to think that our application is the
central component of the entire system. All the input will reach the application
and all the output will leave the application through ports. In this way our
application is isolated from delivery mechanisms, technologies and external
tools. Our application should not be aware of who is sending input or who is
receiving its output. This type of isolation protect the application against the
evolution of technology and business requirements and help the product to be
easily maintained and tested. It applies the same principles that Robert C.
Martin later described in more general terms in his book ” Clean Architecture”.

The Hexagonal architecture clearly defines three components in the sys-
tem: the user interface, the application core and the infrastructure. The ap-
plication core is the main and most important part of our system. Here we
define the model of our domain and the implementation of the specific use
cases. The ecosystem in which the application core lives is represented by all
tools needed by our application. Based on the case study you define, on the
resources needed, the tools can be databases, search engines, repositories, etc.

3.2.1. Connecting Application Core and Tools. The components that are con-
necting the application core with the external tools are called adaptors and are
implementing the code that allows our business logic to interact with specific
external tools like databases or search engines. Each adapter is specific for a
single external tool. The adapters are categorized as Primary or Secondary

"https://www.biblio.com/9780134494166

8 Claudia Ifrim, Bogdan Costel Mocanu, Florin Pop,Valentin Cristea, Manolis Wallace

Adapters. An entry point in the application core is named port. For each
port of the application core we need to define an adaptor. Each port is in fact
an interfaces and we can consider it a specification that must be used by the
adaptor and by the external tool to know how can communicate. The primary
adapters are in fact controllers, they wrap around a specific port on the left
side of the architecture (see Figure 2). Those adapters trigger events that
are requesting use cases from the application core and in fact service method
calls. The secondary adapters are implementations of interfaces (represented
by ports) and are injected in the application core when the ports are called
(see Figure 2). A specific characteristic is that adapters are linked to a specific
port (interface) that communicates to a specific external tool.

Fig. 2. Diagram describing the inner layers

3.2.2. Application core components and layers. The layers and components are
meant to bring order inside of the hexagon, into the code base and business
logic. We follow the inversion of control principle, so all the dependencies
direction is to the interior of the hexagon. Considering the case study that we
want to develop and the use cases defined to fit the needs of our case study,
the architecture of our application can have several components and layers. In
the following subsections we describe all the layers and provide guidance on
component development. The minimal required layers that must be present
in any application are: Application Layer, Privacy Layer and Domain Layer.
For complex applications you can also add extra components.

3.2.3. Application Layer. Considering our application defined scope we must
defined several use cases that cover all the application needs. Those use cases
are owned by the Application Layer, described in the Figure 2, is the first layer
of our architecture and is provided by Domain-Driven Design. Our use cases
are triggered by events emitted by any User Interface that is defined in our

Software Architecture of Data Aggregation System 9

application. The most common example nowadays is a web application that
has multiple interfaces and APIs depending of the user type.

This layer contains all the application services and their interfaces charac-
teristic to our case study. Here we also must define the Handlers for Command
or Queries if the need to use a Command or a Query Bus is imposed by our
case study. It also contains the ports and adaptors interfaces that are used
to communicate with the external tools. The Services and Handlers owned by
Application Layer contain the business logic of the use cases prior defined.

Command Handlers can be implemented using two approaches: can con-
tain directly the business logic that address the use case or can call services
that already contains the business logic of the requested use case.

Having the services and command handlers that are implementing the
use cases, the Application Layer contains also the triggering mechanism of
Application Events which are the output of a use case.

3.2.4. Domain Layer. Going deeper into the center of the hexagon we reach
the Domain Layer (see Figure 2). Our Domain Layer contains the data entities
and the rules to manipulate it and it’s not related to the business processes
from Application Layer that triggers Domains logic. Common use cases in
the development process of the application have the need of involving different
entities in the domain logic. The solution is to split the Domain Layer in two
sub-layers: Domain Services and Domain Models.

Domain Services sub-layer has the role to execute some business logic
on the entities that are received. A Domain Service must be part of the Domain
Layer. A Domain Service, being in the Domain Layer can use other services
available in the Domain Layer and the objects form the Domain Model.

Data Model sub-layer is represented in the center of our architecture. It
contains the domain objects that are modeling the domain of our case study.
Those objects are represented by entities, value object or any other object
defined in the Domain Model. Domain Model contains also the Domain Events
that are triggered when entities are changed.

3.2.5. Privacy Layer. Because data privacy is highly important topic and we
also encourage to enforce the ownership over newly created data sets as a
best practice, we introduce a Privacy Layer in our architecture. This is an
optional layer that can be included in the architecture if the use case is based
on sensitive data or we have multiple data consumers (APIs) that should not
have access to all the information in entities.

Most of the applications are based on Access Control Lists (ACL) or Roles
and Groups authorization. The authorization schema based on such concepts
has major problems such as inefficient granularity management, data leakage,
high cost maintenance or impossible consumers audit. The Domain Layer is
the place where Data Model lives, so the best approach is to surround the
Domain Layer by authorization policies as described in Figure 2. In this way

10 Claudia Ifrim, Bogdan Costel Mocanu, Florin Pop, Valentin Cristea, Manolis Wallace

we protect the access to the domain services and domain model. For instance,
when an API sends a request to our system, the authorization policies defined
for this specific API should be evaluated and respond with a Data Transfer
Object only in case of successful access authorization of the API on the entity.

We promote the use of access policies based on attributes and actions per
resource because they offer a fine grained control. Using policies we can even
provide access to only some of the attributes of an entity. This pattern should
persist for all the APIs that are querying data in our system as described in
Figure 3. For a clear understanding of the ”Policy” concept we need to define
it. We consider a policy to be a set of rules that can be evaluated and is
responding to the question ”Can A execute an action B on the resource C?”.
A policy enforce an allow or deny response for an action over a resource.

Yes
Y
Step 4.2: Unauthorized (if No)
‘Authorized

Fig. 3. Data access flow for consumers.

The Privacy Layer is responsible of data access for each API that our
application will expose. It is also responsible to provide a quick answer of
type allow (if the consumer is authorized to do the requested action on the
resource), deny (if the consumer is not authorize do do the action) or error (if
the system fail) to the consumer. Most of the systems are based on Access
Control Lists (ACL) or roles and groups authorization and they have a direct
connection with the central data store of the system. This is considered a
major security issue that we want to avoid and this is the main reason why
our Privacy Layer is communicating with it’s own database. This database
will contain information of attributes managed directly by the domain. Here
we save information related to access policies and attributes.

For authorization, we need to save in our database information related
to the user or the system that owns the attribute, the id of the object that
contains the attribute, attribute type, value, creation and update timestamps.

To reduce the response time of the Privacy Layer we build also a persis-
tent cache that contains only the needed information to evaluate the autho-
rization, this means that we have only the attributes enforced by the policy
defined in our system. In this way we quickly respond with a deny if the re-
quest contains a attribute that is not in the cache. Another important aspect
is how we keep our database consistent. If the domain adds, remove attributes
or update attributes values, it is also responsible to push the updates in the
database used by our Privacy Layer. The cache is updated base on the time

Software Architecture of Data Aggregation System 11

to live defined or can be rebuild by the system. After evaluating the autho-
rization of the call, if it is evaluated to allow, meaning that the request is
authorized to perform the action on the resource, the Privacy Layer requests
the allowed attributes of the object from the domain and sends the response
to the consumer. If the authorization of the call is evaluated as a deny, the
response is directly sent to the consumer.

Using this mechanism we also avoid data leakage, because the consumer is
receiving either a deny, either a response containing only the allowed attributes
from the requested objects. If we don’t need restricted access to our data we
can bypass the access evaluation step in each implemented component. Either
way, we have the Privacy Layer database updated and it can be used to enforce
data ownership or for system audit. We always know what consumers we have.

Furthermore, we consider that this authorization system brings more
granularity in the system and data leakage is avoided comparing with the ex-
isting solutions (Access Control Lists (ACL) or roles and groups authorization).
Also, the system development, administration, maintenance and auditing pro-
cess is improved. The initial step of gathering the attributes implies more time
and effort. Some extra development time must be budgeted to complete the
work on pushing the attributes from the domain central data store to Privacy
Layer database and to cover the synchronization process.

3.2.6. Components. A component will cross-cut the layers of our application
as it is described in the Figure 4. The components will be defined in our
application base on the use cases that were prior defined. Following this model,
the components will benefit from low coupling and high cohesion.

User Interface, Primary Adapters

Controller A Controller B

Feature Set A Feature Set B

Application Core

Service C Service D

Component C Component D

[="

Adapter| |Adapter
Adapter E E1 F2

Tools, Secondary Adapters

Fig. 4. Component of the application.

Examples of components are provided in Section 4, and each prototype
mentioned has various components that cover the needs of our defined use
cases. Using Dependency Injection and Dependency Inversion we manage to
keep the depending class unaware of the concrete classes that will be used.

12 Claudia Ifrim, Bogdan Costel Mocanu, Florin Pop, Valentin Cristea, Manolis Wallace

Also, having completely decoupled components, they have no knowledge of
any other component. We need to let components to interact, but in the same
time we want them decoupled. To achieve this we recommend the use of a
discovery service. Another important aspect is that a component can query
and use any data in read only mode, but can change only the data owned.
The proposed architecture offer us the option to have components with
their own data storage or repository. In this case, we add more complexity to
the storage level in order to maintain the integrity of the data. For each data
storage of a component we need to have on one hand a data set that is owned
by the component - the single source of truth and on the other hand a data set
that is not owned by the component and can be used only in read-only mode.
In Figure 5 we describe the application flow in more detail, considering also
the interaction between layers, their services, repositories and data storage.

Fig. 5. Application flow - considering the interactions.

4. Evaluation

We proposed this architecture and guidelines in order to promote the idea
of clean architecture and a code base that is high cohesive and loosely coupled.
We need those for a maintainable project, that can be changed or extended
easy and fast, without affecting the entire code base. We also consider that
this architecture can help researchers and experts to easily build a large data
set for a specific domain through collaborative work. The small development
effort needed to add a new data source in the application using the propose
architecture should enforce it’s use in academia and research.

Moreover, in our case study presented in [7], we analyze citation lists of
scientific papers in order to quantify and understand it’s impact, by tracing
the ”footprints” that authors have left in science, i.e. the specific areas in
which they have made an impact. In Table 1 we present as an example the

Software Architecture of Data Aggregation System

13

Table 1. Anagnostopoulos - Scientific impact.

Computer
science

Applied

sciences

Social
sciences

Life sciences

Natural & physical
sciences

Humanities

67%

27%

2%

2%

2%

0%

Table 2. Initial records vs. reduced records.

Initial records no. Unique MMSI Speed/Heading difference Final records no.
752 552 458 less than 0.15 / less than 3.5 204 338
752 552 458 less than 0.2 / less than 1 202 248

scientific impact of Ioannis Anagnostopoulos, a member of the Department of
Computer Science and Biomedical Informatics, at the University of Thessaly.

In order to create the large data set that was used for our analysis we de-
veloped a prototype based on the architecture and guidelines described above,
adding also a Processing Component that normalized and corrected the errors
found in the data stored in our central data store.

Our system, the Footprint Analyzer, was used to successfully identify
the most prominent works and authors for each scientific field, regardless of
whether their own research is limited to or even focused on the specific field.

In the second case study we analyze an Automatic Identification System
(AIS) large data set and we proposed a data reduction technique that can
be applied on AIS data without losing important information and reduce it
to a manageable size that can be further used for analysis or visualization
applications (see Table 2).

In order to evaluate our architecture, we developed a prototype that re-
ceived data from an AIS data stream, decoded and stored the raw data. With
dedicated components, such as Data Reduction component, Privacy Layer,
near-Real-time Analytics Component, Time Series Analytics Component and
Hybrid Analytics Component, we applied the data reduction and analytics
algorithms. The reduced data is used to create visualizations for traffic moni-
toring. The reduction technique is described in [5] and [6].

5. Conclusions

A new direction in software architecture and software design, software en-
gineering processes and guidelines must be carried out while engineering those
applications. The main contribution of this paper is the proposed software
architecture model that can help engineers and researchers to easily aggregate
data from multiple data sources (streams, structured or unstructured data)
with the aim to create a specialized data set on specific domain. Key compo-
nent of the architecture is the Privacy Layer that protects access to data. The
architecture is described in Section 3 and is evaluated in real world use cases.

14 Claudia Ifrim, Bogdan Costel Mocanu, Florin Pop, Valentin Cristea, Manolis Wallace

As future work, we plan to develop an open-source software framework
based on the proposed architecture. A strong documentation containing guide-
lines and development best practices will be compiled based on our experience
gained from the case studies used to evaluate our architecture proposal.

Acknowledgements

The research presented in this paper was supported by project FARGO:
Federated leARninG for human moBility (PN-III-P4-ID-PCE-2020-2204), the
project CloudPrecis (SMIS code 2014+ 124812), project ODIN112 (PN-III-P2-
2.1-SOL-2021-2-0223) and by the University Politehnica of Bucharest through
the PubArt program. Also, this paper supported by REALS - Real-time Adap-
tive Scheduling, UPB Postdoctoral Research Project (2021-2023). We would
also like to thank the reviewers for their valuable comments and insights.

References

[1] Betty HC Cheng and Joanne M Atlee. “Research directions in require-
ments engineering” . In: Future of Software Engineering (FOSE’07). IEEE.
2007, pp. 285-303.

[2] Eric Evans and Eric J Evans. Domain-driven design: tackling complezity
in the heart of software. Addison-Wesley Professional, 2004.

[3] Steve Freeman and Nat Pryce. Growing object-oriented software, guided
by tests. Pearson Education, 2009.

[4] Alex Graudenzi et al. “Mutational signatures and heterogeneous host re-
sponse revealed via large-scale characterization of SARS-CoV-2 genomic
diversity”. In: Iscience 24.2 (2021), p. 102116.

[5] Claudia Ifrim et al. “Data reduction techniques applied on automatic
identification system data”. In: Semanitic Keyword-based Search on Struc-
tured Data Sources. Springer. 2017, pp. 14-19.

[6] Claudia Ifrim et al. “Methods and Techniques for Automatic Identifica-
tion System Data Reduction”. In: Big Data Platforms and Applications.
Springer, 2021, pp. 253-269.

[7] Claudia Ifrim et al. “Scientific Footprints in Digital Libraries”. In: Trans-
actions on Computational Collective Intelligence XX VI. Springer, 2017,
pp- 91-118.

[8] Mike Sips et al. “Selecting good views of high-dimensional data using
class consistency”. In: Computer Graphics Forum. Vol. 28. 3. Wiley On-
line Library. 2009, pp. 831-838.

[9] Wil Van Der Aalst. “Data science in action”. In: Process mining. Springer,
2016, pp. 3-23.

[10] Penghui Zhang et al. “CrawlPhish: Large-scale Analysis of Client-side
Cloaking Techniques in Phishing”. In: Proceedings of the IEEE Sympo-
sium on Security and Privacy. 2021.

