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OPTIMIZED DESIGN OF A TWO-DEGREE-OF-FREEDOM 
POSITION SERVO SYSTEM BASED ON FRACTIONAL-

ORDER ACTIVE DISTURBANCE REJECTION CONTROL 

Zhengkun GUO1, *, Zhicheng ZHAO2, Ziying ZHANG1, 3 

This research introduced an optimized method based on two-degree-of-
freedom fractional-order active disturbance rejection control (FOADRC) to improve 
the control performance of position servo systems. Proportional-Integral-Derivative 
(PID) and active disturbance rejection control (ADRC) techniques, the developed 
method incorporated fractional-order filters with a two-degree-of-freedom control 
strategy and refined nonlinear functions within extended state observer (ESO). This 
combination significantly improved the dynamic response and robustness of the 
system. Simulation results indicated that the proposed approach exceled in decreasing 
overshoot, minimizing steady-state error, and shortening response time. Notably, it 
demonstrated superior robustness under complex operating conditions. In addition, 
the proposed strategy not only simplified the parameter tuning process of the 
controller, but also showed promising potential for practical engineering 
applications. 

Keywords: Fractional-order control; Self-disturbance rejection control; Position 
servo system; Two-degree-of-freedom control 

1. Introduction 

Position servo systems are extensively applied in modern industry[1]. By 
increasing demand for manufacturing due to the increasing demands for higher 
manufacturing precision and faster response speeds, enhancement the control 
performance of servo systems has become a critical issue that needs to be addressed 
urgently. Currently, proportional-integral-derivative (PID) controllers are the 
primary option for practical motor control systems[2]. Although traditional PID 
control methods are easy to implement, they suffer from limitations such as slow 
response speeds and weak disturbance rejections under complex operating 
conditions[3]. 
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Active disturbance rejection control (ADRC) enhances system robustness 
by compensating for both internal and external disturbances. Various research 
works have been conducted on this topic. For instance, Li et al. developed a sliding 
mode ADRC (SM-ADRC) method[4]; Ibrahim et al. combined conventional 
particle swarm optimization algorithm with linear ADRC (LADRC) to enhance the 
charging capability of photovoltaic systems[5]; Luo et al. applied LADRC to 
replace traditional PI control loops, effectively filtering out the DC component of 
the grid under non-ideal conditions[6]; Wu et al. used ADRC to improve aircraft 
performance[7]; and Yuhang et al. developed an improved ADRC algorithm to 
enhance the heading control of unmanned aerial vehicles under the disturbances of 
wind and wave [8]. Furthermore, Alatawi et al. integrated a two-degree-of-freedom 
control strategy to further enhance the target tracking and disturbance rejection 
capabilities of the system[9]. In magnetic field compensation systems, a noise 
suppression technique incorporating a time-delay variable and a second-order 
coupled model obtained a performance improvement of 27.5% compared to 
conventional methods [10]. ADRC strategy in cooling control for lithium-ion 
battery packs obtained higher energy efficiency and temperature control precision 
by balancing dynamic response with steady-state accuracy [11]. In pressurizer 
control for nuclear power plants, the developed method was found to be effective 
under disturbance conditions, presenting better setpoint tracking and disturbance 
rejection performance than optimized PID control [12]. Regarding exoskeleton 
control, integration of deep reinforcement learning with ADRC addressed 
limitations in joint angle and angular velocity feedback, providing a viable solution 
for intelligent parameter tuning [13]. Application of cascade observers significantly 
enhanced noise suppression and response speed of steady-state and dynamic control 
of turbofan engines, creating greater robustness under complex flight environments 
[14]. However, since most existing filters are designed according to integer-order 
methods, striking a balance between dynamic performance and robustness is 
difficult, particularly under high-precision control requirements. 

Recently, fractional-order control methods have gradually become very 
popular among researchers. Fractional calculus provides a powerful framework for 
modeling complex systems with memory effects, finding applications across 
various scientific fields. For instance, it has been used to model the decay of a 
potential vortex in fluid dynamics [14] and to analyze and optimize the control of 
fractional damped oscillatory systems [15]. Furthermore, fractional derivatives can 
enhance signal processing techniques, such as the development of a fractional-order 
Teager Kaiser Energy Operator for improved fault diagnosis in rotating machinery 
[17]. These examples highlight how fractional-order approaches can lead to more 
accurate physical models and improved performance in control and diagnostic 
applications. Compared with traditional integer-order controllers, fractional-order 
controllers offer a wider range of parameter tuning and more flexible dynamic 
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performance adjustment possibilities. Continuous technological progress and 
interdisciplinary integrations drive control schemes to further address disturbances 
and parameter uncertainties, thereby improving robust control designs. However, 
existing methods still face challenges such as complex parameter tuning and 
insufficient robustness in practical applications. 

To address these challenges, this research proposed an optimized method 
based on two-degree-of-freedom fractional-order ADRC (FOADRC). This 
approach significantly improved the dynamic response and disturbance rejection 
capabilities of the system by combining a fractional-order filter with a two-degree-
of-freedom control strategy and refining the nonlinear functions of extended state 
observer (ESO). In addition, the proposed method simplified the parameter tuning 
process of the controller, presenting strong potential for practical engineering 
applications. 

2. Mathematical model of position servo system 

The structure of the developed position servo system is illustrated in Fig 1. 

 
Fig. 1 Structure of the developed position servo system 

The Figure illustrates a typical three-loop nested architecture for a position 
servo system. Its core comprised three regulation loops—position, velocity, and 
current—which, through multi-level feedback, achieved high-precision and robust 
motion control. Each loop played a distinct role within the system, forming a 
hierarchical control structure where response frequencies were progressively 
increased from the outermost to the innermost loop. 

The outermost loop served as the position loop and was responsible for 
converting input position commands into velocity commands to drive the desired 
trajectory of the entire system. Since this loop primarily dealt with slowly-varying 
targets or tasks related to steady-state error correction, it typically employed a 
relatively simple proportional control strategy. This ensured that the responses were 
neither overly aggressive, nor insufficiently sensitive, while position feedback 
mechanism continuously corrected deviations, providing fundamental command 
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tracking capability to the system. However, due to its limited bandwidth, the ability 
of the system to respond to rapid dynamic changes predominantly depended on the 
inner loops. 

Velocity loop performed mid-frequency dynamic adjustments by 
responding to the velocity targets generated by the position loop and correcting any 
velocity deviations with higher bandwidths. Commonly, this loop is constructed 
using a PI controller—incorporating an integral component—to improve steady-
state precision and disturbance rejection. Velocity feedback provided essential 
negative feedback during this process, making it possible for the system to provide 
stronger real-time responses to load disturbances. Acting as a bridge between the 
input commands and drive system, the dynamic characteristics of this loop directly 
determined the overall dynamic performance of the system. 

Current loop lied at the innermost level, whose function was the precise 
regulation of the actual current delivered to the drive motor, thereby ensuring 
immediate and stable torque output. Due to the typical high-frequency responses of 
current control, this loop was designed with a high bandwidth while considering the 
hardware constraints of the drive amplifier and motor itself. Through the closed-
loop regulation of current feedback, the system could rapidly counteract electrical 
disturbances or high-frequency dynamic errors, guaranteeing the safe and efficient 
operation of the drive system. 

In summary, the entire system formed a synergistic control network through 
its nested feedback mechanism. With their faster responses, the inner loops 
managed high-frequency disturbances, while the outer loops concentrated on 
steady-state accuracy and trajectory tracking. The integrity of this feedback 
structure not only enhanced system robustness, but also laid a fundamental 
groundwork for the integration of various advanced control strategies. 

Due to its relatively low cutoff frequency, the velocity loop could be 
approximated using the following equation as an inertia element in engineering 
practices: 

( )
1s

kG s
Ts

=
+

                         (1) 

where T is the time constant of velocity loop and k is velocity loop gain. The 
reducer was equivalent to an integral element, represented by 1/Kd*s, with Kd being 
reduction ratio. Therefore, the mathematical model of position servo system was 
expressed as: 

( )
( 1)m

KG s
s Ts
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+                         (2) 

where K is system gain, defined as the ratio of velocity loop gain to 
reduction ratio. 
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The developed model characterized the fundamental relationship between 
system input and output, illustrating the dynamic response characteristics of the 
system. The frequency response and steady-state performance of the system could 
be analyzed by using the aforementioned transfer function. This model established 
the theoretical foundation for subsequent controller design. 

3. Controller design 

3.1 Fractional-order two-degree-of-freedom internal model control  
Due to the limitation of a single adjustable parameter, classical internal 

model control (IMC) algorithms often struggle to create a balance between dynamic 
performance and robustness[18]. To solve these problems, this research introduced 
a fractional-order two-degree-of-freedom internal model control (FO-IMC) 
strategy. This approach integrated the designs of two independent controllers, with 
one dedicated to tracking setpoint values and the other to suppressing disturbances, 
to enhance the dynamic response and disturbance rejection capabilities of the 
system. The block diagram of the two-degree-of-freedom IMC algorithm is 
presented in Fig 2. 
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Gm(s)

Gp(s)

D(s)

+
—
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+

—

 
Fig. 2 Structure of the two-degree-of-freedom IMC 

 
In the diagram, R(s) is system input, Y(s) is system output, D(s) is the 

disturbance affecting the system, Gc1(s), Gc2(s) are the controllers within the two-
degree-of-freedom structure, Gp(s) is the plant being controlled, and Gm(s) is its 
mathematical model. 

The relationship between the R(s) and Y(s) of the system was stated as: 
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According to the principles of internal model control, we obtained: 
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where F1(s) and F2(s) are filters and Gm_
-1(s) is minimum-phase part of the 

controlled model.  
Based on these equations, the two-degree-of-freedom internal model control 

system could be equivalently represented by Fig 3. 
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Fig. 3 Equivalent structure of the developed two-degree-of- freedom IMC 

 
The relationship between the input and output of the system was given by: 
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From Equations (3) and (6), we obtained: 
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The low-pass filters F1(s) and F2(s) in Equations (4) and (5) were defined 
as: 

)1/(1)( 11
γλ ssF +=                    (9) 

)1/(1)( 22
γλ ssF +=                 (10) 

where 1<γ<2 is the order of the filter and λ1 and λ2 are the time constants 
of the filters. 

The transfer function of the controlled plant was stated as: 
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Equation (11) could be approximated as a second-order system, as 
expressed in Equation (12): 
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where β is a large constant. 
From Equations (4), (5), (7), (8), and (9) to (10), we derived: 
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Obviously, C1(s) is a fractional-order PID controller and C2(s) is a 
fractional-order lead-lag correction link. 

 
3.2 The development of a FOADRC 
The ADRC was primarily consisted of a tracking differentiator (TD), an 

ESO, and a nonlinear state error feedback law (NLSEF). TD was used to organize 
the transition process of the system, while ESO was responsible for estimating both 
unknown disturbances and dynamics of the unmodeled components of the plant. 
These two components were generally adaptable, requiring only parameter setting 
to cater to different controlled plants. NLSEF in ADRC played a role resembling 
that of traditional integer-order PID controller, allowing for the substitution of 
NLSEF with an integer-order PID controller to form a nonlinear PID ADRC, which 
further enhanced the performance of ADRC. Accordingly, further replacing NLSEF 
with a fractional-order controller integrated the advantages of both ADRC and 
fractional-order PID controllers, potentially improving the control quality of the 
system. 

Conventional nonlinear state error feedback function fal (e, α, δ) was 
continuous but not differentiable (i.e., non-smooth) at the origin. For relatively 
small values of δ, high-frequency chattering might occur with the change of 
derivatives, which adversely affected control performance. In ADRC, δ was a 
critical adjustable parameter and its selection added complexity to the controller 
design. Therefore, constructing a continuous and smooth modified fal function was 
crucial for improving controller robustness.  

In traditional ESOs, the fal(e, α, δ) function is a continuous power function 
with an approximately linear segment near the origin and its expression is stated by: 
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where δ is the interval length of the linear segment, e is error signal, and 
α\alpha is nonlinear factor. The function sign (⋅) denotes the sign function. 

The newfal function was designed as a continuous and smooth nonlinear 
function and its mathematical expression was: 
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By replacing NLSEF in ADRC with a fractional-order controller and 
refining the nonlinear function within ESO, a two-degree-of-freedom FOADRC 
was achieved. The structure of this FOADRC is demonstrated in Fig 4. 

 

TD C1(s) Gp(s)

1/b0 b0

Modified 
ESO

R(s)

Z1

Z3

Y(s)
C2(s)

D(s)

 
Fig. 4 Two-Degree-of-Freedom FOADRC 

 
The newly designed FOADRC controller integrated the flexibility of 

fractional-order control while further enhancing the dynamic response and 
robustness of the system, demonstrating exceptional performance particularly 
under parameter perturbations and external disturbances. 

3.3 Superiority analysis and simulation validation of the newfal 
function 

This section conducted an in-depth comparative analysis on the 
mathematical characteristics and engineering performance of the nonlinear control 
function newfal within closed-loop systems. This function was specifically 
designed for improving the non-smoothness issue of the traditional fal function in 
its switching region, particular focusing on its ability to suppress high-frequency 
chattering. The validation process encompassed both theoretical smoothness 
analysis at function level and dynamic response simulations under ADRC. Key 
evaluation criteria included output tracking performance, control signal smoothness, 
and disturbance estimation quality. 
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Nonlinear function smoothness plays a critical role in closed-loop control 
systems. Discontinuities in derivatives often result in sharp fluctuations in 
controller outputs, directly triggering frequent actuator switching, increasing 
system energy consumption, and even inducing hardware fatigue failure. Therefore, 
it is necessary to examine the local mathematical characteristics of fal and newfal 
before integrating them into control frameworks. 

The function plots and their first derivatives over the interval |e| ∈ [0,1] were 
generated by setting parameters as α= 0.5 and δ = 0.1. Significant differences were 
observed, as illustrated in Fig 5. 

 

 
Fig. 5 Comparison of fal and newfal functions and their first-order derivatives (smoothness 

analysis) 
 

It was seen from Fig 5 that the fal function exhibited significant value jumps 
near |e| = δ, which violated the basic continuity condition, making it discontinuous 
in C⁰ sense. In addition, its first derivative showed sharp peaks at switching point, 
indicating a lack of C¹ smoothness. In practical control signals, such singularities 
give rise to instantaneous large-amplitude changes, with the possibility of causing 
high-frequency chattering. 

On the other hand, the newfal function was constructed using piecewise 
polynomials, ensuring both function value and derivative continuity at junction 
points, achieving C¹ smoothness. Graphical analyses confirmed the smooth 
transition of the newfal function smooth transition near |e| = δ, effectively 
eliminating abrupt gain changes. This characteristic provided the controller with 
more stable feedback regulation capability and theoretically reduced chattering 
probability. 

When newfal replaced fal within an otherwise identical control framework, 
the system exhibited smoother control behaviors without altering control intensity. 
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This improvement offered a structurally grounded performance enhancement 
without adding computational complexity. 

A standard second-order plant model was developed, expressed as: 

( )
.. .

 1.5 2.5 1.3x x x u d t= − − + +          (19) 

The control variable was input signal u, with a disturbance d(t) introduced 
midway through the simulation to evaluate the dynamic recovery capability of the 
controller. The control structure adopted a standard second-order ADRC framework, 
including an ESO and an NLSEF unit. All parameters were conFigured within 
typical engineering ranges to ensure experimental reproducibility. 

The observer was conFigured with a high bandwidth ωₒ = 20.0 rad/s, 
corresponding to parameters β₀₁ = 60, β₀₂ = 1200, and ₀₃ = 8000. Controller 
bandwidth was set to ωc = 5.0 with a damping ratio of 0.8, resulting in feedback 
gains of kp = 25 and kd = 8. The nonlinear functions fal and newfal were applied 
respectively with identical parameters α = 0.5 and δ = 0.05 to ensure a fair 
comparison. 

Simulation duration was 10 s, with a unit step reference applied at t = 0 s 
and a disturbance injected at t = 5s. Control signal u, system output x, and total 
disturbance estimate z₃ were recorded for comparative analyses. 

Fig 6 shows three groups of key response variables in the simulations. Each 
set of plots compared system output, control signal, and disturbance estimation 
under the two nonlinear functions. 

 

 
Fig. 6 Comparison of closed-loop ADRC system response using fal and newfal functions under 

disturbance conditions 
 

System output trajectories under both function structures demonstrated 
consistent overall behaviors. Under the effect of reference signal, the system 
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responded rapidly and approached the steady-state value; however, upon 
disturbance injection, it swiftly recovered without significant overshoot or steady-
state error. This indicated that newfal could preserve the inherent rapidity and 
robustness of ADRC system without changing its structural framework, laying a 
foundation for further improvement in the quality of control signal. 

From Fig 6, subFigure 1, it was seen that the overall system output behaviors 
under both function structures remained essentially consistent. Under the effect of 
reference signal, the system responded rapidly and approached the steady-state 
value, while also quickly recovering after disturbance injection. No significant 
overshoot or steady-state error was observed. This indicated that the use of newfal 
function preserved the inherent rapidity and robustness of the ADRC system 
without altering the fundamental structure of the controller. It maintained essential 
performance indicators, thereby laying a solid foundation to further improve control 
signal quality. 

Fig 6, subFigure 2 showed the behavior of the control signal, which served 
as the core indicator for the evaluation of the effectiveness of smoothness 
improvements. When the traditional fal function was applied, the control output 
exhibited high-frequency oscillations, characteristic of typical chattering behavior. 
This phenomenon reflected frequent switching of control direction within small-
error region, directly due to function derivative discontinuity. However, the control 
signal generated by newfal was significantly smoother, almost entirely eliminating 
chattering phenomenon. 

This improvement not only positively affected system stability, but also 
significantly enhanced the lifespan and energy efficiency of the actuator. High-
frequency chattering tended to accelerate mechanical wear and tear, while also 
resulting in unnecessary energy consumption and heat accumulation in electrical 
control systems. Therefore, the structural optimization brought by newfal delivered 
practical engineering benefits, going beyond a purely theoretical notion of 
“smoothness.” 

Fig 6, subFigure 3 further supported the potential advantages of newfal in 
the stability of the dynamic system by analyzing z₃ variable output from ESO. 
Although both function structures enabled disturbance estimation that closely 
followed the trend of the actual disturbance, the ESO output driven by fal exhibited 
higher-frequency oscillatory textures, resulting in an estimation behavior with a 
stronger sense of noise. 

On the other hand, z₃ curve driven by newfal exhibited smoother variations 
and clearer trends. This suggested a greater ability for the accurate identification of 
the evolving trend of disturbances, thereby enhancing the overall reliability and 
response quality of the observer system. Smoother estimation facilitated more 
robust error correction decisions by the controller, which became particularly 
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advantageous under complex disturbance environments with high engineering 
relevance. 

4. Parameter tuning  

In control algorithm designs, robustness is typically a primary consideration. 
One common metric for the assessment of the robustness of a controlled system is 
maximum sensitivity (Ms). This research employed sensitivity function as the 
principal criterion for parameter adjustment, ensuring system stability and 
disturbance rejection capability under varying operating conditions. 

Sensitivity function was defined as: 

)(1
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where L(s) is the open-loop transfer function of the system.  
 
Maximum sensitivity, Ms was calculated as: 
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Open-loop transfer function, L1(s), could be derived from C1(s) and Gp(s) 
as: 
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where λ1 and γ are the time constant and the order of the fractional-order 
low-pass filter in C1(s) design, respectively. Sensitivity function was calculated as: 
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Since γ was a fractional order, when 1<γ<2, the sensitivity magnitude was 
given by the following equation: 
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To find the extremum of Equation (24), the maximum value was achieved 
when ωγ=-1/λ11cos(π/2γ). Maximum sensitivity, Ms, was then derived as: 
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The value of Ms ranges from 1.2 to 2.0. Typically, the robustness of 
controlled system was decreased with the decrease of Ms. 

In Equation (22), the amplitude of L(s) was stated as: 

1|)(j)GC(j||)L(j| p == ccc ωωω               (26) 
where ωc is the cutoff frequency of the system. 
From Equations (22) and (26), it could be concluded that: 
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In addition, based on Equations (25) and (27), the parameters for C1(s) were 
calculated as: 

γω
λ

π
γ

cs

s

M
M 1,

1
arccos2

1

2

=











 −
−=          (28) 

The parameters γ and λ1 could be determined based on maximum sensitivity 
Ms and cutoff frequency ωc. In addition, the value of λ2 should be set according to 
the specific performance requirements of the system. 

In ADRC, the primary structure comprised three core modules: TD, ESO, 
and NLSEF. TD module had relatively few parameters, typically including r, h0 and 
h1. In contrast, ESO and NLSEF modules involved a broader set of parameters: i.e., 
α1, α2, δ, β1, β2 and β3 for ESO and δ1, β01, β02, k1 and k2 for NLSEF. 

Due to relative independence of each ADRC module, their parameters could 
be individually adjusted without interference. This research specifically focused on 
tuning TD and ESO parameters. 

① Parameter adjustment for TD module: 
The key parameters of TD included r, h0 and h1. Among them, r and h0 

required adjustment. Here, r acted as speed factor, dictating the tracking speed of 
TD, while h0 functioned as filtering factor, generally set within the range h0 =2h1～
10h1. h1, representing the integration step size, affected the noise-filtering capability 
of the differentiator, with larger values diminishing this capability. Increase of h0 
enhanced the effectiveness of filtering, though excessively high values might 
compromise tracking accuracy. 

② Parameter adjustment for ESO module: 
Parameter set for the modified ESO was consistent with that of the 

traditional ESO, comprising α1, α2, δ, β1, β2 and β3. Here, α1 and α2 are parameters 
within local nonlinear function, with commonly assigned values of α1=0.25 and 
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α2=0.5. The value δ defined the interval length of the linear segment, usually set to 
δ=0.1. The gain coefficients β1, β2 and β3 controlled the responsiveness of the 
observer, with β1 and β2 values were proportional to system rapidity—though 
excessively high values could cause system divergence. Larger values of β3 could 
offset time-delay effects but might also induce oscillations if set too high. 

This parameter tuning strategy laid a theoretical foundation for subsequent 
simulations, ensuring robustness and control precision of the system across various 
operational conditions. 

5. Simulation case study 

To verify the superiority of the developed control method compared to 
existing techniques, a simulation analysis was performed in MATLAB. Benchmark 
control methods included the fractional-order internal model control (FOIMC) 
proposed in [19] and improved PID control introduced in [20]. The primary 
performance evaluation metrics included overshoot (σ%), response time, and the 
integral of time-weighted absolute error (ITAE). In addition, the robustness of the 
control methods was evaluated by introducing perturbations in system parameters 
𝐾𝐾 and 𝑇𝑇 to explore their performance under varying operating conditions. 

Case Study 1: The simulation was based on the permanent magnet 
synchronous motor (PMSM) speed servo system model according to [19]: 
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In [19], a fractional-order internal model controller (FOIMC) was 
developed with the following transfer function: 
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To enhance the performance of the system, this research proposed a 
fractional-order two-degree-of-freedom active disturbance rejection controller 
(FOADRC), which integrated fractional-order filtering with internal model control. 
Two controllers were designed to independently handle setpoint tracking and 
disturbance rejection. The proposed controller were expressed as: 
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In ADRC framework, the parameters of TD and ESO were set as follows: 
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TD parameters: r=0.1, h0=0.1, and h=0.05; ESO parameters: α1=0.25, 
α2=0.5, δ=0.1, β1=1100, β2=11000, and β3=90. 

The control method in [19] solely relied on a fractional-order internal model 
control strategy for two-degree-of-freedom system design. To highlight the 
advantages of the developed method, this research selected the method in [19] as a 
benchmark for comparison. 

The simulation system input was set as r(t)=1(t), with a disturbance applied 
as d(t)=0.1(t-1.5). Comparative control performance between the proposed method 
and the approach introduced in [19] is illustrated in Fig 7.  

 
Fig. 7 Unit step response of nominal system 

 
Table 1 

Performance parameters of control system 

Method Nominal Model Model Parameter Perturbation 
σ% ITAE σ% ITAE 

Proposed Method 4.50 0.008 5.02 0.009 
Study [19] 5.41 0.020 7.31 0.020 
 
Fig 7 and Table 1 demonstrate that the performance metrics of the proposed 

method were superior to those of the method proposed in [19], indicating that the 
developed method exhibited robust control performance. As given in Table 1, under 
identical initial conditions, the proposed method outperformed the one developed 
in [19] in terms of overshoot, ITAE, and response time, with a particularly 
significant improvement in controlling integral time absolute error. 

Fig 8 and Table 1 demonstrate the control performance when the controlled 
system parameters 𝐾𝐾 and 𝑇𝑇 underwent a +30% perturbation, namely 𝐾𝐾=1.976 and 
𝑇𝑇=0.52. Compared with the method established in [19], the proposed method 
achieved lower performance parameter values, indicating enhanced robustness. 
Table 1 further shows that the proposed method exhibited significant improvements 
in overshoot and ITAE compared to the approach introduced in [19], while 
maintaining strong robustness under parameter perturbations.  
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Fig. 8. Unit step response of perturbed system 

Example 2: The transfer function of the system in reference [20] was given 
by: 
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According to reference [20], with a crossover frequency ωc=16 rad/s and 
maximum sensitivity Ms=1.2 in Equation (28), we obtained γ=1.222 and λ1=0.034. 
By substituting α=10000 and λ2=0.035 into Equations (15) and (16), the expression 
for fractional-order controller was derived as follows: 
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In ADRC framework, the parameters were set as follows: TD parameters: 
r=0.1, h0=0.1, and h=0.05; ESO parameters: α1=0.25, α2=0.5, δ=0.1, β1=1200, 
β2=12000, β3=100, and r(t)=1(t). 

The simulation system was configured with input r(t)=1(t) and disturbance 
d(t)=0.1(t-1.5). The control performance of the proposed method and that of 
reference [20] are presented in Fig 9 and Fig 10. 

 
Fig. 9 Unit step response of nominal system  
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Fig. 10 Partial enlarged drawing 

As was seen from Fig 9 and Fig 10, the proposed method exhibited excellent 
dynamic and steady-state performance. Table 2 indicates that, under both nominal 
model and parameter perturbation conditions, the ITAE and overshoot (σ%) values 
of the developed method were lower than those reported in reference [20]; in other 
words, the algorithm proposed in this research exhibited superior control 
performance. 

 
Fig. 11 Unit step response of perturbed system 

 
 

Fig. 12 Partial enlarged drawing of Fig 8 
Table 2 

Performance parameters of control system 

Method Nominal Model Model Parameter Perturbation 
σ% ITAE σ% ITAE 

Proposed Method 11.08
 

0.002
 

16.85
 

0.002
 

Study [20] 25.36
 

0.005
 

39.71
 

0.006
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Fig 11 and Fig 12 as well as table 2 present the results when the parameters 
K and T of the controlled system were perturbed by +50%, i.e., K=9.05 and 
T=0.033. Compared with the findings of the reference [20], our method 
demonstrated better control performance and enhanced robustness. 

6. Conclusion 

This research presented a two-degree-of-freedom fractional-order active 
disturbance rejection control (FOADRC) strategy to enhance the control 
performance and robustness of position servo systems. Compared with traditional 
control methods, the developed approach achieved a balance between system 
rapidity and disturbance rejection by incorporating fractional-order filters into the 
internal model control (IMC) and refining the nonlinear function of extended state 
observer (ESO). 

Simulation results indicated that the developed control method significantly 
outperformed conventional integer-order control methods in terms of overshoot, 
response time, and the integral of time-weighted absolute error (ITAE) metrics. 
Notably, under the conditions of parameter perturbations, this approach 
demonstrated robust resilience, effectively suppressing external disturbances while 
maintaining system stability and control accuracy. 

The novelty of this research lied in the integration of fractional-order control 
with active disturbance rejection, with a two-degree-of-freedom design to precisely 
adjust system performance, particularly under complex operating conditions. This 
method not only improved the dynamic responses of the servo system, but also 
simplified the parameter tuning process of the controller, making it highly 
applicable for engineering applications. 

Future research could further explore the application of this control strategy 
in different nonlinear systems and validate it under additional real-world conditions 
to promote its widespread application in industrial control. 
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