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OPTIMIZED DESIGN OF A TWO-DEGREE-OF-FREEDOM
POSITION SERVO SYSTEM BASED ON FRACTIONAL-
ORDER ACTIVE DISTURBANCE REJECTION CONTROL

Zhengkun GUO" ", Zhicheng ZHAO?, Ziying ZHANG'?

This research introduced an optimized method based on two-degree-of-
freedom fractional-order active disturbance rejection control (FOADRC) to improve
the control performance of position servo systems. Proportional-Integral-Derivative
(PID) and active disturbance rejection control (ADRC) techniques, the developed
method incorporated fractional-order filters with a two-degree-of-freedom control
strategy and refined nonlinear functions within extended state observer (ESO). This
combination significantly improved the dynamic response and robustness of the
system. Simulation results indicated that the proposed approach exceled in decreasing
overshoot, minimizing steady-state error, and shortening response time. Notably, it
demonstrated superior robustness under complex operating conditions. In addition,
the proposed strategy not only simplified the parameter tuning process of the
controller, but also showed promising potential for practical engineering
applications.

Keywords: Fractional-order control; Self-disturbance rejection control; Position

servo system; Two-degree-of-freedom control
1. Introduction

Position servo systems are extensively applied in modern industry[1]. By
increasing demand for manufacturing due to the increasing demands for higher
manufacturing precision and faster response speeds, enhancement the control
performance of servo systems has become a critical issue that needs to be addressed
urgently. Currently, proportional-integral-derivative (PID) controllers are the
primary option for practical motor control systems[2]. Although traditional PID
control methods are easy to implement, they suffer from limitations such as slow
response speeds and weak disturbance rejections under complex operating
conditions[3].
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Active disturbance rejection control (ADRC) enhances system robustness
by compensating for both internal and external disturbances. Various research
works have been conducted on this topic. For instance, Li et al. developed a sliding
mode ADRC (SM-ADRC) method[4]; Ibrahim et al. combined conventional
particle swarm optimization algorithm with linear ADRC (LADRC) to enhance the
charging capability of photovoltaic systems[5]; Luo et al. applied LADRC to
replace traditional PI control loops, effectively filtering out the DC component of
the grid under non-ideal conditions[6]; Wu et al. used ADRC to improve aircraft
performance[7]; and Yuhang et al. developed an improved ADRC algorithm to
enhance the heading control of unmanned aerial vehicles under the disturbances of
wind and wave [8]. Furthermore, Alatawi et al. integrated a two-degree-of-freedom
control strategy to further enhance the target tracking and disturbance rejection
capabilities of the system[9]. In magnetic field compensation systems, a noise
suppression technique incorporating a time-delay variable and a second-order
coupled model obtained a performance improvement of 27.5% compared to
conventional methods [10]. ADRC strategy in cooling control for lithium-ion
battery packs obtained higher energy efficiency and temperature control precision
by balancing dynamic response with steady-state accuracy [11]. In pressurizer
control for nuclear power plants, the developed method was found to be effective
under disturbance conditions, presenting better setpoint tracking and disturbance
rejection performance than optimized PID control [12]. Regarding exoskeleton
control, integration of deep reinforcement learning with ADRC addressed
limitations in joint angle and angular velocity feedback, providing a viable solution
for intelligent parameter tuning [13]. Application of cascade observers significantly
enhanced noise suppression and response speed of steady-state and dynamic control
of turbofan engines, creating greater robustness under complex flight environments
[14]. However, since most existing filters are designed according to integer-order
methods, striking a balance between dynamic performance and robustness is
difficult, particularly under high-precision control requirements.

Recently, fractional-order control methods have gradually become very
popular among researchers. Fractional calculus provides a powerful framework for
modeling complex systems with memory effects, finding applications across
various scientific fields. For instance, it has been used to model the decay of a
potential vortex in fluid dynamics [14] and to analyze and optimize the control of
fractional damped oscillatory systems [15]. Furthermore, fractional derivatives can
enhance signal processing techniques, such as the development of a fractional-order
Teager Kaiser Energy Operator for improved fault diagnosis in rotating machinery
[17]. These examples highlight how fractional-order approaches can lead to more
accurate physical models and improved performance in control and diagnostic
applications. Compared with traditional integer-order controllers, fractional-order
controllers offer a wider range of parameter tuning and more flexible dynamic
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performance adjustment possibilities. Continuous technological progress and
interdisciplinary integrations drive control schemes to further address disturbances
and parameter uncertainties, thereby improving robust control designs. However,
existing methods still face challenges such as complex parameter tuning and
insufficient robustness in practical applications.

To address these challenges, this research proposed an optimized method
based on two-degree-of-freedom fractional-order ADRC (FOADRC). This
approach significantly improved the dynamic response and disturbance rejection
capabilities of the system by combining a fractional-order filter with a two-degree-
of-freedom control strategy and refining the nonlinear functions of extended state
observer (ESO). In addition, the proposed method simplified the parameter tuning
process of the controller, presenting strong potential for practical engineering
applications.

2. Mathematical model of position servo system

The structure of the developed position servo system is illustrated in Fig 1.
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Fig. 1 Structure of the developed position servo system

The Figure illustrates a typical three-loop nested architecture for a position
servo system. Its core comprised three regulation loops—position, velocity, and
current—which, through multi-level feedback, achieved high-precision and robust
motion control. Each loop played a distinct role within the system, forming a
hierarchical control structure where response frequencies were progressively
increased from the outermost to the innermost loop.

The outermost loop served as the position loop and was responsible for
converting input position commands into velocity commands to drive the desired
trajectory of the entire system. Since this loop primarily dealt with slowly-varying
targets or tasks related to steady-state error correction, it typically employed a
relatively simple proportional control strategy. This ensured that the responses were
neither overly aggressive, nor insufficiently sensitive, while position feedback
mechanism continuously corrected deviations, providing fundamental command
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tracking capability to the system. However, due to its limited bandwidth, the ability
of the system to respond to rapid dynamic changes predominantly depended on the
inner loops.

Velocity loop performed mid-frequency dynamic adjustments by
responding to the velocity targets generated by the position loop and correcting any
velocity deviations with higher bandwidths. Commonly, this loop is constructed
using a PI controller—incorporating an integral component—to improve steady-
state precision and disturbance rejection. Velocity feedback provided essential
negative feedback during this process, making it possible for the system to provide
stronger real-time responses to load disturbances. Acting as a bridge between the
input commands and drive system, the dynamic characteristics of this loop directly
determined the overall dynamic performance of the system.

Current loop lied at the innermost level, whose function was the precise
regulation of the actual current delivered to the drive motor, thereby ensuring
immediate and stable torque output. Due to the typical high-frequency responses of
current control, this loop was designed with a high bandwidth while considering the
hardware constraints of the drive amplifier and motor itself. Through the closed-
loop regulation of current feedback, the system could rapidly counteract electrical
disturbances or high-frequency dynamic errors, guaranteeing the safe and efficient
operation of the drive system.

In summary, the entire system formed a synergistic control network through
its nested feedback mechanism. With their faster responses, the inner loops
managed high-frequency disturbances, while the outer loops concentrated on
steady-state accuracy and trajectory tracking. The integrity of this feedback
structure not only enhanced system robustness, but also laid a fundamental
groundwork for the integration of various advanced control strategies.

Due to its relatively low cutoff frequency, the velocity loop could be
approximated using the following equation as an inertia element in engineering
practices:

k
G0=770 (1
where 7'is the time constant of velocity loop and £ is velocity loop gain. The
reducer was equivalent to an integral element, represented by 1/K.*s, with K4 being
reduction ratio. Therefore, the mathematical model of position servo system was
expressed as:

Gu(8) = s(Ts+1) 2)

where K is system gain, defined as the ratio of velocity loop gain to
reduction ratio.
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The developed model characterized the fundamental relationship between
system input and output, illustrating the dynamic response characteristics of the
system. The frequency response and steady-state performance of the system could
be analyzed by using the aforementioned transfer function. This model established
the theoretical foundation for subsequent controller design.

3. Controller design

3.1 Fractional-order two-degree-of-freedom internal model control

Due to the limitation of a single adjustable parameter, classical internal
model control (IMC) algorithms often struggle to create a balance between dynamic
performance and robustness[18]. To solve these problems, this research introduced
a fractional-order two-degree-of-freedom internal model control (FO-IMC)
strategy. This approach integrated the designs of two independent controllers, with
one dedicated to tracking setpoint values and the other to suppressing disturbances,
to enhance the dynamic response and disturbance rejection capabilities of the
system. The block diagram of the two-degree-of-freedom IMC algorithm is
presented in Fig 2.
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Fig. 2 Structure of the two-degree-of-freedom IMC

In the diagram, R(s) is system input, Y(s) is system output, D(s) is the
disturbance affecting the system, Gei(s), Ge2(s) are the controllers within the two-
degree-of-freedom structure, G,(s) is the plant being controlled, and Gu(s) is its
mathematical model.

The relationship between the R(s) and Y(s) of the system was stated as:

G G
Y(s)= Sl T
14G, ()G, (5)~ G, (5)]
1-G,,(5)G, (s)
1+G,, ()G, (s)~G,, ()]
According to the principles of internal model control, we obtained:

3)

D(s)

G, (9)=F(5)G, " (s) (4)
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Gy (8) = F ()G, () )
where Fi(s) and Fa(s) are filters and G, "'(s) is minimum-phase part of the
controlled model.
Based on these equations, the two-degree-of-freedom internal model control
system could be equivalently represented by Fig 3.

REl () TT— Ci(s)

Fig. 3 Equivalent structure of the developed two-degree-of- freedom IMC
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The relationship between the input and output of the system was given by:

C (5)C,(s)G
()= T gLy ©)
1+C, ()G, (s) 1+ C, ()G, (s)
From Equations (3) and (6), we obtained:
G
€ (5) =) )
1-G,,(5)G, (s)
G
) = Gl (8)
G, (s)
The low-pass filters F1(s) and F2(s) in Equations (4) and (5) were defined
as:
F(s)=1/0+4s") )
F,(s)=1/(1+A,s") (10)

where 1<y<2 is the order of the filter and A1 and A2 are the time constants
of the filters.
The transfer function of the controlled plant was stated as:

K
G (8)=——F 11
) (75 +1)s (1)
Equation (11) could be approximated as a second-order system, as
expressed in Equation (12):
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__ PBK
R (P yy (12)
where [ is a large constant.
From Equations (4), (5), (7), (8), and (9) to (10), we derived:
_ (Ts+1)(Bs+1)
T BK(+ A7) (13)
B (Ts+1)(fs +1)
T K (14 AysT) (14)
G, (s) 3 1

Ci(s)=

1
12G.(5)G. () KA [(T+,B)+;+ ,BTS} (15)

G, (s) 1+45 6
G (s) 1+4,5 (16)

Obviously, Cl(s) is a fractional-order PID controller and C2(s) is a
fractional-order lead-lag correction link.

C,y(s)=

3.2 The development of a FOADRC

The ADRC was primarily consisted of a tracking differentiator (TD), an
ESO, and a nonlinear state error feedback law (NLSEF). TD was used to organize
the transition process of the system, while ESO was responsible for estimating both
unknown disturbances and dynamics of the unmodeled components of the plant.
These two components were generally adaptable, requiring only parameter setting
to cater to different controlled plants. NLSEF in ADRC played a role resembling
that of traditional integer-order PID controller, allowing for the substitution of
NLSEF with an integer-order PID controller to form a nonlinear PID ADRC, which
further enhanced the performance of ADRC. Accordingly, further replacing NLSEF
with a fractional-order controller integrated the advantages of both ADRC and
fractional-order PID controllers, potentially improving the control quality of the
system.

Conventional nonlinear state error feedback function fal (e, a, o) was
continuous but not differentiable (i.e., non-smooth) at the origin. For relatively
small values of o, high-frequency chattering might occur with the change of
derivatives, which adversely affected control performance. In ADRC, & was a
critical adjustable parameter and its selection added complexity to the controller
design. Therefore, constructing a continuous and smooth modified fa/ function was
crucial for improving controller robustness.

In traditional ESOs, the fal(e, a, J) function is a continuous power function
with an approximately linear segment near the origin and its expression is stated by:
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e
a-1 |€| < 5
fal(e,a,6) =40 (17)
|e|asign(e) |e| >0

where 0 is the interval length of the linear segment, e is error signal, and
a\alpha is nonlinear factor. The function sign (-) denotes the sign function.

The newfal function was designed as a continuous and smooth nonlinear
function and its mathematical expression was:

(a—1)8°7e’ —(a-1)5“e’sign(e) + 5" e, ‘e‘ <6

newfal(e,a,8) = (18)
‘e‘asign(e),

By replacing NLSEF in ADRC with a fractional-order controller and

refining the nonlinear function within ESO, a two-degree-of-freedom FOADRC
was achieved. The structure of this FOADRC is demonstrated in Fig 4.
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Fig. 4 Two-Degree-of-Freedom FOADRC

The newly designed FOADRC controller integrated the flexibility of
fractional-order control while further enhancing the dynamic response and
robustness of the system, demonstrating exceptional performance particularly
under parameter perturbations and external disturbances.

3.3 Superiority analysis and simulation validation of the newfal
function

This section conducted an in-depth comparative analysis on the
mathematical characteristics and engineering performance of the nonlinear control
function newfal within closed-loop systems. This function was specifically
designed for improving the non-smoothness issue of the traditional fa/ function in
its switching region, particular focusing on its ability to suppress high-frequency
chattering. The validation process encompassed both theoretical smoothness
analysis at function level and dynamic response simulations under ADRC. Key
evaluation criteria included output tracking performance, control signal smoothness,
and disturbance estimation quality.
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Nonlinear function smoothness plays a critical role in closed-loop control
systems. Discontinuities in derivatives often result in sharp fluctuations in
controller outputs, directly triggering frequent actuator switching, increasing
system energy consumption, and even inducing hardware fatigue failure. Therefore,
it is necessary to examine the local mathematical characteristics of fa/ and newfal
before integrating them into control frameworks.

The function plots and their first derivatives over the interval |e| € [0,1] were
generated by setting parameters as a= 0.5 and ¢ = 0.1. Significant differences were
observed, as illustrated in Fig 5.

Comparison of fal and newfal functions
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Fig. 5 Comparison of fal and newfal functions and their first-order derivatives (smoothness
analysis)

It was seen from Fig 5 that the fa/ function exhibited significant value jumps
near |e| = o, which violated the basic continuity condition, making it discontinuous
in C° sense. In addition, its first derivative showed sharp peaks at switching point,
indicating a lack of C' smoothness. In practical control signals, such singularities
give rise to instantaneous large-amplitude changes, with the possibility of causing
high-frequency chattering.

On the other hand, the newfal function was constructed using piecewise
polynomials, ensuring both function value and derivative continuity at junction
points, achieving C' smoothness. Graphical analyses confirmed the smooth
transition of the newfal function smooth transition near |e| = d, effectively
eliminating abrupt gain changes. This characteristic provided the controller with
more stable feedback regulation capability and theoretically reduced chattering
probability.

When newfal replaced fal within an otherwise identical control framework,
the system exhibited smoother control behaviors without altering control intensity.



12 Zhengkun Guo, Zhicheng Zhao, Ziying Zhang

This improvement offered a structurally grounded performance enhancement
without adding computational complexity.
A standard second-order plant model was developed, expressed as:

x =-1.5x-2.5x+13u+d(t) (19)

The control variable was input signal u, with a disturbance d(t) introduced
midway through the simulation to evaluate the dynamic recovery capability of the
controller. The control structure adopted a standard second-order ADRC framework,
including an ESO and an NLSEF unit. All parameters were conFigured within
typical engineering ranges to ensure experimental reproducibility.

The observer was conFigured with a high bandwidth w, = 20.0 rad/s,
corresponding to parameters foi = 60, foo = 1200, and o3 = 8000. Controller
bandwidth was set to w. = 5.0 with a damping ratio of 0.8, resulting in feedback
gains of k, = 25 and ks = 8. The nonlinear functions fa/ and newfal were applied
respectively with identical parameters o = 0.5 and 0 = 0.05 to ensure a fair
comparison.

Simulation duration was 10 s, with a unit step reference applied at £ =0 s
and a disturbance injected at ¢t = 5s. Control signal u, system output x, and total
disturbance estimate z3 were recorded for comparative analyses.

Fig 6 shows three groups of key response variables in the simulations. Each
set of plots compared system output, control signal, and disturbance estimation
under the two nonlinear functions.

ADRC Step Response Comparison (Large Disturbance Scenario)
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Fig. 6 Comparison of closed-loop ADRC system response using fal and newfal functions under
disturbance conditions

System output trajectories under both function structures demonstrated
consistent overall behaviors. Under the effect of reference signal, the system
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responded rapidly and approached the steady-state value; however, upon
disturbance injection, it swiftly recovered without significant overshoot or steady-
state error. This indicated that newfal could preserve the inherent rapidity and
robustness of ADRC system without changing its structural framework, laying a
foundation for further improvement in the quality of control signal.

From Fig 6, subFigure 1, it was seen that the overall system output behaviors
under both function structures remained essentially consistent. Under the effect of
reference signal, the system responded rapidly and approached the steady-state
value, while also quickly recovering after disturbance injection. No significant
overshoot or steady-state error was observed. This indicated that the use of newfal
function preserved the inherent rapidity and robustness of the ADRC system
without altering the fundamental structure of the controller. It maintained essential
performance indicators, thereby laying a solid foundation to further improve control
signal quality.

Fig 6, subFigure 2 showed the behavior of the control signal, which served
as the core indicator for the evaluation of the effectiveness of smoothness
improvements. When the traditional fa/ function was applied, the control output
exhibited high-frequency oscillations, characteristic of typical chattering behavior.
This phenomenon reflected frequent switching of control direction within small-
error region, directly due to function derivative discontinuity. However, the control
signal generated by newfal was significantly smoother, almost entirely eliminating
chattering phenomenon.

This improvement not only positively affected system stability, but also
significantly enhanced the lifespan and energy efficiency of the actuator. High-
frequency chattering tended to accelerate mechanical wear and tear, while also
resulting in unnecessary energy consumption and heat accumulation in electrical
control systems. Therefore, the structural optimization brought by newfal delivered
practical engineering benefits, going beyond a purely theoretical notion of
“smoothness.”

Fig 6, subFigure 3 further supported the potential advantages of newfal in
the stability of the dynamic system by analyzing zs variable output from ESO.
Although both function structures enabled disturbance estimation that closely
followed the trend of the actual disturbance, the ESO output driven by fa/ exhibited
higher-frequency oscillatory textures, resulting in an estimation behavior with a
stronger sense of noise.

On the other hand, z; curve driven by newfal exhibited smoother variations
and clearer trends. This suggested a greater ability for the accurate identification of
the evolving trend of disturbances, thereby enhancing the overall reliability and
response quality of the observer system. Smoother estimation facilitated more
robust error correction decisions by the controller, which became particularly



14 Zhengkun Guo, Zhicheng Zhao, Ziying Zhang

advantageous under complex disturbance environments with high engineering
relevance.

4. Parameter tuning

In control algorithm designs, robustness is typically a primary consideration.
One common metric for the assessment of the robustness of a controlled system is
maximum sensitivity (Ms). This research employed sensitivity function as the
principal criterion for parameter adjustment, ensuring system stability and
disturbance rejection capability under varying operating conditions.

Sensitivity function was defined as:

1
S(s)= 20
(5) 1+ L(s) (20)
where L(s) is the open-loop transfer function of the system.
Maximum sensitivity, M, was calculated as:
M =max|S(jw) = max|———— 21
5 0<w<oo (J )| 0<w<wo 1+L(]CO) ( )

Open-loop transfer function, Li(s), could be derived from Ci(s) and Gy(s)
as:

1
hs”

where 41 and y are the time constant and the order of the fractional-order
low-pass filter in Ci(s) design, respectively. Sensitivity function was calculated as:

L(s)=

(22)

S0= 17 23)

Since y was a fractional order, when 1<y<2, the sensitivity magnitude was

given by the following equation:
Awy[cos[”7j+jsin(”yj]
2 2

Lo cos(;Z ;/j +1+ jAL0" sin(” 14

2 ) (24)

S| Aoy || aore?

‘1+ﬂl(ja))7 ‘1+A1a)rej%y

Ao
2 2y 7 i
A 0”7 +24,0" cos 2;/ +1

To find the extremum of Equation (24), the maximum value was achieved
when w’=-1/411cos(n/2y). Maximum sensitivity, M;, was then derived as:
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1

\/l—cosz(z yj (25)

The value of Ms ranges from 1.2 to 2.0. Typically, the robustness of
controlled system was decreased with the decrease of M;.
In Equation (22), the amplitude of L(s) was stated as:

IL(o,) H Cjeo,)G,(o,) =1 (26)
where w. is the cutoff frequency of the system.
From Equations (22) and (26), it could be concluded that:
1 —
As'
In addition, based on Equations (25) and (27), the parameters for Ci(s) were
calculated as:

M = max S(ja))| =

0<w<xo

1 27)

M7 -1
V= zarccos[— ;} A= = (28)
% M, o

The parameters y and 41 could be determined based on maximum sensitivity
Ms and cutoff frequency w.. In addition, the value of 4> should be set according to
the specific performance requirements of the system.

In ADRC, the primary structure comprised three core modules: TD, ESO,
and NLSEF. TD module had relatively few parameters, typically including r, 4o and
hi. In contrast, ESO and NLSEF modules involved a broader set of parameters: i.e.,
a1, 02, 6, B1, B2 and B3 for ESO and 61, Boi, Poz, ki and k> for NLSEF.

Due to relative independence of each ADRC module, their parameters could
be individually adjusted without interference. This research specifically focused on
tuning TD and ESO parameters.

(1) Parameter adjustment for TD module:

The key parameters of TD included r, ho and /1. Among them, » and Ao
required adjustment. Here, » acted as speed factor, dictating the tracking speed of
TD, while Ao functioned as filtering factor, generally set within the range ho=2h1~
1041. h1, representing the integration step size, affected the noise-filtering capability
of the differentiator, with larger values diminishing this capability. Increase of /o
enhanced the effectiveness of filtering, though excessively high values might
compromise tracking accuracy.

(2) Parameter adjustment for ESO module:

Parameter set for the modified ESO was consistent with that of the
traditional ESO, comprising a1, a2, 0, f1, p2 and f3. Here, a1 and a are parameters
within local nonlinear function, with commonly assigned values of a1=0.25 and
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02=0.5. The value ¢ defined the interval length of the linear segment, usually set to
0=0.1. The gain coefficients i, f> and 3 controlled the responsiveness of the
observer, with £ and f> values were proportional to system rapidity—though
excessively high values could cause system divergence. Larger values of f3 could
offset time-delay effects but might also induce oscillations if set too high.

This parameter tuning strategy laid a theoretical foundation for subsequent
simulations, ensuring robustness and control precision of the system across various
operational conditions.

5. Simulation case study

To verify the superiority of the developed control method compared to
existing techniques, a simulation analysis was performed in MATLAB. Benchmark
control methods included the fractional-order internal model control (FOIMC)
proposed in [19] and improved PID control introduced in [20]. The primary
performance evaluation metrics included overshoot (%), response time, and the
integral of time-weighted absolute error (ITAE). In addition, the robustness of the
control methods was evaluated by introducing perturbations in system parameters
K and T to explore their performance under varying operating conditions.

Case Study 1: The simulation was based on the permanent magnet
synchronous motor (PMSM) speed servo system model according to [19]:

K 152
s(Ts+1)  5(0.4s+1)

In [19], a fractional-order internal model controller (FOIMC) was
developed with the following transfer function:

C(s) = 04 08 L 1 _
1.52x0.03 1.52x0.03s™
To enhance the performance of the system, this research proposed a
fractional-order two-degree-of-freedom active disturbance rejection controller
(FOADRC), which integrated fractional-order filtering with internal model control.
Two controllers were designed to independently handle setpoint tracking and
disturbance rejection. The proposed controller were expressed as:

G,(s)=

(29)

(30)

1 1
1.222
C,(s) = 1+0.06s (32)

1+0.063s"*%
In ADRC framework, the parameters of TD and ESO were set as follows:
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TD parameters: r=0.1, ho=0.1, and 4#=0.05; ESO parameters: a1=0.25,
a2=0.5, 0=0.1, £1=1100, £>=11000, and 53=90.

The control method in [19] solely relied on a fractional-order internal model
control strategy for two-degree-of-freedom system design. To highlight the
advantages of the developed method, this research selected the method in ') as a
benchmark for comparison.

The simulation system input was set as 7(¢)=1(¢), with a disturbance applied
as d(1)=0.1(#-1.5). Comparative control performance between the proposed method
and the approach introduced in [19] is illustrated in Fig 7.

1.2 '
e e
!
08|,
é '
= 0.6 : i
o
0.4, .
[
0.2 = -Reference Method
‘ . |—Proposed Method
0 0.5 1 1.5 2 2.5
time/s
Fig. 7 Unit step response of nominal system
Table 1
Performance parameters of control system
Method Nominal Model Model Parameter Perturbation
ete % ITAE % ITAE
Proposed Method 4.50 0.008 5.02 0.009
Study [19] 541 0.020 7.31 0.020

Fig 7 and Table 1 demonstrate that the performance metrics of the proposed
method were superior to those of the method proposed in [19], indicating that the
developed method exhibited robust control performance. As given in Table 1, under
identical initial conditions, the proposed method outperformed the one developed
in [19] in terms of overshoot, ITAE, and response time, with a particularly
significant improvement in controlling integral time absolute error.

Fig 8 and Table 1 demonstrate the control performance when the controlled
system parameters K and T underwent a +30% perturbation, namely K=1.976 and
T=0.52. Compared with the method established in [19], the proposed method
achieved lower performance parameter values, indicating enhanced robustness.
Table 1 further shows that the proposed method exhibited significant improvements
in overshoot and ITAE compared to the approach introduced in [19], while
maintaining strong robustness under parameter perturbations.
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Fig. 8. Unit step response of perturbed system

Example 2: The transfer function of the system in reference [20] was given

by:
K 603

s(Ts+1)  s(0.219s+1)

According to reference [20], with a crossover frequency w.~16 rad/s and
maximum sensitivity M=1.2 in Equation (28), we obtained y=1.222 and 4:=0.034.
By substituting o=10000 and 4,=0.035 into Equations (15) and (16), the expression

for fractional-order controller was derived as follows:

(33)

G,(s)=

C,(s) :2()322()222(10000.0219+1+219s] (34)
1+0.034s5"%*
1+0.0355"%% (33)
In ADRC framework, the parameters were set as follows: TD parameters:
r=0.1, ho=0.1, and #=0.05; ESO parameters: a1=0.25, a=0.5, 6=0.1, £1=1200,
£>=12000, £3=100, and r(£)=1(7).
The simulation system was configured with input 7(¢#)=1(¢) and disturbance
d(®)=0.1(¢-1.5). The control performance of the proposed method and that of
reference [20] are presented in Fig 9 and Fig 10.

1.4 1 T T

C,(s)=

120,
1
s b
508
&
206
3 4
04 — -Reference Method
0.2 |—Proposed Method |
0 1 1 L 1
0 0.5 1 1.5 2 2.5 3

time/s
Fig. 9 Unit step response of nominal system
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Fig. 10 Partial enlarged drawing

As was seen from Fig 9 and Fig 10, the proposed method exhibited excellent
dynamic and steady-state performance. Table 2 indicates that, under both nominal
model and parameter perturbation conditions, the ITAE and overshoot (c%) values
of the developed method were lower than those reported in reference [20]; in other
words, the algorithm proposed in this research exhibited superior control

performance.
14 I‘ T T o
|I
1.2+ |
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208
£ )
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0.4
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02 |—Proposed Method |
% 05 1 15 2 25 3
time/s
Fig. 11 Unit step response of perturbed system
— -Reference Method)|
——Proposed Method
1.1‘35 1‘4 1.1‘15 15 1.55 186 1.:35 177 1.;‘5 1.8 1.85
Fig. 12 Partial enlarged drawing of Fig 8
Table 2
Performance parameters of control system
Method Nominal Model Model Parameter Perturbation
% ITAE % ITAE
Proposed Method 11.08 0.002 16.85 0.002
Study [20] 25.36 0.005 39.71 0.006




20 Zhengkun Guo, Zhicheng Zhao, Ziying Zhang

Fig 11 and Fig 12 as well as table 2 present the results when the parameters
K and T of the controlled system were perturbed by +50%, i.e., K=9.05 and
7=0.033. Compared with the findings of the reference [2° our method
demonstrated better control performance and enhanced robustness.

6. Conclusion

This research presented a two-degree-of-freedom fractional-order active
disturbance rejection control (FOADRC) strategy to enhance the control
performance and robustness of position servo systems. Compared with traditional
control methods, the developed approach achieved a balance between system
rapidity and disturbance rejection by incorporating fractional-order filters into the
internal model control (IMC) and refining the nonlinear function of extended state
observer (ESO).

Simulation results indicated that the developed control method significantly
outperformed conventional integer-order control methods in terms of overshoot,
response time, and the integral of time-weighted absolute error (ITAE) metrics.
Notably, under the conditions of parameter perturbations, this approach
demonstrated robust resilience, effectively suppressing external disturbances while
maintaining system stability and control accuracy.

The novelty of this research lied in the integration of fractional-order control
with active disturbance rejection, with a two-degree-of-freedom design to precisely
adjust system performance, particularly under complex operating conditions. This
method not only improved the dynamic responses of the servo system, but also
simplified the parameter tuning process of the controller, making it highly
applicable for engineering applications.

Future research could further explore the application of this control strategy
in different nonlinear systems and validate it under additional real-world conditions
to promote its widespread application in industrial control.
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