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USING MULTIPLICATIVE CALCULUS
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The important point to be noted on the non-Newtonian calculus is a self-

contained system independent of any other system of calculus. Therefore, the

reader may be surprised to learn that there is a uniform relationship between the

corresponding operators of this calculus and the classical calculus. In the present

paper, some fundamental theorems and notions of the classical calculus are in-

terpreted from the view point of multiplicative calculus and the analogies between

them are given. We propose a concrete approach based on some topological prop-

erties with respect to the multiplicative calculus. Finally, we give *-completeness

results on some sets of specific sequences.

Keywords: Sequence spaces, multiplicative calculus, metric topology, complete

metric space.

1. Introduction

In the period 1967-1972, Grossman and Katz [5] introduced the non-Newtonian

calculus consisting of the branches of geometric, bigeometric, quadratic and bi-

quadratic calculus etc. Also, Grossman extended this notion to the other fields in

[6, 7]. All these calculi can be described simultaneously within the framework of a

general theory. We prefer to use the name non-Newtonian to indicate any calculi

other than the classical calculus. Every property in the classical calculus has an

analogue in non-Newtonian calculus which is a methodology that allows one to have

a different look at problems which can be investigated via calculus. In some cases,

for example for wage-rate (in dollars, euro etc.) related problems, the use of bigeo-

metric calculus which is a kind of non-Newtonian calculus is advocated instead of a

traditional Newtonian one.

Bashirov et al. [1, 2] have recently concentrated on the multiplicative calculus

and have given results with applications corresponding to the well-known properties

of derivatives and integrals in the classical calculus. Also, Uzer [15] extended the

non-Newtonian calculus to the complex valued functions and was interested in the

statements of some fundamental theorems and concepts of multiplicative complex
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calculus, and proved some analogies between the multiplicative complex calculus

and classical calculus by theoretical and numerical examples. Further Misirli and

Gurefe introduced multiplicative Adams Bashforth-Moulton methods for differential

equations in [13]. Some authors also worked on the classical sequence spaces and

related topics by using non-Newtonian calculus: please, see Çakmak and Başar

[3, 4], Tekin and Başar [14]. Further, Kadak [8] and Kadak et al. [9, 10, 11] have

determined matrix transformations between certain sequence spaces over the non-

Newtonian complex field and generalized Runge-Kutta method via non-Newtonian

differentiation.

Following Cakmak and Başar [3], we construct the classical sequence spaces

with respect to the multiplicative calculus. In Section 2, some required inequali-

ties are presented in the sense of the multiplicative calculus, and the concepts of

*metric and some related examples are given. Section 3 is devoted to introduce

the corresponding results for the sequences concerning the convergent sequences of

real numbers and to prove some basic topological properties. Additionally, by using

the notion of *completeness, *limit and *convergence, other results are discussed in

detail.

2. Preliminaries and Basic Inequalities

A generator is a one-to-one function whose domain is R and whose range

is a subset of R, the set of real numbers. Each generator generates exactly one

arithmetic, and conversely each arithmetic is generated by exactly one generator.

As a generator, we choose the function exp from R to the set R+ of positive reals,

that is to say that

α : R −→ R+

x 7−→ α(x) = ex = y
and

α−1 : R+ −→ R
y 7−→ α−1(y) = ln y = x.

If I(x) = x for all x ∈ R, then I is called identity function whose inverse

is itself. In the special cases α = I and α = exp, α generates the classical and

geometric arithmetics, respectively.

Consider any generator α with range A. By α-arithmetic, we mean the arith-

metic whose domain is A and whose operations are defined as follows: for x, y ∈ R
and any generator α,

α-addition x+̇y = α{α−1(x) + α−1(y)}
α-subtraction x−̇y = α{α−1(x)− α−1(y)}
α-multiplication x×̇y = α{α−1(x)× α−1(y)}
α-division x/̇y = α{α−1(x)÷ α−1(y)}
α-order x<̇y ⇔ α−1(x) < α−1(y).
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Particularly, if we choose α-generator as exp function, α(z) = ez for z ∈ R then

α−1(z) = ln z, α-arithmetic turns out to be the geometric arithmetic. Specifically,

x⊕ y = α{α−1(x) + α−1(y)} = e{lnx+ln y} = x · y
x	 y = α{α−1(x)− α−1(y)} = e{lnx−ln y} = x÷ y, y 6= 0

x� y = α{α−1(x)× α−1(y)} = e{lnx×ln y} = xln y = ylnx

x� y = α{α−1(x)÷ α−1(y)} = e{lnx÷ln y} = x
1

ln y , y 6= 1

that is

α-addition → geometric addition

α-subtraction → geometric subtraction

α-multiplication → geometric multiplication

α-division → geometric division

In this case, α-summation turns out to be geometric summation

n

∗

∑
k=1

xk = α

{
n∑

k=1

α−1(xk)

}
= α{α−1(x1) + · · ·+ α−1(xn)} = e{lnx1+···+lnxn} =

n∏
k=1

xk.

Now, following Çakmak and Başar [3], we are able to give some inequalities

by using exponential generator.

The α-square of a number x in A ⊂ R is denoted by x � x which will be

denoted by x2∗ . For each nonnegative number s, the symbol
√
x
∗

will be used to

denote s = α{
√
α−1(x)} = e

√
lnx which is the unique nonnegative number whose

α-square is equal to x, which means s2∗ = x.

Through out this section we denote the p-th multiplicative exponent and the

q-th multiplicative root of x ∈ R+ by xp∗ and q
√
x
∗
, respectively. Therefore, we have

x2∗ = x� x = e{lnx×lnx} = eln2 x = xlnx

x3∗ = x2∗ � x = eln3 x = xln2 x

...

xp∗ = x(p−1)∗ � x = elnp x = xlnp−1 x

...

The α-absolute value denoted by |x|∗ is defined α(|α−1(x)|) = e| lnx|. For each

number x in A ⊂ R+,
√
x2∗
∗

= |x|∗ = e| lnx|. (2.1)

Then we say,

|x|∗ =


x , x > 1

1 , x = 1

1/x , x < 1

= e| lnx|.
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Definition 2.1 ([3]). Let X be a non-empty set and d∗ : X×X → R+ be a function

such that for all x, y, z ∈ X, the following axioms hold:

(M1) d∗(x, y) = 1 if and only if x = y,

(M2) d∗(x, y) = d∗(y, x),

(M3) d∗(x, y) ≤ d∗(x, z)⊕ d∗(z, y).

Then, the pair (X, d∗) and d∗ are called a multiplicative metric space and a

multiplicative metric (shortly, *metric) on X, respectively.

Proposition 2.1. Let (X, d∗) be a ∗-metric space. Then, the inequality∣∣∣∣d∗(x, z)d∗(y, z)

∣∣∣∣∗ ≤ d∗(x, y)

holds for all x, y, z ∈ X.

Proof. By using (M3), if d∗(x, z) ≤ d∗(x, y) d∗(y, z), then d∗(x, z)/d∗(y, z) ≤ d∗(x, y),

and if d∗(y, z) ≤ d∗(y, x) d∗(x, z), then d∗(y, z)/d∗(x, z) ≤ d∗(y, x) = d∗(x, y). Thus

1

d∗(x, y)
≤ d∗(x, z)

d∗(y, z)
≤ d∗(x, y). (2.2)

From (2.2), we obtain ∣∣∣∣d∗(x, z)d∗(y, z)

∣∣∣∣∗ ≤ d∗(x, y),

hence the proof. �

Proposition 2.2. The following relations hold:

(i) |xy|∗ ≤ |x|∗|y|∗
(ii) | lnx| = ln |x|∗

Proof. We can show that 1/|x|∗ ≤ x ≤ |x|∗, x ∈ R∗. Indeed, 1/|x|∗ = x < 1 < |x|∗,
and if x ≥ 1, then 1/|x|∗ ≤ x = |x|∗. Therefore we have

1

|x|∗
≤ x ≤ |x|∗. (2.3)

(i) By using 1/|x|∗ ≤ x ≤ |x|∗ and 1/|y|∗ ≤ y ≤ |y|∗, we immediately get

1/(|x|∗|y|∗) ≤ xy ≤ |x|∗|y|∗ and |xy|∗ ≤ |x|∗|y|∗.
(ii) If x ≥ 1, then |x|∗ = x and | lnx| = lnx = ln |x|∗, otherwise if 0 < x < 1,

then |x|∗ = 1/x, lnx < 0 and | lnx| = − lnx = ln(1/x) = ln |x|∗.
The proof is complete. �

Lemma 2.1. [Minkowski’s inequality] Let p > 1 and xk, yk ∈ R+ for k ∈ {1, 2, . . . , n}.
Then,

p

√√√√ n

∗

∑
k=1

(xk ⊕ yk)p∗

∗

≤ p

√√√√ n

∗

∑
k=1

xkp∗

∗

⊕ p

√√√√ n

∗

∑
k=1

ykp∗

∗

.
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Proof. Taking the values xk ← lnxk and yk ← ln yk in the classic Minkowski in-

equality, we have(∑
k

| ln(xkyk)|p
) 1

p

≤
(∑

k

| lnxk|p
) 1

p

+

(∑
k

| ln yk|p
) 1

p

for all (xk), (yk) ∈ R+. From relation | lnx| = ln |x|∗ in Proposition 2.2(ii), then

exp

{[∑
k

(
ln |xkyk|∗

)p] 1
p

}
≤ exp

{[∑
k

(
ln |xk|∗

)p] 1
p

}
exp

{[∑
k

(
ln |yk|∗

)p] 1
p

}
(2.4)

holds for all 1 ≤ p <∞ and k ∈ N. The rest can be obtained by taking into account

the notions of geometric summation and p-th non-Newtonian exponent together. �

3. Topological Properties, Convergence and Completeness

We know that sequences of real numbers play an important role in calculus,

and it is the metric on R which enables us to define the basic concept of convergence

of such a sequence. The same holds for sequences; in this case we have to use the

*metric on the set of real numbers, R. In an arbitrary metric space X = (X, d∗)

the situation is quite similar, that is, we may consider a sequence (xn) ∈ R+ of

elements x1, x2, . . . of X and use d∗ to define convergence in multiplicative calculus.

We define the *completeness of *metric space.

According to [12], we will define basic concepts *neighborhood (*open and

*closed ball),*open sets, *closed sets, *interior, *closure and *limit point.

Definition 3.1. Given a point x0 ∈ X. Then, for a real number r > 0,

B(x0; r) = {x ∈ X| d∗(x, x0) < r}

is a *neighborhood, or *open ball, of centre x0 and radius r and

B[x0; r] = {x ∈ X| d∗(x, x0) ≤ r}

is a *closed ball of centre x0 and radius r.

We see that an *open ball of radius r is the set all of points in X whose

multiplicative distance from the center of the ball is less than r and we say directly

from the definition that every *neighborhood of x0 contains x0; in other words, x0

is a point of each of its *neighborhoods.

Definition 3.2. Let (X, d∗) be a *metric space. Then G ⊂ X is called *open set if

and only if every point of G has a *neighborhood contained in G. Also G ⊂ X is

called *closed set if and only if its complement is *open.

Proposition 3.1. Every *open ball is an *open set.

Proof. Let x ∈ X and r > 0, we will show that the *open ball B(x; r) is an *open set

in a *metric space. Now we take an element y ∈ B(x; r) so the condition d∗(x, y) < r
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is satisfied. By taking a radius s = r
d∗(x,y) , we must show that B(y; s) ⊂ B(x; r).

Let z ∈ B(y; s) for d∗(y, z) < s and by the using *triangle inequalities we have

d∗(x, z) ≤ d∗(x, y) d∗(y, z) < d∗(x, y) s = d∗(x, y)
r

d∗(x, y)
= r

d∗(x, z) < r and z ∈ B(x; r). Then the *open ball B(y; s) is a subset the *open ball

B(x; r). This completes the proof. �

Proposition 3.2. Every *closed ball is *closed set.

Proof. Let x ∈ X and r > 0, we will show that the *closed ball B[x; r] is a *closed

set in *metric space. We know that G ⊂ X is called *closed set if and only if its

complement is *open.

Since by definition the complement is

B[x; r]C = {y ∈ X| d∗(x, y) > r}

we take an element y ∈ B[x; r]C for which the condition d∗(x, y) > r is satisfied. By

taking a radius s = d∗(x,y)
r , we must show that B(y; s) ⊂ B[x; r]C . Let z ∈ B(y; s)

for d∗(y, z) < s and by the using multiplicative triangle inequalities

d∗(x, y) ≤ d∗(x, z) d∗(z, y) < d∗(x, z) s =
d∗(x, y)

r
d∗(x, z)

we have d∗(x, z) > r and z ∈ B[x; r]C . Then the *open ball B(y; s) is a subset of

the complement of the *closed ball B[x; r]. This completes the proof. �

The notion of a *closed set is closely connected with the idea of *limit point.

Let G be a set in (X, d∗) and x be a point of G. Then x is called a *limit point of G

if and only if every *neighborhood of x contains a point of G different from x. The

set of *limit points is denoted G′.

Definition 3.3. Let G be any subset of (X, d∗). Then the following definitions can

be given.

(i) The *interior Go is the largest *open set contained in G. The other words, the

*interior of G is the union of all *open sets contained in G.

(ii) The *closure G is the smallest *closed set containing G. The other words, the

*closure of G is the intersection of all *closed sets containing G.

Definition 3.4 ([3]). The sequence (xn) is said to be multiplicative convergent

(shortly, *convergent) to x in X = (X, d∗), if for every ε > 1 and there exists n0 ∈ N
such that d∗(xn, x) < ε for every n > n0. In other words; limn→∞ d

∗(xn, x) = 1, and

x is called the multiplicative limit of (xn) and we write ∗limn→∞ xn = x or, simply,

xn −→∗ x. We say that (xn) *converges to x or has the *limit x. If (xn) is not

*convergent, it is said to be *divergent.
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Let X = (X, d∗) be any multiplicative metric space and M,N subsets of X.

We can define

δ∗(x,M) = inf {d∗(x, a) | a ∈M},
δ∗(M,N) = inf {d∗(a, y) | a ∈M, y ∈ N},
δ∗(M) = sup {d∗(x, y) | x, y ∈M},

which represents: δ∗(x,M) the multiplicative distance between the point x and the

set M , δ∗(M,N) the *distance between the sets M and N , δ∗(M) the diameter of

the set M .

Definition 3.5. Let M ⊂ X a nonempty set and x, y ∈M . If its diameter δ∗(M) =

sup d∗(x, y) is finite, then M is called multiplicative bounded or *bounded.

Definition 3.6. A sequence (xn) in a multiplicative metric space X = (X, d∗) is

said to be multiplicative bounded (*bounded) if and only if there exists the constant

M ≥ 1, |xn|∗ ≤M , for every n ∈ N.

Proposition 3.3. Let X = (X, d∗) be a multiplicative metric space. Then

(i) Any *convergent sequence in X is *bounded and its *limit is unique.

(ii) If xn −→∗ x and yn −→∗ y, then d∗(xn, yn) −→∗ d∗(x, y).

(iii) For all (xnk
), called subsequences of (xn), if xn −→∗ x0, then xnk

−→∗ x0.

Proof. (i) Suppose that xn −→∗ x. Then, taking ε = 2, we can find a n0 ∈ N such

that d∗(xn, x) < 2 for every n > n0. Hence by the *triangle inequality for all n, we

have d∗(xn, x) < a where

a = max{d∗(x1, x), . . . , d∗(xn0 , x), 2}.

This shows that (xn) is *bounded.

Assuming that xn −→∗ x and xn −→∗ z, we obtain (M3)

1 ≤ d∗(x, z) ≤ d∗(x, xn) d∗(xn, z) −→∗ 1

and the uniqueness x = z of the limit follows from (M1).

(ii) For xn −→∗ x and yn −→∗ y, from the inverse *triangle inequality∣∣∣∣d∗(xn, yn)

d∗(x, y)

∣∣∣∣∗ =

∣∣∣∣d∗(xn, yn)

d∗(x, yn)

d∗(x, yn)

d∗(x, y)

∣∣∣∣∗
≤

∣∣∣∣d∗(xn, yn)

d∗(x, yn)

∣∣∣∣∗ ∣∣∣∣d∗(x, yn)

d∗(x, y)

∣∣∣∣∗
≤ d∗(xn, x) d∗(yn, y) −→∗ 1.

(iii) Let (xnk
) be any subsequence of (xn) which converges to x0 in multiplica-

tive mean, for every ε > 1, there exists n0 ∈ N such that d∗(xn, x0) < ε for every

n > n0. Then, limk→∞ nk = ∞, there exists k0 ∈ N such that for every k > k0, we

get

d∗(xnk
, x0) < ε⇒ ∗lim

k→∞
xnk

= x0.

The proof is complete. �
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Definition 3.7. A sequence (xn) in a multiplicative metric space X = (X, d∗) is

said to be a Cauchy sequence if for every ε > 1, there exists n0 ∈ N such that

d∗(xm, xn) < ε for every m,n > n0.

The space is said to be *complete if every Cauchy sequence in X *converges.

Theorem 3.1. Let (xn) be a sequence in a multiplicative metric space X = (X, d∗).

Then the following holds:

(i) Every *convergent sequence in a multiplicative metric space is a Cauchy

sequence.

(ii) Every Cauchy sequence is *bounded.

(iii) If the Cauchy sequence (xn) have a subsequence (xnk
) which converges to

x0, then xn −→∗ x0.

Proof. Let (X, d∗) be a multiplicative metric space. Then

(i) if xn −→∗ x, then for every ε > 1, there exists n0 ∈ N such that d∗(xn, x) <√
ε for all n > n0. Hence by using the condition (M3) we obtain for m,n > n0

d∗(xm, xn) ≤ d∗(xm, x) d∗(x, xn) <
√
ε
√
ε = ε.

This proves that (xn) is a Cauchy sequence.

(ii) Let (xn) be any Cauchy sequence in X. Then, for every ε > 1 there exists

n0 ∈ N such that d∗(xn, xm) < ε for every m,n > n0. By denoting

M = max{d∗(x1, xn0), . . . , d∗(xn0−1, xn0), ε},

we get d∗(xn, xn0) ≤M , for all n ∈ N. For all m,n ∈ N and by using (M3) we have

d∗(xn, xm) ≤ d∗(xn, xn0) d∗(xm, xn0) ≤M2.

Hence (xn) is *bounded.

(iii) Let (xn) be any Cauchy sequence which have a subsequence (xnk
) *con-

verges to x0. If ε > 1 there exists n0 ∈ N such that d∗(xn, xm) <
√
ε for every

m,n > n0. Similarly, for ε > 1 there exists k1 ∈ N such that d∗(xnk
, x0) <

√
ε for

every k > k1. Using these results for all k > k0 = max{n0, k1}, we have

d∗(xk, x0) ≤ d∗(xk, xnk
) d∗(xnk

, x0) <
√
ε
√
ε = ε.

Hence ∗limk→∞ xk = x0.

The proof is complete. �
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Now, consider ω = {(xn) |xn ∈ M, xn > 0}. We define the classical sets

`∗∞(M), c∗(M), c∗0(M) and `∗p(M) consisting of the multiplicative bounded, conver-

gent, null and absolutely p-summable sequence, as follows:

`∗∞(M) :=

{
x = (xk) ∈ ω : sup

k∈N
d∗(xk, 1) <∞

}
,

c∗(M) :=

{
x = (xk) ∈ ω : ∃l ∈ R, ∗lim

k→∞
d∗(xk, l) = 1

}
,

c∗0(M) :=

{
x = (xk) ∈ ω : ∗lim

k→∞
d∗(xk, 1) = 1

}
,

`∗p(M) :=

{
x = (xk) ∈ ω : exp

(∑
k

(ln |xk|∗)p
)
<∞

}
, (1 ≤ p <∞).

Theorem 3.2. Define the distance function d∗∞ by

d∗∞ : γ(M)× γ(M) −→ R+, d∗∞(x, y) = sup {|xk 	 yk|∗ : k ∈ N} ,

where γ denotes any of the spaces `∗∞, c∗ and c∗0, and x = (xk), y = (yk) ∈ γ(M).

Then, (γ(M), d∗∞) is a *complete metric space.

Proof. Since the proof is similar for c∗(M) and c∗0(M), we prove the theorem only for

`∗∞(M). One can easily see that the axioms (M1) and (M2) are trivial. We will prove

only the axiom (M3) by taking into account multiplicative triangular inequality as

follows:

(M3) Let x = (xk), y = (yk), z = (zk) ∈ `∗∞(M). Then,

d∗∞(x, y) = sup {|xk 	 yk|∗ : k ∈ N} = sup {|(xk 	 zk)⊕ (zk 	 yk)|∗ : k ∈ N}
≤ sup {|xk 	 zk|∗ : k ∈ N} ⊕ sup {|zk 	 yk|∗ : k ∈ N}
≤ d∗∞(x, z)⊕ d∗∞(z, y).

It remains to prove the *completeness of `∗∞(M). Let xm = (x
(m)
1 , x

(m)
2 , . . .)

be a Cauchy sequence on `∗∞(M). Then for every ε > 1, there exists m0 ∈ N for all

m, r > m0 such that

d∗∞(xm, xr) = sup
{∣∣∣x(m)

k 	 x(r)
k

∣∣∣∗ : k ∈ N
}
< ε. (3.1)

For all m, r > m0 and k ∈ N, by the using *completeness of R (see [3]), we say

(x
(1)
k , x

(2)
k , . . .) is a Cauchy sequence and *converges.

Let x = (x1, x2, . . .) and ∗limm→∞ x
(m)
k = xk. We have to show that

∗lim
m→∞

d∗∞(xm, x) = 1 and x ∈ `∗∞(M).

Taking the *limit for r →∞ in (3.1), we get∣∣∣x(m)
k 	 xk

∣∣∣∗ ≤ ε, for m > m0. (3.2)

We know that xm = (x
(m)
1 , x

(m)
2 , . . .) is a Cauchy sequence on `∗∞(M), and

that there exists a constant M such that |x(m)
k |

∗ ≤ M , for all k ∈ N. Therefore, by
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the using multiplicative triangle inequality

|xk|∗ ≤
∣∣∣xk 	 x(m)

k

∣∣∣∗ ⊕ |x(m)
k |

∗ ≤ ε⊕M, k ∈ N, m > m0.

So, x = (x1, x2, . . .) is *bounded and x ∈ `∗∞(M). According to (3.2)

d∗∞(xm, x) = sup
{∣∣∣x(m)

k 	 xk
∣∣∣∗ : k ∈ N

}
≤ ε.

Therefore, the space (`∗∞(M), d∗∞) is *complete. �

Theorem 3.3. Let x = (xk), y = (yk) ∈ `∗p(M) be sequences, and

d∗p : `∗p(M)× `∗p(M) −→ R+ d∗p(x, y) = exp


[ ∞∑
k=1

(
ln

∣∣∣∣xkyk
∣∣∣∣∗)p

] 1
p

 .

(`∗p(M), d∗p) is a *complete metric space.

Proof. (M1) Let x = (xk), y = (yk) ∈ `∗p(M). It is trivial that if xk = yk for all

k ∈ N then d∗p(x, y) = 1. Conversely if d∗p(x, y) = 1, then ln
∣∣∣xk
yk

∣∣∣∗ = 0 ⇒
∣∣∣xk
yk

∣∣∣∗ = 1.

Thus xk = yk for all k ∈ N and x = y.

(M2) It is obvious that

d∗p(x, y) = exp


[ ∞∑
k=1

(
ln

∣∣∣∣xkyk
∣∣∣∣∗)p

] 1
p


= exp


[ ∞∑
k=1

(
ln

∣∣∣∣ ykxk
∣∣∣∣∗)p

] 1
p

 = d∗p(y, x).

(M3) Let x = (xk), y = (yk), z = (zk) ∈ `∗p(M) and by using the multiplicative

Minkowski inequality we obtain

d∗p(x, y) = exp


[ ∞∑
k=1

(
ln

∣∣∣∣xkzk zkyk
∣∣∣∣∗)p

] 1
p


≤ exp


[ ∞∑
k=1

(
ln

∣∣∣∣xkzk
∣∣∣∣∗)p

] 1
p

 exp


[ ∞∑
k=1

(
ln

∣∣∣∣zkyk
∣∣∣∣∗)p

] 1
p


≤ d∗p(x, z)⊕ d∗p(z, y).

Therefore, (`∗p(M), d∗p) is a *metric space.

It remains to prove the *completeness of (`∗p(M), d∗p).

Let xm = (x
(m)
1 , x

(m)
2 , . . .) be a Cauchy sequence in `∗p(M). Then for every

ε > 1, there exists m0 ∈ N, so that for all m, r > m0

d∗p(xm, xr) = exp


[ ∞∑
k=1

(
ln

∣∣∣∣∣x
(m)
k

x
(r)
k

∣∣∣∣∣
∗)p] 1

p

 < ε. (3.3)
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Then, the following inequalities hold

∞∑
k=1

(
ln

∣∣∣∣∣x
(m)
k

x
(r)
k

∣∣∣∣∣
∗)p

< lnp ε

therefore, it follows that ∣∣∣∣∣x
(m)
k

x
(r)
k

∣∣∣∣∣
∗

< ε.

For all m, r > m0 and k ∈ N, by using the *completeness of R, the sequence

(x
(1)
k , x

(2)
k , . . .) is a Cauchy sequence and *converges.

Let us consider x = (x1, x2, . . .) and ∗limm→∞ x
(m)
k = xk. We have to prove

that ∗limm→∞ d
∗
p(xm, x) = 1 and x ∈ `∗p(M). Taking the limit for r → ∞ in (3.3),

we get

exp

[
j∑

k=1

(
ln

∣∣∣∣∣x
(m)
k

xk

∣∣∣∣∣
∗)p]

≤ exp (lnp ε) , j ∈ N, m > m0. (3.4)

Taking the limit for j →∞ in (3.4), we have

exp

[ ∞∑
k=1

(
ln

∣∣∣∣∣x
(m)
k

xk

∣∣∣∣∣
∗)p]

≤ exp (lnp ε) <∞. (3.5)

Thus the sequence
(
xm
x

)
=
(
x
(m)
1
x1

,
x
(m)
2
x2

, . . .
)
∈ `∗p(M). Using

∣∣∣∣x(m)
k
xk

∣∣∣∣∗ =

∣∣∣∣ xk

x
(m)
k

∣∣∣∣∗ and

taking xk = x
(m)
k

xk

x
(m)
k

we consider the reformulation of the multiplicative Minkowski

inequality

exp

{[ ∞∑
k=1

(
ln |xk|∗

)p] 1
p

}
≤ exp

{[ ∞∑
k=1

(
ln |x(m)

k |
∗)p] 1

p

}
exp

{[ ∞∑
k=1

(
ln

∣∣∣∣ xk
x

(m)
k

∣∣∣∣∗)p] 1
p

}
.

Since there exist δ > 0 such that

exp

{[ ∞∑
k=1

(
ln |x(m)

k |
∗)p] 1

p

}
< δ,

and from (3.5) we have

exp

{[ ∞∑
k=1

(
ln

∣∣∣∣ xk
x

(m)
k

∣∣∣∣∗
)p ] 1

p

}
< ε,

we obtain

exp

[ ∞∑
k=1

(
ln |xk|∗

)p]
< ε1 <∞

where ε1 = exp (lnp(δε)). So, x = (x1, x2, . . .) ∈ `∗p(M). According to (3.4)

d∗p(xm, x) = exp


[ ∞∑
k=1

(
ln

∣∣∣∣∣x
(m)
k

xk

∣∣∣∣∣
∗)p] 1

p

 ≤ ε.
Hence ∗limm d

∗
p(xm, x) = 1, the space (`∗p(M), d∗p) is *complete. �
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4. Conclusion

In this paper, some fundamental theorems and notions of the classical calculus

are interpreted from the view point of multiplicative calculus and the analogies

between them are given. We proposed a concrete approach based on some topological

properties with respect to the multiplicative calculus. Finally, we have introduced

*-completeness results on some sets of specific sequences.
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