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A NEW LOOK AT THE CLASSICAL SEQUENCE SPACES BY
USING MULTIPLICATIVE CALCULUS

Yusuf Gurefe, Ugur Kadak, Emine Misirli and Alia Kurdi'

The important point to be noted on the non-Newtonian calculus is a self-
contained system independent of any other system of calculus. Therefore, the
reader may be surprised to learn that there is a uniform relationship between the
corresponding operators of this calculus and the classical calculus. In the present
paper, some fundamental theorems and notions of the classical calculus are in-
terpreted from the view point of multiplicative calculus and the analogies between

them are given. We propose a concrete approach based on some topological prop-

*

erties with respect to the multiplicative calculus. Finally, we give *-completeness

results on some sets of specific sequences.

Keywords: Sequence spaces, multiplicative calculus, metric topology, complete
metric space.

1. Introduction

In the period 1967-1972, Grossman and Katz [5] introduced the non-Newtonian
calculus consisting of the branches of geometric, bigeometric, quadratic and bi-
quadratic calculus etc. Also, Grossman extended this notion to the other fields in
[6, 7]. All these calculi can be described simultaneously within the framework of a
general theory. We prefer to use the name non-Newtonian to indicate any calculi
other than the classical calculus. Every property in the classical calculus has an
analogue in non-Newtonian calculus which is a methodology that allows one to have
a different look at problems which can be investigated via calculus. In some cases,
for example for wage-rate (in dollars, euro etc.) related problems, the use of bigeo-
metric calculus which is a kind of non-Newtonian calculus is advocated instead of a
traditional Newtonian one.

Bashirov et al. [1, 2] have recently concentrated on the multiplicative calculus
and have given results with applications corresponding to the well-known properties
of derivatives and integrals in the classical calculus. Also, Uzer [15] extended the
non-Newtonian calculus to the complex valued functions and was interested in the
statements of some fundamental theorems and concepts of multiplicative complex
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calculus, and proved some analogies between the multiplicative complex calculus
and classical calculus by theoretical and numerical examples. Further Misirli and
Gurefe introduced multiplicative Adams Bashforth-Moulton methods for differential
equations in [13]. Some authors also worked on the classical sequence spaces and
related topics by using non-Newtonian calculus: please, see Cakmak and Bagar
[3, 4], Tekin and Basar [14]. Further, Kadak [8] and Kadak et al. [9, 10, 11] have
determined matrix transformations between certain sequence spaces over the non-
Newtonian complex field and generalized Runge-Kutta method via non-Newtonian
differentiation.

Following Cakmak and Basar [3], we construct the classical sequence spaces
with respect to the multiplicative calculus. In Section 2, some required inequali-
ties are presented in the sense of the multiplicative calculus, and the concepts of
*metric and some related examples are given. Section 3 is devoted to introduce
the corresponding results for the sequences concerning the convergent sequences of
real numbers and to prove some basic topological properties. Additionally, by using
the notion of *completeness, *limit and *convergence, other results are discussed in
detail.

2. Preliminaries and Basic Inequalities

A generator is a one-to-one function whose domain is R and whose range
is a subset of R, the set of real numbers. Each generator generates exactly one
arithmetic, and conversely each arithmetic is generated by exactly one generator.
As a generator, we choose the function exp from R to the set R™ of positive reals,
that is to say that

a: R — Rt al: RY — R
xr — afzr)=€e"=y y +—— a Yy)=Ilny=u=z.

If I(x) = x for all x € R, then I is called identity function whose inverse
is itself. In the special cases @ = I and o = exp, « generates the classical and
geometric arithmetics, respectively.

Consider any generator o with range A. By a-arithmetic, we mean the arith-
metic whose domain is A and whose operations are defined as follows: for z,y € R
and any generator «,

a-addition aty = ofa (@) +ay)}
a-subtraction =y = ofal(z)—al(y)}
a-multiplication zxy = af{a"!(z)xa l(y)}
a-division m/y = af{aHz) +al(y)}
a-order <y & al(z) <al(y).
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Particularly, if we choose a-generator as exp function, a(z) = e* for z € R then
a~!(z) = In z, a-arithmetic turns out to be the geometric arithmetic. Specifically,

oy = aofa (@) +al(y)} = el = gy
oy = ofaM@)—a My} = M =y y£0
rQy = Oé{Oé_l(iU)XOé 1(y)} — e{ln:cxlny} — lny_yln:c
1oy = afo”l(@)val(y)) = M) o w1
that is
a-addition — geometric addition
a-subtraction — geometric subtraction
a-multiplication — geometric multiplication

a-division — geometric division

In this case, a-summation turns out to be geometric summation

Su=a {Za_l(xk)} = afa @) + o+ a7 (@) = ) < T,
k=1 k=1

k=1

Now, following Cakmak and Bagar [3], we are able to give some inequalities
by using exponential generator.

The a-square of a number z in A C R is denoted by z ® x which will be
denoted by z?+. For each nonnegative number s, the symbol /2" will be used to
denote s = a{ /a1 (z)} = eV"e which is the unique nonnegative number whose
a-square is equal to z, which means s2* = x.

Through out this section we denote the p-th multiplicative exponent and the
g-th multiplicative root of 2 € R by 2P+ and ¢z, respectively. Therefore, we have

2
72 — o Or = 6{lnm><lnr} _ eln T _ xlnx
3 2
.%'3*:372* Oxr = 6ln x:xln T
_ P p—1
oy - x(p 1)« Or = eln T _ xln x

The a-absolute value denoted by |z|* is defined a(|a~1(z)|) = el™*l. For each
number z in A C RT,

V' = |z|* = elel, (2.1)
Then we say,
z , z>1
lz|* = 1, z=1 =elM

1)z , z<1
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Definition 2.1 ([3]). Let X be a non-empty set and d*: X x X — R be a function
such that for all x, y, z € X, the following axioms hold:

(M1) d*(z,y) =1 if and only if z =y,

(M2) d*(z,y) = d*(y, z),

(M3) d*(x,y) < d*(z,z) ® d*(z,y).

Then, the pair (X,d*) and d* are called a multiplicative metric space and a
multiplicative metric (shortly, *metric) on X, respectively.

Proposition 2.1. Let (X,d*) be a x-metric space. Then, the inequality

d*(z, z)
d*(y, 2)

*

<d*(z,y)

holds for all x,y,z € X.

Proof. By using (M3), if d*(z, z) < d*(x,y) d*(y, 2), then d*(z, 2) /d*(y, z) < d*(x,y),
and if d*(y, z) < d*(y,x) d*(x, 2z), then d*(y, z)/d*(z, z) < d*(y,x) = d*(x,y). Thus

1 < d*(z, z)

< < d*(z,y). 2.2
Flay) = d(y) =Y 22
From (2.2), we obtain
d*(z, 2)|"
< d*(z,y),
Fya)| =TV
hence the proof. O

Proposition 2.2. The following relations hold:

() |yl < [a]*[yl*
(ii) |Inz| = In |x|*

Proof. We can show that 1/|z|* <z < |z|*, x € R*. Indeed, 1/|z|* =z < 1 < |z|*,
and if z > 1, then 1/|z|* <z = |z|*. Therefore we have

BE <z <|z|* (2.3)

(i) By using 1/]z|* < z < |z|* and 1/|y|* < y < |y|*, we immediately get
/(2" ly") < wy < |z|*y|" and |zy[* < [z]*|y[*.

(i) If z > 1, then |z|* = z and |Inz| = Inx = In |z|*, otherwise if 0 < z < 1,
then |z|* =1/z,Inx < 0 and |Inz| = —Inz = In(1/z) = In |x|*.

The proof is complete. O

Lemma 2.1. [Minkowski’s inequality] Let p > 1 and z, yp € RT fork € {1,2,...,n}.
Then,

*

n

n i n i
. (xp @ y)™ <P *Zxkp* @ 7 *Zykl’* .
k=1 k=1

k=1
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Proof. Taking the values zp < Inx; and yi < Iny, in the classic Minkowski in-
equality, we have

<Z|ln(xkyk)‘p>; = <Z|lnxk|p>; + <lenyk|p>;

k k k

for all (z), (yx) € RT. From relation |Inz| = In|z|* in Proposition 2.2(ii), then

exp { [Z (ln]xkyk\*)p] ;} < exp { [Z (lnlwkl*)p} ;}GXP { [Z (ln‘y’“’*)p] ;}

k k k
(2.4)
holds for all 1 < p < oo and k € N. The rest can be obtained by taking into account
the notions of geometric summation and p-th non-Newtonian exponent together. [J

3. Topological Properties, Convergence and Completeness

We know that sequences of real numbers play an important role in calculus,
and it is the metric on R which enables us to define the basic concept of convergence
of such a sequence. The same holds for sequences; in this case we have to use the
*metric on the set of real numbers, R. In an arbitrary metric space X = (X,d*)
the situation is quite similar, that is, we may consider a sequence (x,) € RT of
elements 1, o, ... of X and use d* to define convergence in multiplicative calculus.
We define the *completeness of *metric space.

According to [12], we will define basic concepts *neighborhood (*open and
*closed ball),*open sets, *closed sets, *interior, *closure and *limit point.

Definition 3.1. Given a point zg € X. Then, for a real number r > 0,
B(zo;r) = {z € X| d*(z,z0) <1}

is a *neighborhood, or *open ball, of centre ¢ and radius r and
Blzo;r]) ={z € X| d*(z,x0) <7}

is a *closed ball of centre ¢ and radius r.

We see that an *open ball of radius r is the set all of points in X whose
multiplicative distance from the center of the ball is less than r and we say directly
from the definition that every *neighborhood of zy contains xp; in other words, xg
is a point of each of its *neighborhoods.

Definition 3.2. Let (X, d*) be a *metric space. Then G C X is called *open set if
and only if every point of G has a *neighborhood contained in G. Also G C X is
called *closed set if and only if its complement is *open.

Proposition 3.1. Every *open ball is an *open set.

Proof. Let x € X and r > 0, we will show that the *open ball B(x;r) is an *open set
in a *metric space. Now we take an element y € B(x;r) so the condition d*(z,y) < r
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is satisfied. By taking a radius s = z7—, we must show that B(y;s) C B(x;r).

Let z € B(y; s) for d*(y, z) < s and by the using *triangle inequalities we have

d*(z,2) < d*(z,y) d*(y,2) < d"(z,y) s = d*(x,y)

L
d*(z,y)
d*(z,z) <r and z € B(z;r). Then the *open ball B(y; s) is a subset the *open ball
B(x;r). This completes the proof. O

Proposition 3.2. Every *closed ball is *closed set.

Proof. Let x € X and r > 0, we will show that the *closed ball B[x;r| is a *closed
set in *metric space. We know that G C X is called *closed set if and only if its
complement is *open.

Since by definition the complement is

Blz;r| = {y € X| d*(x,y) > r}

we take an element y € B[x;r]¢ for which the condition d*(z,y) > r is satisfied. By
taking a radius s = M, we must show that B(y;s) C Blx;7]¢. Let z € B(y; s)
for d*(y, z) < s and by the using multiplicative triangle inequalities
d*
T(wy) € w2) d' () < dwz) s = DO (e )
r

we have d*(z,z) > r and z € B[z;r]¢. Then the *open ball B(y;s) is a subset of
the complement of the *closed ball B[z;r]. This completes the proof. O

The notion of a *closed set is closely connected with the idea of *limit point.
Let G be a set in (X, d*) and = be a point of G. Then =z is called a *limit point of G
if and only if every *neighborhood of z contains a point of G different from x. The
set of *limit points is denoted G'.

Definition 3.3. Let G be any subset of (X, d*). Then the following definitions can
be given.
(i) The *interior G° is the largest *open set contained in G. The other words, the
*interior of G is the union of all *open sets contained in G.
(i) The *closure G is the smallest *closed set containing G. The other words, the
*closure of G is the intersection of all *closed sets containing G.

Definition 3.4 ([3]). The sequence (z,) is said to be multiplicative convergent
(shortly, *convergent) to x in X = (X, d*), if for every € > 1 and there exists ng € N
such that d*(z,,x) < € for every n > ng. In other words; lim,,_,~, d*(z,,x) = 1, and
x is called the multiplicative limit of (z,,) and we write *lim,,_, x, = x or, simply,
x, —* x. We say that (z,) *converges to x or has the *limit z. If (z,) is not
*convergent, it is said to be *divergent.
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Let X = (X,d*) be any multiplicative metric space and M, N subsets of X.
We can define
0 (x, M) = inf {d*(z,a)|a€ M},
0*(M,N) = inf {d*(a,y)|ae M, ye N},
(M) = sup {d*(z.y) | 2,y € M)},
which represents: *(z, M) the multiplicative distance between the point x and the

set M, 6*(M,N) the *distance between the sets M and N, §*(M) the diameter of
the set M.

Definition 3.5. Let M C X a nonempty set and z,y € M. If its diameter 6*(M) =
sup d*(z,y) is finite, then M is called multiplicative bounded or *bounded.

Definition 3.6. A sequence (x,) in a multiplicative metric space X = (X,d") is
said to be multiplicative bounded (*bounded) if and only if there exists the constant
M > 1, |x,|* < M, for every n € N.

Proposition 3.3. Let X = (X, d*) be a multiplicative metric space. Then
(i) Any *convergent sequence in X is *bounded and its *limit is unique.
(ii) If &, —* x and y, —* y, then d*(xy, yn) —* d*(z,y).
(iii) For all (xy,), called subsequences of (xy,), if x, —* xo, then x,, —* o.

Proof. (i) Suppose that z,, —* x. Then, taking ¢ = 2, we can find a ng € N such
that d*(z,,x) < 2 for every n > ng. Hence by the *triangle inequality for all n, we
have d*(zy,x) < a where

a = max{d*(z1,x),...,d" (zn,, x), 2}

This shows that (z,) is *bounded.
Assuming that x,, —* = and x,, —* z, we obtain (M3)

1 <d*(z,2) <d*(z,x,) d*(xn,2) —7 1

and the uniqueness z = z of the limit follows from (M1).
(i) For x,, —* 2 and y,, —* y, from the inverse *triangle inequality

‘d*(xnayn) : _ d*(xmyn) d*(x7yn) *
d*(z,y) d*(z,yn) d*(z,y)
d* (T, Yn) : d*(z, yn) .
| & (@, yn) d*(z,y)

< d(@n, ) d(yn,y) —7 1

(iii) Let (xy, ) be any subsequence of (z,) which converges to zp in multiplica-
tive mean, for every e > 1, there exists ng € N such that d*(z,,z¢) < € for every
n > ng. Then, limy_,o, ni = 00, there exists kg € N such that for every k > kg, we
get

d*(xn,, o) < € = *lim z,, = zo.
k—o0

The proof is complete. O
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Definition 3.7. A sequence (z,) in a multiplicative metric space X = (X, d*) is
said to be a Cauchy sequence if for every e¢ > 1, there exists ng € N such that
d*(xm, xn) < € for every m,n > nyg.

The space is said to be *complete if every Cauchy sequence in X *converges.

Theorem 3.1. Let (x,) be a sequence in a multiplicative metric space X = (X, d*).
Then the following holds:

(i) Every *convergent sequence in a multiplicative metric space is a Cauchy
sequence.

(ii) Every Cauchy sequence is *bounded.

(iii) If the Cauchy sequence () have a subsequence (xy, ) which converges to
xg, then x, —* xg.

Proof. Let (X, d*) be a multiplicative metric space. Then
(i) if 2, —* x, then for every e > 1, there exists ny € N such that d*(z,,x) <
Ve for all n > ng. Hence by using the condition (M3) we obtain for m,n > ng

A (2, Tn) < d(Tm, x) d*(x,2,) < Vee =e.

This proves that (x,,) is a Cauchy sequence.
(ii) Let (zy,) be any Cauchy sequence in X. Then, for every ¢ > 1 there exists
no € N such that d*(z,, x,,) < € for every m,n > ny. By denoting

M = max{d"(z1,Zng), -, d" (Tng—1, Tny), €},
we get d*(Tp, Tn,) < M, for all n € N. For all m,n € N and by using (M3) we have
d*(ﬂl‘n,l‘m) < d*(l'nal‘no) d*(fnm»xno) < M2,

Hence (z,,) is *bounded.

(iii) Let (z,,) be any Cauchy sequence which have a subsequence (z,, ) *con-
verges to xo. If € > 1 there exists ng € N such that d*(z,,z,) < /€ for every
m,n > ng. Similarly, for € > 1 there exists k1 € N such that d*(x,,,z0) < /e for
every k > ki. Using these results for all k& > ko = max{ng, k1}, we have

d*(z, 20) < d*(Tgy Ty ) d*(Tny, 0) < Ve = e.

Hence *limy_,oo Tr = To.
The proof is complete. 0
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Now, consider w = {(zy)|zn, € M, x, > 0}. We define the classical sets
L5 (M), ¢* (M), c5(M) and £;(M) consisting of the multiplicative bounded, conver-
gent, null and absolutely p-summable sequence, as follows:

Co(M) = {x = (ox) € supd’ (2, 1) < oo} ,

(M) = {a; = (@) €w: 3 €R, "lim d(ax, 1) = 1},

(M) = {x = (@) €w: "Hm d'(ep,1) = 1},

M) = {33 — (24) €w : exp <§k: (ln|xk|*)p) < oo} L (1<p <o)

Theorem 3.2. Define the distance function di, by
dsg :y(M) x y(M) — RY,  di(2,y) = sup {Jzx © yi|" : k € N},

*
o7

where 7y denotes any of the spaces Ci,, ¢* and ¢, and x = (x), y = (yx) € v(M).
Then, (v(M),d%,) is a *complete metric space.

Proof. Since the proof is similar for ¢*(M) and cj(M), we prove the theorem only for
05 (M). One can easily see that the axioms (M1) and (M2) are trivial. We will prove
only the axiom (M3) by taking into account multiplicative triangular inequality as
follows:
(M3) Let « = (z1),y = (yr), 2 = (2x) € €5 (M). Then,
dio(x,y) = sup{lzr Syxl”: k € N} = sup{|(zx © 2t) ® (2 S yi)|" : k € N}
< sup{lzr © 2" k€ N} @sup{|z O ykl" : k € N}
< d(w,2) ® (2, y)-
It remains to prove the *completeness of 5 (M). Let z,, = (azgm), xgm), o)
be a Cauchy sequence on €% (M). Then for every € > 1, there exists my € N for all
m,T > myg such that

di (T, ) = sSup {‘I](Cm) S a:,(:) ik € N} < e. (3.1)

For all m,r > mg and k € N, by the using *completeness of R (see [3]), we say
1 (2 : *
()’ 2z, ...) is a Cauchy sequence and *converges.

Let z = (21, x2,...) and *limy,, 0 :E](Cm) = x5,. We have to show that

*1i_r>n dio(Tm,x) =1 and x € €5 (M).

Taking the *limit for 7 — oo in (3.1), we get

’@(ﬁm) oxi| <e€ for m > my. (3.2)

We know that x,, = (:vgm),xém), ...) is a Cauchy sequence on £ (M), and
that there exists a constant M such that ]xém)|* < M, for all k£ € N. Therefore, by
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the using multiplicative triangle inequality
*
lzg|* < ‘a:k @xém)‘ ® |1:,(€m)|* <ed M, keN, m>myg.
So, = (x1,x3,...) is *bounded and x € €5 (M). According to (3.2)

d5 (T, x) = sup {‘x,&m) o xy,

*;keN}ge.

Therefore, the space (€5 (M), d%,) is *complete. O
1
*>p] P

Proof. (M1) Let z = (vg),y = (yr) € £,(M). It is trivial that if 2, = y; for all

Theorem 3.3. Let x = (wx),y = (yx) € £;(M) be sequences, and

Yk

dyy: (M) X £,(M) — R dy(7,y) = exp [Z (ln
k=1

(L(M),dy) is a *complete metric space.

k € N then dj(z,y) = 1. Conversely if dj(z,y) = 1, then In Tt —0= i o1
Thus xp = yi, for all k € N and = = y.
(M2) It is obvious that
_ L1
&y (a,) > (w2 )]
x, = ex n|l—
Py " Lk=1 Yl /|
_ 1
G Yk “\P|” *
= exp ; <ln o > = dp(y, ).

(M3) Let © = (z),y = (yr), 2 = (2x) € £;,(M) and by using the multiplicative
Minkowski inequality we obtain

1
0 *\P|p
e - oo [ (nfz22] Y]
=1 Zk Yk
_ 1 1
< exp <ln — ) exp <ln — >
k=1 “k k=1 Yk

< dy(z,2) ©dy(2,y).
Therefore, (£;(M),dy) is a *metric space.
It remains to prove the *completeness of (£;(M), dy).
Let ), = (:zgm),xgm), ...) be a Cauchy sequence in £;(M). Then for every
€ > 1, there exists mg € N, so that for all m,r > myg
= Py
) ] <e. (3.3)

dp (T, ) = exp [Z <ln

(m)

NG

k=1
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Then, the following inequalities hold

0 *\ P
Z <ln :U]‘E—T) ) <Infe
k=1 k
therefore, it follows that
2™ *
% < €.
xkr

For all m,r > mg and &k € N, by using the *completeness of R, the sequence

(:1;](61), x,(f), ...) is a Cauchy sequence and *converges.

Let us consider x = (x1,x2,...) and *lim,, xém) = x;. We have to prove

that *limy, e d

J
exp [Z (ln
k=1
Taking the limit for j — oo in (3.4), we have

(m)

we get

o

*\ P
) ] <exp(lnfe), j€N, m>mg.
L

oo *\ P
x
exp | Y [In|=E— < exp (In” :
xp[ <n i )]_exp(n €) < 00
k=1
2 gm) . 2 |*
Thus the sequence (Z2) = ( T ,) € £;(M). Using | £

taking xj = :U,E:m) Lk

"
inequality

[e.9]

exp{[i (ln|xk|*)p};} < exp{[z(lnx;m>|*)pr}exp{{f:(m 5

k=1
Since there exist § > 0 such that

exp { [i (In |$]§:m>|*)p} i} <o,

k=1

exp Z (ln\xk|*)p] <€ <00

k=1

k=1 k=1

and from (3.5) we have

we obtain

where €; = exp (In”(d¢)). So, x = (z1,72,...) € £;(M). According to (3.4)

1
xl(;n) p

T

*\ P
) <e.

Tm,x) = 1, the space (£5(M),d*) is *complete.
P i

dp (T, T) = exp [Z (ln

k=1

*7: *
Hence *lim,, dp

(Tm,z) =1 and = € £;(M). Taking the limit for r — oo in (3.3),

(3.4)

(3.5)

and

5 we consider the reformulation of the multiplicative Minkowski
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4. Conclusion

In this paper, some fundamental theorems and notions of the classical calculus

are interpreted from the view point of multiplicative calculus and the analogies

between them are given. We proposed a concrete approach based on some topological

properties with respect to the multiplicative calculus. Finally, we have introduced

*_completeness results on some sets of specific sequences.

1]
2]
3]
(4]
[5]

[6]
[7]
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