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MODELING AND CALIBRATING BANKS’ DEMAND
DEPOSITS VS. ASSETS

Elena Cristina Canepa!, Cristina Serbanescu?, Alina Petrescu-Nita?

This paper considers a continuous time stochastic mathematical model
to analyze financial processes. The goodness-of-fit using several normality
tests is performed and compared for the cases when banks’ deposits and as-
sets evolve as Brownian motions, geometric Brownian motions, Ornstein-
Uhlenbeck processes, and geometric Ornstein- Uhlenbeck processes. By using
the equation of a regression line, the deposits’ parameters are taken to be
functions of the mean asset sizes. We obtain that the best fit is achieved
when using the geometric Ornstein-Uhlenbeck process to model banks’ de-
posits and assets.
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1. Introduction

Stochastic models for default timing have developed into two different
directions: the structural approach and the reduced form approach. The struc-
tural approach models the default as the first time when an underlying process,
following a continuous path, falls below liability. For example, the models of
Black and Scholes [3] or Merton [11] take the underlying process to be a geo-
metric Brownian motion.

In this paper we assume that banks’ deposits follow a continuous path
and assets are constant. We extend the model proposed by Chen and Mazum-
dar in [9] where one bank is characterized by its asset size and its demand
deposits that evolve as a Brownian motion with drift. In [9], the dependence
of the deposits on the asset size is theoretically modeled as a monotone func-
tion, based on interpretations of the previous results on banks’ risk-averseness,
information-asymmetry and deposit-taking costs from [1], [2], [10], [12].
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We model the link between assets and deposits from ‘scratch’, by cali-
brating the deposits to the data and applying a regression between deposits’
parameters and assets. We obtain a realistic model for deposits’ parameters
as functions of asset sizes, extending the results from [5].

Our findings can be used to model and simulate an economy with many
banks characterized by assets and deposits, as in [7], [8] and [4]. Policy makers
can use such models to test the impact of a particular policy on a simulated
system, before its implementation in the real market. Such an artificial market
can be created, for instance, starting from the empirical investigations on the
banks’ asset sizes from [6] and simulating deposits that evolve according to the
formulas obtained in this paper.

Our contributions are the following. We analyze the relation between
demand deposits and assets for 1221 U.S. banks that report non-zero deposits
and assets for a period of 10 years. In the current American fractional reserve
requirement regime, banks are required to keep 10% of their demand deposits
in an account with the Federal Reserve Bank. We find that the ratio between
banks’ mean demand deposits and mean asset sizes oscillates around 0.1, for
all the banks in our data set. The calibration of the banks’ demand deposits
to a (geometric) Brownian motion shows that most of the banks have positive
deposit drifts, which increase as the asset size increases. However, 75 (and 96)
banks out of 1221 present negative deposit drifts when deposits are calibrated
to Brownian motions and geometric Brownian motions, respectively. We also
calibrate deposits to Ornstein-Uhlenbeck and geometric Ornstein-Uhlenbeck
processes. Normality tests show that the best fit is given by the geometric
Ornstein-Uhlenbeck process. We propose four models for an economy with
banks that are characterized by deposits and assets, by using the equations
of the regression lines applied on the banks’ estimated deposit parameters vs.
mean asset sizes. Therefore, the models are closely linked to the real data.

The article is structured as follows. Section 2 presents the general model
for the evolution of the demand deposit process and the dependence on the
asset size. Section 3 describes the data and presents preliminary data mining
results on the relation between the mean deposits and the mean asset sizes as
a regression over all the banks. Section 4 presents the results of the goodness
of fit tests when we compare four models: (geometric) Brownian motion and
(geometric) Ornstein-Uhlenbeck process. Section 5 investigates the relation
between the estimated deposit parameters and the corresponding asset sizes.
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2. The general model

We consider an economy with N banks. The probability space is one
which allows N independent standard Brownian motions (Bj);>o, ¢ = 1, N:

(Hizl,NQi, Hi:l,NFi7 P)

Each bank 7 is characterized by a constant asset size A* and by a diffusion
process that models its demand deposits over time (D});> :

dD; = (A, (D})o<s<e)dt + o (A, (Dy)o<s<)dB.

3. Data mining on asset sizes vs. demand deposits

In this section we present the data and the direct connection between
mean asset sizes and mean demand deposits. We obtain that the ratio between
mean deposits and mean asset sizes oscillates close to 0.1 for all banks in our
sample (10% being also the reserve requirement percent). We also represent
the mean assets and the mean deposits for all banks on a logarithmic scale
and provide the equation of the regression line.

Our data is obtained from WRDS (Wharton Research Data Services).

For each commercial bank in the United States we used RC'F D2170 (to-
tal asset sizes) and RCON2210 (demand deposit amounts- net of withdrawals)
on the last business day of each quarter between March 1991 and December
2000. The total number of banks is 1221. We included in our data set only
the banks which had recorded non-zero total asset size and demand deposit
amount, for all 40 quarters between 1991 and 2000.

Our first attempt in studying the connection between deposits and asset
sizes is to calculate, for each of the N = 1221 banks, a ratio between the mean
value of its deposits and the mean value of its assets, over the 40 quarters. We
denote the mean asset sizes (over 40 quarters) of the NV banks in our data set
as constants A!, A% ..., AN Similarly, we denote the mean demand deposits
(over 40 quarters) of the N banks in our data set as constants D', D? ..., DV.

In figure 1 we represent the 1221 banks on the z-scale and the corre-
sponding ratios Z: (i.e. deposits/ assets) on the y-scale. It shows that the
ratio deposits/ asset sizes tends to be very close to 0.1, which is probably re-
lated to the reserve requirement percent ¢ = 10%. Figure 1 also presents a
plot of the residuals, which appear randomly scattered around zero. Therefore
the regression line gives a satisfactory fit to the data, allowing us to make the
following approximation of the value of mean deposits as a function of mean
asset sizes:

D =0.1A.

Figure 2 represents the mean asset sizes (Ai)izl, ~ versus the mean de-
posits (D");—1n , on a log-log scale. The regression line give the following
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1221 banks vs.mean ratios deposits/asset sizes, over 40 guarters
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4. Modeling and calibrating demand deposits

We model and calibrate the demand deposit process as a Brownian mo-
tion with drift, a geometric Brownian motion, an Ornstein-Uhlenbeck process
and a geometric Ornstein-Uhlenbeck process. The probability space is rich
enough to allow N independent standard Brownian motions (Bj})i>o, ¢ = 1, N,
as in section 2. The question is which model fits the demand deposits best?
First we calibrate the data to each model and then we test the goodness-of-fit.

4.1. Calibration

We present the formulas used for the calibration of the demand deposits
in each model. For more insight on the discussed models we refer to [13]. Let
(Dy); be the demand deposit process for an arbitrary bank and (B;);>0 be a
standard Brownian motion. Our data consists of m = 40 time-records of de-
mand deposit amounts for each of the 1221 banks: (D} )i=1,n;tejomt, <to<...<tm=T]-
We consider that demand deposits are recorded at m equidistant moments of
time, i.e. t; —t;_1 =6, for all j = 2, m. Consequently, t,, —t; = (m — 1)d.

4.1.1. Demand deposits as Brownian motions with drifts. We consider that
(Dy)>0 follows a Brownian motion (BM) with drift ¢ and volatility ¢ > 0:

Dt = /,l/t + O'Bt.
We consider the following estimates for the drift and for the volatility:
~ Dy, —Dy a9 Em (Di;=Di; 1)*> 1 (Diy—Di))?
- tm—t1 _ =2 tm—11 m—1 tm—1t1 2' )
One can check that E[ji] = p and Var[i] = 7. E[6°] = 0° — ;7.

4.1.2. Demand deposits calibrated as geometric Brownian motions. We con-
sider that (D;); follows a geometric Brownian motion (GB) with drift © and
volatility o > 0, i.e. D; = Dye* 7Bt where Dy > 0.
Then (D;)s~o must satisfy the following stochastic equation (easy to prove
using Ito’s lemma):
dD; = pDydt + 0 D,dB;.
Since demand deposits are recorded at m equidistant moments of time, a

In(Dt,,)—In(Dz,)

unbiased drift estimator is: i = i

A good volatility estimator is
o m (In(Dyy)—In(Dy;_y))? 1 (In(Diy,)—In(Dry))?
7= Zj=2 ]tm—tl : T om—1 tm—t1 .

o2

tm—1t1

Similarly as in the Brownian motion case, we have that: Var(i) =

and E[6? = 0% — W‘il

4.1.3. Demand deposits calibrated as Ornstein- Uhlenbeck processes. We as-
sume that the demand deposit process (D;);>o follows an Ornstein-Uhlenbeck
process (OU), i.e.

th = Q(M — Dt)dt + O'dBt,
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where 8 > 0 is the mean reversion rate, p is the mean, and ¢ > 0 is the
volatility.
We obtain that ED; = Doe ™% + u(1 —e=%) and Var(D;) = g—;.
The parameter estimators can be found using a least square regression:
—65 —65 1—e 2%
Dy =Dy e +pu(l—e)+o TN(OJ) =aDy,_, +b+ce

We denoted: €¢; = Ng1) i.i.d. standard normal random variables,

§=tj—t;_y, forallj=2m;a=e%b=p(l—e?)andc=0y/ 1_62;265.

Then the model parameters are given by:

__ __Ina _ _b _ —2lna
0= s o H=140=C¢C 5(1—a?)"

4.1.4. Demand deposits calibrated as geometric Ornstein-Uhlenbeck processes.
The stochastic process (D;);>¢ is a geometric Ornstein-Uhlenbeck process (GOU)
if
d(In(Dy)) = (. — In(Dy))dt + odBy,

where 6 > 0 is the mean reversion rate, p is the mean, and ¢ > 0 is the
volatility.

The parameter estimators can be found similarly as in the OU case, using
a least square regression: In(Dy,) = aln(Dy,_,) + b + ce.

€’s represent i.i.d standard normal random variables.

4.2. Goodness of fit tests

We compare the goodness of fit of four models for the demand deposit
process (Brownian motion with drift, geometric Brownian motion, Ornstein-
Uhlenbeck process, and geometric Ornstein-Uhlenbeck process). We use the
Shapiro-Wilk test, known to be the most relevant for small samples. In [5] these
models (with the exception of the geometric Ornstein-Uhlenbeck process) were
tested on the same data using the Kolmogorov-Smirnoff test. However, as we
present in section 4.2.1, the Shapiro test turns to be more appropriate for
our data. We compare the results given by the Kolmogorov-Smirnoff test and
the Shapiro test for all the four models. We obtain that the most adequate
model among the proposed ones is the geometric Ornstein-Uhlenbeck process.
Furthermore, our results show that there are banks for which deposits present
negative drifts, signalizing a decreasing tendency in deposits.

We proceed by giving a quick presentation on the normality tests and on
their power for our data set. The normality of a variable can be verified by
the Shapiro-Wilk test (known as the best for small samples), the Kolmogorov-
Smirnoff test (the most general), the Lilliefors test or the Anderson-Darling
test [14]. It is relatively simple to apply these tests since they are implemented
as functions in matlab (kstest, lillietest) and especially in R:

ks.test, lillie.test, shapiro.test, ad.test, com.test.
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However, one should be cautious when applying these normality tests, it
is possible that the failure to reject the null hypothesis to have been caused
by an inadequate sample size. We need to compute, before proceeding to the
data analysis, a power calculation that confirms that the sample size in that
study was adequate for detecting a relevant difference.

4.2.1. The power of the tests. By definition, the power of the test is 1—/, where
{is the type II error (i.e. the probability of non-rejecting a false null hypothesis
Hy). Tt is known that this error decreases as the sample size increases [14].

We perform the following experiments in order to find the necessary
sample size. We generate samples from a non-Gaussian distribution and we
apply normality tests to test the hypothesis that the simulated data follows
a normal distribution. We estimate the type II error rate by repeating the
experiment 10,000 times and computing a mean of the 10,000 p-values.

Nearly all the normality tests listed in the package nortest from R give a
mean p-value < .05 for a sample size of n = 20, when simulating samples from
a Cauchy distribution. Both the Anderson test and the Shapiro test do better
than Lilliefors test, but the difference is small. However, when we use the
normality tests to distinguish the difference between samples generated from
a t-distribution ¢(10), and the standard normal distribution, the power of the
tests is very low. The Shapiro test does a lot better than the other methods
implemented in the nortest package. Lilliefors test is the worst.

Therefore, when testing two hypotheses that are close to each other (in
our case, BM/ GBM/ OU/ GOU) on a data that has 40 points (covering 10
years), the statistical evidence might be weak and inconclusive. However, if
we get a larger data set, it will cover many regime changes. It would be risky
to assume that the same model would hold for such a long period of time.

4.2.2. Results of goodness-of-fit tests. We have 1221 banks and 40 data points
for each bank. Suppose that we have an i.i.d. sample Dy, ..., Dy with some
unknown distribution P and we would like to test the hypothesis that P is equal
to a particular distribution Py, i.e. decide between the following hypotheses:
H()ZP:PQ, Hlip%PQ.

Comparing the number of p-values that are < .05 when we apply the
normality tests, we deduce that the best fit is given by the geometric Ornstein
Uhlenbeck. The number of banks (out of 1221) for which the 39-data-points
do not fit the Brownian motion, the Ornstein-Uhlenbeck (OU) process, the
geometric Brownian motion, or geometric OU process are given in table 1.

Test BM OU GBM GOU

KS 132 93 72 38

Shapiro 702 523 523 324
TABLE 1. The number of banks (out of 1221 banks) for which
the goodness-of-fit tests reject the null hypothesis
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Because the Shapiro test is the most powerful, the numbers are a lot
higher than those from the experiment using the Kolmogorov-Smirnov (KS)
test. The result is clear: the GOU beats the other models and the BM is the
worst fit.

5. Estimated deposit drifts and volatilities vs. asset sizes

In this section we study the connection between the parameters of the
fitted models and the corresponding mean asset sizes. We provide the formulas
for the regression line representing the estimated parameters vs. the mean asset
size, across all the banks.

5.1. Estimated BM deposits parameters vs. asset sizes

Assuming the aggregate demand deposit of each bank follows a Brownian
motion with drift (i.e. dD; = udt + odBy;), we obtain the estimated p and o
according to the formulas presented in section 4.1.1. It turns out that there
are 75 banks which have negative drifts and 1146 banks with strictly positive
drifts.

hean asset sizes ws. positive estimated drifts, log-log scale, 1146 banks

data 1
linear

loglestimated positive drifts )

1
10 12 14 16 18 20
residuals
1D T T T T T
Linear: norm of residuals = 31,9233

FIGURE 3. Mean asset sizes vs. estimated positive deposit drifts
on a log-log scale (BM)

Figure 3 represents the mean asset sizes (A) vs. corresponding estimated
drifts (f1) , on a log-log scale, for all the 1146 banks which have positive deposit
drifts. The regression line gives an approximation for the positive drifts with
respect to the asset sizes: i = Ae %5, The norm of the residuals (sum of the
errors) is 31.
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Figure 4 displays the mean asset sizes of the 75 banks which have nega-
tive deposit drifts vs. the opposites of the negative drifts, on a log-log scale.
The coordinates of the regression line give a rough approximation of the neg-
ative drifts in terms of the mean asset sizes: i = —A'e™®% The norm of
the residuals is 14. Figure 5 represents the estimated volatilities (&) with re-
spect to the mean asset sizes. The coordinates of the regression line give an
approximation of the dependency of the volatilities on the mean asset sizes:
02 = A8¢767. The norm of the residuals is 41.

5.2. Estimated GBM/OU/GOU deposit parameters vs. assets

The procedure for the geometric Brownian motion case (D; = DyettTo5t)
is similar to the BM case. In figure 6 the mean asset sizes A for all banks in
economy are represented versus the estimated GBM demand deposit drifts (/).
The parameters are estimated according to the formulas from section 4.1.2.
There are 96 banks which have negative drifts (out of the 1221 banks in our
data set). The regression line gives an approximation for the drifts with respect
to the natural logarithms of the mean asset sizes: i = 0.00331og(A) — 0.011.
The norm of the residuals is 1.2.

logiA) vs. Estimated drifts for deposits modeled as geom.Br.motion
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FIGURE 6. In(mean asset sizes) vs. estimated GBM deposit drifts

In order to represent the asset sizes versus drifts on a log-log scale, we
consider two disjoint sets of banks: the first set with the 1125 banks which
have strictly positive GBM drifts and the second set with the 96 banks which
have negative GBM drifts.

Table 2 displays the equations of the regression lines for the BM case and
the GBM case. Table 3 displays the regression lines for the estimated deposit
means and volatilities vs. asset sizes in the Ornstein-Uhlenbeck (OU) case and
the geometric OU case (sections 4.1.3 and 4.1.4).
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Figure 7 represents the mean asset sizes of the banks vs. corresponding
mean reversion rates, on a log-log scale, in the GOU case.

Deposit model BM GBM

Pos. p vs.A(residuals) = Ae %5(31)

Neg. p vs.A(residuals) fi = —A1'16_8'9(14) f = —A%Pe=81(13)

p vs.A(residuals) = 0.00331n(A) — 0.011(1.2)
52

o vs.A(residuals) 62 = AlBe707(41) = A0062,—16(33)
No. neg. drifts 75 96
TABLE 2. The regression lines between the estimated parame-
ters of deposits(fitted as BM, GBM) and the mean asset sizes

Deposit model oU GOU

Pos. p1 vs. A (residuals) = A%e7083(32) [ = AV0S8L2(7)
Neg. p vs. A (residuals) j = —A%9%e709(18) /l —AY 296_8'1(13
o vs. A (residuals) 52 = A%91e73(23) 62 = AD0221(20)
Number neg. drifts 89 6

TABLE 3. The regression lines between the estimated parame-
ters of deposits fitted as OU/ GOU and the mean asset sizes

logia) vs. log(8), GOU case
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FIGURE 7. Mean asset sizes vs. estimated mean reversion rates
for the demand deposit processes, log-log scale, GOU case
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6. Conclusions

In this paper, we analyze the relation between banks’ demand deposits
and assets. We use quarterly data (covering 10 years) for 1221 U.S. banks.
We obtain that the ratio between banks’ mean demand deposits and mean
asset sizes oscillates very close to 0.1, the reserve requirement percent. By
calibrating banks’ demand deposit to a Brownian motion, we find that most
of the banks in our data set have positive deposit drifts. However, 75 and 96
banks out of 1221 are found to have negative deposit drifts when deposits are
calibrated to Brownian motions and geometric Brownian motions, respectively.
We provide the equations of the regression lines given by the banks’ estimated
deposit parameters vs. mean asset sizes. Such equations can be used for the
simulation and the forecasting of a large banking system. We also calibrate
deposits for Ornstein-Uhlenbeck (OU) and geometric OU processes. From the
goodness-of-fit tests we obtain that the best fit for the deposits, among the
proposed ones, is given by the geometric Ornstein-Uhlenbeck process. Future
work might involve the adaptation of these models to biostatistics or biology.
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