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NUMERICAL SOLUTION FOR THE TIME-SPACE
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY
USING THE WAVELET MULTI-SCALE METHOD

H. AMINIKHAH!, M. TAHMASEBI?, M. MOHAMMADI ROOZBAHANI®

In this paper, a practical method for numerical solutions of the time-space
fractional partial differential equations (FPDES) is presented. The wavelet method
based on multiple resolutions is used to solve the FPDE. This method transforms the
given FPDE and the boundary conditions to matrix equations with unknown wavelet
coefficients which can be solved by a sequential evaluation of two systems, with
significantly less computational effort. Theoretical considerations are discussed. For
illustration the accuracy and efficiently of the method some numerical examples are
presented

Keywords: Fractional diffusion equation; Wavelet numerical method; Multi
resolutions Method; Fractional differential equations.

1. Introduction

There is a vast literature on efficient methods for fractional partial
differential equations. These equations are important as they arise naturally in
many applied areas [1-4, 8, 11, 15, 17, 18-20]. Almost all methods of solving
FPDEs are the generalizations of the same strategies for the solutions of PDEs.
Multiscale wavelet method for the solution of PDEs are used in many works [6,
10, 14, 16, 22]. Also Mclaren et. al. handled multiscaling collocation method in
different way [13]. Their method keeps the different levels of resolution consistent
with each other which has a property similar to domain decomposition methods.
In the present work, we are interested to combine Adams fractional and the
multiscale techniques to solve the fractional partial differential equations
efficiently. The main objective of the present work is to extended the multiscaling
collocation method in [13] for FPDE. We intend to consider a kind of
“generalized diffusion” equation which is referred to the space-time FDE with
Robin condition boundary,
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1)

N
where L=>"f,(.)D; , and f, (x)are sufficiently well behaved functions on Q and
k=0

the operator Dy is Caputo fractional derivative of order « defined by [15]

X m+1

)_([(X—T)ma%lz(r)dr, 2

r(m+l-a
where m<a<m+1,mell .

In this approach, we utilize cubic B-spline wavelets which are symmetric,
compactly supported and smooth enough. The paper is organized as follows:

In section 2 the basic definitions and required properties of the wavelets
are Dbriefly mentioned. In section 3 the fractional derivative matrix was
approximated by collocation method. In section 4 the wavelets and scaling
functions were reshaped to satisfy the boundary conditions exactly. In section 5
we employ the fractional Adams method for time discretization FPDE, then by the
operational matrices we convert the FPDE to a linear system. Finally, by multi-
resolution method in some subdomains this system divides to some smaller
systems which each of them has different resolution and less computation than the
primary system, then by combining the solutions of these systems, we derive an
approximation of the true solution with less computation. In section 6, the stability
of the method is investigated. In section 7 numerical examples are given to
demonstrate the validity of the proposed method.

D F(x)=

2. Wavelet analysis Preliminaries and notations

In this section, we present some notations, definitions and preliminary
facts of the wavelet theory which will be used further in this work. The discrete
wavelets constitute a family of functions constructed from dilation and translation

of a function called the mother wavelety (x) . They are defined by

l//jyk(x)=2%y/(2’jx—k). 3)
The best way to understand wavelets is through a multi-resolution analysis [5].
Given a function f(x)eL,(0), a multi-resolution analysis (MRA) of L,(0)
produces a sequence of subspaces V, c---cV, <V, c---such that the projections
of f onto these spaces give finer approximations of the function f asj——o.
There exists ¢ eV, such that ¢(x—k),kel] is a Riesz basis in V,. The function ¢
is called the scaling function. As a consequence of above definition, V, is spanned
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by ¢jvk(x)=27%¢(2*jx—k). One may construct wavelets by first completing the
spaces V, to the spaceV, , by the space W,, i.e., V, , =V, ®W,. In such away there
exists a function y such that W, is spanned by W(Z“'x—k). The space W; include
all the functions in vV, that are orthogonal to all those in v, under L, (0 )-inner
product. The set of functions which form a basis for the space W; are called

wavelets [3, 4]. For the inclusion V, <V, and W, cV_, there are two important
identities:
=2>"hp(2t k), w(t) =2 g.p(2t k). 4
k k
For more details, refer to [5].

Definition (Biorthogonal wavelets): Two functions w,7elL,(0) are
called biorthogonal wavelets if each of the sets {y, :j.k <D} and {7, :j.k e} be
a Riesz basis of L, () and they are biorthogonal to each other in the following
sense

(Vi) =016, Torall jkImell .

Designing biorthogonal wavelets allows more freedom than orthogonal wavelets.
One of them is the possibility of constructing symmetric wavelet functions. Since
they define a multi resolution analysis, the dual functions must satisfy

thﬁ (2x—k) and ¥ (x ng $(2x—k). (5)

In this work we will use biorthogonal wavelets whose scaling functions are the
cubic B-splines:

13 (4
08,0 = 33 1 (0 (- ©)
k=0
. [ X x>0,
where x! =
{0 x<0.
The fractional derivative of cubic B-spline B,(x) is given in [11]:
1 4 4 k 3-a
DyB = -1 -k) . 7
{8, ()~ i a0 (K0 0

2.1. Fast Wavelet Transform (FWT)
From V,, =V, ®W,, every function v, , eV, can be written uniquely as

the sum of a function v, €V, and a function w, eW,. Then there exist some
coefficients such that
Vi =V;(X)+w; (),

;aj—l,kgoj—l,k ) z jk¢jk )"‘Zk:bj,k(”j,k(x)- ®)
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In other words, we have two representations of the function v, , one as an
element in V, ; and associated with the sequence{aj_l,k}, and another as a sum of

elements in V;and W, associated with the sequences {a;,} and {b, }. The

following relations show how to pass between these representations. From (5) and
(8) and biorthogonal property of wavelets,

aj :Zﬁiaj—l,2k+i’ (9)

and
bj,k = Z giaj—1,2k+i . (10)

These formulas define the FWT, let a_,, a; and b, be vectors which contain
coefficients {a, ,, }, {a;,} and {b;,} respectively, then the FWT maps the vector

a,, onto vectors a; and b, :

- |a
FWT [ajl]zlb_j.
For numerical purposes we have to reverse the process to define Inverse fast
wavelet transform (IFWT). To do this, taking the inner product of each side of (8)

with ¢, ,,, we derive
a1k zzhk—Zn a;, +zgk—2I b, (11)
n |

so we can define IFWT as following:

.FWTH{@.

i
3. Matrix approximations

In this work we need operational matrix M“ to approximate Dy on V,

where 0<a<1. We will use a collocation based method to calculate them. First
we want to approximate any function of L,(C )as finite series of wavelets and

scaling functions. For a fixed j<0, we use V,as a basic space, we add extra
spaces W, for increasing the resolution. Let f‘ , denote the projection f eL,(0)

onto V,. From V,, =V, ®W, we have

N+1 2N+1

f\vH (X) = iZi:bji(bj,i (X)+iZ:1:aji‘//j,i (X) = IZ:; aj—lil//jfl,i (X)! (12)
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where b, =(f.¢,), a,=(f.7;) and a ,=(f.7 ). Since we use compact
support wavelet basis, so this property guarantees that in the bounded domain
Q the sum only contains finitely nonzero terms. Thus the function f‘ in the

V; OWj
: a .
bounded domain Q can be expressed as a vector F = {b} what we will usually call

“the vector form of f ", the vector a contains all coefficients {a;,} and b

\ V| OW;j
contains all coefficients{ijk}. If F was restricted to subdomain A then only
coefficients must be considered whose functions¢,; and v have support in A,

A

. a
we represent it by symbol F, :[b

A

] Let P, be the cubic matrix which converts

F the vector form of f,_ into d the vector whose elements are values of f in

Vi
X =k2', 0<k<N. Then we have P,F=d. Also, we construct the matrix

P“which converts F the vector form of f  into d, the vector whose elements

v,
are values of D f(x) in x =k2', 0<k<N. Then we have P F =d,,.

Since the basic form of the function f is in the space Vv, ®W,so we need
the FWT and IFWT for transforming the vectors from the space V, , to the space

V; ®W, and vice versa. This content is expressed in the following diagram:
V; ®W;: Zajk¢jk +Zdjk‘//jk M > ijflk¢jk +zcj—1kV/jk
k k k k

IFWT ¢ FWT T
j—l: Zaj—l,k¢j—l,k ij—l,k¢i—l,k
k k

-1
P Ya,, D (x) U (P)
k
This diagram shows that we can make the fractional derivative matrix as
following
M“ = FWT x(P

j-1

)’l X P x IFWT. (13)

In this method we need to decompose the matrix M*into some blocks such that
the partitions of the matrix M must be compatible with the partition of the vector

2
M[ZHQ EMZHQZ igﬂ (14)
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e . a :
In addition, if we use the restricted vector F, {bA} , then the matrix M“ must be

A

adapted with the size of F, , we denote by My .
a A B, |l a Aa, +B,b
Ma A — A A A — ATA ATA )
l-le aln]-lenron] a9

3.1. Advection matrix
One further requirement is the multiplication by the space independent
function g(x). We create the linear operator G to approximate the multiplication.

FWT x(P,) “xG x P, x IFWT, (16)

G is a diagonal matrix with the values of function g in x =k2’, 0<k<N.
In the general case, we can represent the operator L= f, (.)Dg*in the
k

following matrix form.
M =3 FWT x(P,) " x F x P x IFWT x FWT x (P, )" x P x IFWT
k
4 (17)
=Y FWT x(P,) x F x P x IFWT,
k

where F, is a diagonal matrix with the values of function f, in some locations.

4. Boundary conditions

In this section we reshape the wavelets and the scaling functions in V,

whose their support contains x=0(x=n), in such a way that they satisfy in the

boundary conditions (1), rest are zero at these points. For example in x=0 only
three cubic B-spline functions are nonzero, we can make the reshaped scaling
function in x=0 by combining these functions:

$(x)=2ag, ,(x)+bg, ,(x)+cg; (). (18)
The function ¢ must satisfy the boundary conditions, also Lg¢(x) must be
consistent with these reshaped functions in the boundary conditions, so we have

{cl¢(0)+ c,¢'(0)=c,,
¢,Lg(0)+c,Lg'(0)=c;,,
the coefficients a, band d are obtained from the above system equations.

(19)
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5. The proposed method

We consider the fractional Adams method for solving FPDE (1), This
method was first studied by Diethelm, Ford and Freed [7]. Their method for
solving equation (20) is as follows:

Dﬂy( )=f(t y(t), ¥(0)=y,, 0<B<L, (20)
yn+1 (ch n+1 tk ! yk n+1 n+1 ( n+1? yn+1 )j’ (21)
where
nﬂ*l—(n—,B)(n+1)ﬂ, k=0,
Conn =1(n—k+2)"" +(n=k)"" =2(n-k+1)"", 1<k<n, (22)
1, k=n+1

and h:%, t, =kh:k=0L. N}, y, ~y(t,).

Let u, denote the exact solution u(.t,) and U, denote approximation

solution of it. So approximation solution for the time space-fractional diffusion
equation (1) by using the fractional Adam's method would be

n

l]nJrl = l]0 (;i 2) {ch n+1Luk + LU } (23)

Now we can take the space V _, to approximate the solution of equation (23). If
k
we consider the vector form {Zk} of u(xzt,)in V,®W,, Then from (23) and the

definition of M we have

o [ M o S N

We use the multiscaling method to solve thls system to avoid growing our
calculations and has more accurate solution in the subdomain A . This means that
once we solve the system in a space V; and domain Q. Once again we solve the

system in a finer space V,, and subdomain A . Combination of these two systems

makes suitable accuracy and the less calculations than the solutions of the system
in the space V,, on domain Q. In the beginning we consider the matrix M in the

space V,_,, since in the first step we will not be using all of M so we decompose

) ) A B
the matrix M into some blocks M {C D}'
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We only consider the block Awhich operates as the operator L in the
space V; over all domainQ. Then using time stepping scheme (23) we find an

approximation for a"* which we denote by aTm

hﬂ Tm _
(I_WA}I =a’ ,b’+2 chmlAa (25)

Next, we are looking for vector correction where a"* =a™ +a“ . What we want
now is to solve the system on Ain the V . Consider the fractional Adam's

method for this case

(rale o] ol el Bl]

Since a)" =a," +a{" thus

e EMZ?L} S

a’ n A B] |a
__b0:|A ﬁ+2 Z kn+l|: :| |:bk:|/\’

| % A B a“
r(g+2)|C D N p"t .
|:0 :| h’ﬁ zck,mlek
=l .
b A (ﬂ+2 (a +2Ck n+1 j-’-DZCk,m—lbk
k=0

(27)

then

(28)

A

n+l
The vector {Zm} is obtained by solving the above system. The last step is
A

Tm
increase the accuracy of the approximated vector [Z } . We construct the vector
Q

n+l

n+l Tm
[a } by replacing the elements of [g } by the elements of EM} , the only
Q Q A

n+l

ones that are related to subdomain A . This completes the method.
Now, we present the algorithm of the proposed method. In this algorithm
j, h and g are resolution level, time step and initial function respectively. If the

vector a=[ay,a,....,a, ]T be the vector form of a function in V; then we suppose

the restricted vector a, is [a,,....a,,,] .
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5.1. Algorithm:
1. V<[00, 0oy | Where N=m2’ and g, =g(k2') k=0,...,2N
2. L{j <« FWT x PJ.’1 XV
3. Constructing matrix M by using (17)
. . A B
4. Blocking the matrix M {C D} where A<M (1:N+L1:N+1),

B« M(1:N+1N+1:2N +1) and so on for C and D
A, B
5. MA{ noA
CA DA
A, < A(r:s+Lr:s+1), B, < B(r:s+1r:s) andsoon for C,and D,
6. For n=0 to k do

;- NS

} Limiting M to subdomain A, where

a, <a(r:s+1) , b, «b(r:s)
. Solve the system (25) to get vector a™
10. a,"«<a™(r:s+1)
Cr
11. Solve the system (28) to get vector [z" }
A
12. a, <-ay +a,",
Tm
13. aTm(r:s+1)<—aA,b(r:s)<—bA,v<—{z }
14. End for

6. Stability

In order to show stability of the approximate solution, we recall discrete
Gronwall lemma.

Lemma (Discrete Gronwall Lemma): If {y,}, {f,},and {g,} are nonnegative
sequences and
y.<f,+ > gy forn=0, (29)

0<k<n

then
Vo< o+ D) fkgkexp[ > gi] for n>0. (30)

0<k<n k<i<n

If, in addition, {f} is nondecreasing then
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y, <f exp( > giJ for n>0. (31)

0<i<n

Now, let G denote the approximation solution of equation (23), and U, be the
vector form of a, in the v, and Un=[0(%,.t,),0(%.t, )., 0(Xy.t,)]  where
x, =k2!, 0<k <N . Since P,U,=U,, from equation (23) we have

g e h (L o e
P Ui =P "Uo +WE;(;CKMMPJ. 'Uk +MP*U 1J (32)
B
Choosing h small enough that h ||M||<1<1 guarantees nonsingularity of
r(+2) 2
. h”?
the matrix | - M , then
Ir(B+2)
5 -1
| - h M < L <2,
L(p+2) h’?
therefore, we have
_ s N _
o Y A e VR RS [V
r(B+2)
4 (33)
PG Y PR YR ISty Zn:c U
r(g+2)| ' T(p+2) R P
-1
. h? T
Since || I - M| [|<2 and h=—, we have
r(5+2) N
B
; 14w .
[Oral <R R 0]+ 55 R IR M 2 a0 @)
By applying Gronwall's inequality, we obtain
o s e .7 352 | (35)
k=0 Nﬂ
_ p+1 _ p+1 _ L+l
since Ck'”*lz(n k+2) +(n k) _2(n k+1) sg is bounded and
N7 N” N7 N” N

increasing function with respect to g so we have
\U ast quU o”exp(czTﬂz), (36)
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where C, =2|R,[|P*| and C, =4—22)||Pj [P [IM] , this completes the proof of

r(p

stability.
7. Numerical Examples

Example 7.1. We consider the following time space fractional differential
equation
D/u(x,t)=Dfu(x,t),
the initial condition and the boundary conditions are as follows:

u(Lt)=u(20,t)=0,0<t <2, u(x,0)= eXp{l_(X_z)z
0, otherwise.

For comparison, the example 1 was solved numerically in different levels of
resolutions. Table 1 shows the convergence when j decreases, also the Figure 1
shows in different times the approximated results satisfy the boundary conditions
exactly.

Table 1. The errors are the difference between the V; results and The V, , results (V;/V,, )

with h=0.01 at t=0.5.

, 3<x<4,

a=£=09

X V,IV, V, IV V. IV, VIV, V., IV, solution on V4
1.5 0.0030298 -0.000261 -6.163E-6 -3.025E-7 -1.516E-8 3.5574E-7

2 0.0007083 7.9038E-6 8.4961E-7 9.6163E-8 1.0941E-8 0.11612065
25 0.000198 -9.662E-6 1.9387E-9 -1.41E-9 7.848E-11 0.28671766

3 0.000521 -1.194E-5 -3.205E-7 -1.114E-8 4.754E-10  0.29474804
3.5 -0.000733 -0.000135 -1.081E-5 -8.237E-7 -6.865E-8 0.10448197
a=[=07

X V,IV, V, IV, VIV, VIV, V., IV, solution on V4
15 -3.29E-6 -2.831E-7 -1.968E-9 -6.91E-11 8.928E-12 2.3211E-9

2 0.0002645 1.4228E-6 -2.444E-7 -6.756E-9 -7.375E-10  0.00223121
25 0.0002652 3.0337E-6 -2.905E-7 -2.917E-9 -2.156E-10 0.03290537

3 0.0002006 3.0142E-6 -1.995E-7 -1.829E-10 1.453E-10  0.08704351
3.5 0.0001583 3.6176E-6 3.9999E-9 1.5924E-8 2.7148E-9 0.12114837



186 H. Aminikhah, M. Tahmasebi, M. Mohammadi Roozbahani

0.4

0.35F

0.3

0.25F

0.2

0151

01

approximated results

0.05+

0

0.0 I I L 1 I I 1 I I
1 2 3 4 5 6 7 8 9 10 11

Fig. 1. This figure shows approximated soxlution in different times in example 1
Example 7.2.we consider the following fractional equation:
Dfu(x,t) =;;):2u(x,t)—u(x,t)
The initial condition and the boundary conditions are as follows:
u(x,0)=B,(x—3)+2B,(x—3)+B,(x—-3)-B,(x—-3)-2B,(x-3)-B,(x-3), 1<x<11l
{u(l,t):u(ll,t)zo, 0<t<1

The example was solved by presented multi-scaled method with vV ,on Q and

V,on A. The figure 2 and table 2 show that the accuracy can be improved by
enlarging subdomain.

Table 2.
The errors are the difference between the multi-scale results and The results obtained using

V., , with h=0.01 at t=0.5.

X 2.5 45 55 7.5 8.5 105

error A =[4,8] -2.0330E-6 4.3833E-7 -2.2797E-7 2.1657E-7 | -2.1980E-6 1.0790E-6

error A=[2,10] | -4.4215E-8 8.7666E-8 -4.5595E-8 4.3315E-8 | -8.7919E-8 | 2.1579E-7

solutionon V, | 0.07538483 | 144352103 | 119066365 | -0.6054038 | -L4118151 | -0.3922880

x10° A=[4,8] x10° A=[2,10]

error at t=0.5
error at t=0.5

2 4 6 8 10
X
Fig. 2. This figure compare the errors of the presented method in different subdomains.
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8. Conclusions

In this work a practical approach for solving time space fractional partial
differential equation is presented. Multi scaling method via wavelets is used to
increase resolution in some locations, furthermore the computations are reduced
because of the compact support of wavelets, and also wavelets are employed in
such a way that they satisfy the boundary conditions exactly. The method can be
extended to nonlinear FPDEs that is now under progress.
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