U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 2, 2025 ISSN 2286-3540

INTEGRATING KEYCLOAK SSO WITH ATYPICAL
CLIENTS

Darius Mihai®, Vlad Nastase?, Elena Mihiilescu?,
Mihai Carabas?, Sergiu Weisz®, Nicolae Tapus®

Authentication protocols like OpenID Connect and SAML are pervasive
throughout the internet, allowing users to validate their identity to services
without presenting their credentials on every visited website. Configuring
authentication for a service is usually just a matter of configuring a 1-1
relationship between a client in the single sign-on service and the application
that requires authentication, and exchanging a set of standard attributes is
enough. However, there are some cases when more specific requirements
must be addressed. This paper presents a few such cases, and some pointers
for how they can be handled.

Keywords: Keycloak, single sign-on, integration, Microsoft AAD, eduGAIN

1. Introduction

Single sign-on [1][2][3] (abbreviated as SSO) services and centralised au-
thentication protocols are commonly used by organisations that desire to bol-
ster their security and unify the authentication process across their services.
By delegating user authentication to a dedicated service, developers are able
to reduce the implementation complexity of applications (e.g., they no longer
have to store and secure user passwords), improve the user experience (i.e.,
users can authenticate once on the SSO service, and subsequent logins reuse
the same session), as well as provide access to users from outside their organ-
isations (i.e., through federation protocols).

'PhD student, Computer Science Department, National University of Science and Tech-
nology POLITEHNICA Bucharest, Romania, e-mail: darius.mihai®@upb.ro

2PhD student, Computer Science Department, National University of Science and Tech-
nology POLITEHNICA Bucharest, Romania, e-mail: vlad_iulius.nastase@upb.ro

3PhD, Computer Science Department, National University of Science and Technology
POLITEHNICA Bucharest, Romania, e-mail: maria.mihailescu@upb.ro

4Professor, Computer Science Department, National University of Science and Technol-
ogy POLITEHNICA Bucharest, Romania, e-mail: mihai.carabas@cs.pub.ro

SPhD, Computer Science Department, National University of Science and Technology
POLITEHNICA Bucharest, Romania, e-mail: sergiu.weisz®@upb.ro

6Professor, Computer Science Department, National University of Science and Technol-
ogy POLITEHNICA Bucharest, Romania, e-mail: nicolae.tapus@upb.ro

5

6 Darius Mihai, Vlad Nastase, Elena Mihailescu, Mihai Carabas, Sergiu Weisz, Nicolae Tapus

The usual approach is to create a client service configuration on the single
sign-on service for every web application that requires authentication and the
client receives a standard set of user attributes (e.g., username, email address,
first name, last name) from the SSO. The most commonly used protocols for
single sign-on, OpenlID Connect and SAML, use browser redirects in order to
direct the user between the service domain and the single sign-on service, as
well as for information exchange.

These observations are not always true, however [4][6]. There are specific
cases where clients may require the released information to have a non-standard
format, the list of clients may not be as strictly defined (i.e., a large number of
client applications may need to be periodically updated, added or removed) or
the authentication process needs to be extended to non-web based applications.

In this paper we will discuss about how we have managed to configure a
single sign-on services for a number of irregular clients. Section 2 presents what
single sign-on services and authentication protocols are and which implemen-
tation options we have evaluated, Section 3 presents how we have configured
a number of clients with atypical requirements, Section 4 shows the results we
have achieved, and Section 5 draws some short conclusions.

2. Single Sign-On

User information and access to company or institution resources have
always been primary attack targets for attackers [7][8]. Blocking access to
services (also known as denial of service attacks), stealing user information,
keeping data hostage for ransomware via encryption, or more recently, using
company resources occupied by mining cryptographic currencies, are usually
common attack vectors for financially or politically motivated adversaries.

A common approach to enforcing stricter authentication policies and the
use of stronger authentication mechanisms, while also reducing the inconve-
nience they impose on users, is to use single sing-on services. Single sign-on
services handle the authentication process centrally, and provide user authen-
tication and authorisation for other services through standardised protocols.
For users this mitigates the stress of having to supply their credentials to each
individual service, while also reducing the implementation complexity of said
services.

2.1. Authentication protocols

User authentication protocols have been designed to exchange user in-
formation between services regardless of who designs the services. The most
common protocols [9][10] used for web applications are OpenID Connect
and SAML.

Security Assertion Markup Language (SAML) is a data exchange
standard used for SSO that relies on assertions and documents in XML for-
mat to transfer data between the single sign-on service, called the identity

Integrating Keycloak SSO with atypical clients 7

provider (IdP), and services provided to users, called service providers (SP).
To establish the communication parameters, the identity provider publishes a
set of endpoints the service provider can use to request information, as well
as a set of keys used for assertion / document signature and encryption. To
establish trust parameters with the identity provider, the service provider de-
fines its own communication endpoints, and optionally, a certificate used for
assertion / document signature and encryption. For improved security it is
recommended that all messages between the parties are signed, if possible.
SAML is provided as an authentication mechanism by many applications; in
our case, eduGAIN, an international authentication inter-federation system for
research and education institutions, and Microsoft services were of particular
interest.

OpenID Connect (OIDC) is an extension of the OAuth 2.0 autho-
risation protocol[l]. Data transfers between the parties has a much simpler
structure compared to SAML. In this case, the single sign-on service is called
OpenlID provider, and the application service is called the relaying party, but
for simplicity we’ll keep the same names used in SAML: identity provider and
service provider. Instead of signed XML assertions and documents, OIDC usu-
ally relies on simpler authentication mechanisms for the service provider, using
a client ID and client secret (i.e., which are equivalent to the username and
password in regular authentications), and responses are formatted as JSON
web tokens (JWTs), which are by default signed. OpenID Connect is very
commonly used by public services to provide user authentication using public
identity providers (e.g., Google, Microsoft, Facebook, Apple, GitHub). Using
this mechanism, a service can get a trustworthy validation of the user’s identity
without having to manage the user’s authentication credentials directly.

2.2. SSO Solutions

A first implementation option for a single sign-on service with strong
authentication combined privacyIDEA' as a plugin for simpleSAMLphp®.
Both solutions are open-source and in conjunction they could provide strong
authentication to clients. In this setup privacyIDEA was a strong authen-
tication provider that handled multi-factor user authentication for simple-
SAMLphp, while simpleSAMLphp was a SAML identity provider for other
services. While this setup worked, there were a few issues that made us look
into other options. Firstly, the loose integration made the requirement of
configuring the second authentication factor less obvious for users (i.e., they
were not automatically redirected to the privacyIDEA page if no second factor
was configured, but authentication could not go through using just the user’s
password). The second issue was the lack of OpenlD Connect support, which
would be required for some of the client services.

'https:/ /www.privacyidea.org/, [Online. Accessed: 26 July 2024]
*https://simplesamlphp.org/, [Online. Accessed: 26 July 2024]

8 Darius Mihai, Vlad Nastase, Elena Mihailescu, Mihai Carabas, Sergiu Weisz, Nicolae Tapus

Because of the limitations mentioned above, we started looking into more
complete solutions. While there were other options available, two options
stood out, namely Gluu® and Keycloak®, which were considered for evalua-
tion. Both services were providing fully functional implementations for both
SAML and OpenlID Connect, strong authentication, as well as reasonable doc-
umentation with community support.

The first solution that we had considered of the two was Gluu, espe-
cially for its native authenticator application, called SuperGluu. Gluu offered
an extreme level of configuration of all system interactions, including user au-
thentication (i.e., authentication steps were provided as scripts that could be
edited by administrators) and how the authentication process would behave
(i.e., what kind of tokens would be sent to the client for every step of the
process). While this level of fine-tuning would likely be acceptable, or even de-
sirable, for administrators who are extremely familiar with the authentication
protocols, it felt overwhelming and error-prone for anyone less experienced,
and thus likely to create configurations that violate the respective protocols
or introduce security vulnerabilities. From what we could tell, there was no
obvious way to create a simple client that uses a specific authentication flow.

In the search for a simpler, but still fully-fledged single sign-on application
we next evaluated Keycloak[4][5][6], and while it did not provide the same level
of extreme configuration in the administration console itself, it had much more
sensible defaults for client configurations. In our testing we managed to get
a working deployment of Keycloak much easier because of its much simpler
administration interface, that provides client configurations that comply with
the relevant standards by default (i.e., it actually does not provide the options
to set up invalid token exchange flows).

Table 1 shows a few factors we have considered when deciding which
option would be best fit for our needs. Note that we have done this analysis
around 2021, and some data may have changed since then (i.e., after we have
moved to a different solution, we did not evaluate some features any further).

For the community size comparisons we used the GitHub contributors
pages for simpleSAMLphp®, Gluu®, and respectively Keycloak’.

Because of its ease of use and solid implementation, we ultimately decided
to use Keycloak as the single sign-on service in our university.

*https://gluu.org/, [Online. Accessed: 20 September 2024]

“https://www.keycloak.org/, [Online. Accessed: 20 September 2024]

Shttps://github.com /simplesamlphp/simplesamlphp/graphs/contributors, [Online. Ac-
cessed: 23 September 2024]

Ohttps://github.com/GluuFederation/oxAuth/graphs/contributors, [Online. Accessed:
23 September 2024]

https://github.com/keycloak /keycloak /graphs/contributors, [Online. Accessed: 23 Sep-
tember 2024]

Integrating Keycloak SSO with atypical clients 9

Table 1
Comparison between simplaSAMLphp/privacyIDEA, Gluu
and Keycloak

simpleSAML/
Feature privacyIDEA Gluu Keycloak
Authentication protocols SAML SAML, OIDC | SAML, OIDC
Mobile application no yes no
Ease of use (users) hard easy easy
Administration complexity | moderate very high moderate
Configuration store local files LDAP relational
database

Supports high-availability | not tested yes yes
Community size moderate small large
Available documentation

: reasonable good very good
and community support

3. Configuring Clients

Adding single sign-on support for most web applications is usually simple,
as the authentication protocols described in Section 2.1 have been designed for
ease of use in this scenario and there are various connector libraries available
for the programming languages commonly used for this use-case (e.g., PHP,
Python, JavaScript, Java). Configuring the connection parameters in Keycloak
is also not complicated when setting up clients for most service providers.

Most web applications that we deploy in our university (e.g., Moodle,
OpenStack, OpenSearch, GitLab) natively support the OpenlID Connect or
SAML standards, so integrating them with Keycloak was painless. The uni-
versity also hosts various custom applications, some of which are written in
PHP and use simpleSAMLphp as an authentication library, providing SAML-
based centralised authentication.

However, there are some cases when the clients require more complex
configurations. We will present a few such cases in the following sections.

3.1. Microsoft services

Most client applications simply require a set of attributes, as exported by
Keycloak. There are, however, some clients that have special requirements that
must be met. As mentioned before, the integration with Microsoft educational
services was of particular interest for us. Enforcing strong authentication with
Microsoft is possible by default, through their own single sign-on service, but in
our case, we considered that requiring users to configure multiple authenticator
applications on their devices could prove confusing. As such, we have opted
to configure the Microsoft authentication service to delegate authentication to
Keycloak for the university’s tenant using the SAML protocol.

10 Darius Mihai, Vlad Nastase, Elena Mihailescu, Mihai Carabas, Sergiu Weisz, Nicolae Tapus

This integration, however, was not trivial because of how our services
interact. The Microsoft Entra ID single sign-on heavily relies on the Microsoft
Active Directory (AD) service architecture. One of the mechanisms that the
AD service uses to ensure that objects (e.g., users and groups) can be moved
between various organisational units inside the AD forests and domains is
called the sourceAnchor or the immutableId® of the object. This attribute is
used to uniquely identify an object inside Active Directory and must be sent
in the SAML response as the NameID? attribute of the response. The issue,
in our case, was that since we connected Keycloak to LDAP, instead of the
Active Directory of the tenant, we could not access the immutableId attribute
directly.

Despite not having direct access to the attribute itself, we could take
advantage of the following in order to manually derive it:

e the sourceAnchor may be computed based on a different attribute; in our
case the attribute is the objectGUID;

e the sourceAnchor is computed as base64 (objectGUID);

e the objectGUID attribute is synchronised between LDAP and AD as the
ntUniqueId LDAP attribute.

Using this information we can also compute the same value of the anchor
for the authentication process. Unfortunately, Keycloak only allows computing
regular SAML attributes using JavaScript scripts, or extracting user attributes
without any transformations for the NameID attribute, but not deriving the
NameID programmatically. Consequently, we took advantage of the modular
design of Keycloak and wrote a plugin that is derived from the code that
handles regular SAML attributes and used it to export a computed NameID.

This requirement is somewhat specific to our deployment, since we keep
the user information in LDAP, and the Active Directory connection is only used
to synchronise user information with the Microsoft services in read-only mode.
Members of the community have reported that they managed to connect!®
the Microsoft authentication with Keycloak using the regular User Attribute
Mapper for NamelD mapper that matches a static user attribute with the
NamelD, which is only possible if Keycloak is connected to the Active Directory
directly.

The JavaScript code that handles the transformations can be seen in List-
ing 1. It first looks for a user attribute called ntUniqueId (which is extracted
from LDAP), then converts the value from a hexadecimal encoded string (i.e.,
a hexadecimal dump of the string) to a byte array (i.e., the raw bytes of the
representation of the original string) and finally transforms the array into a

®https://learn.microsoft.com/en-us/entra/identity /hybrid /connect /plan-connect-design-
concepts#sourceanchor, [Online. Accessed: 24 July 2024]

“https://learn.microsoft.com/en-us/entra/identity /hybrid /connect /how-to-connect-fed-
saml-idp#required-attributes, [Online. Accessed: 24 July 2024]

Ohttps: //github.com/keycloak/keycloak/discussions/12668#discussioncomment-
9875689, [Online: Accessed 23 September 2024]

Integrating Keycloak SSO with atypical clients 11

Listing 1. Compute immutableld from objectGUID

// Get encoder to convert JavaScript string to a
// baseb64-encoded Java-compatibe string.
var b64=Java.type("java.util.Base64").getEncoder ();

// based on https://stackoverflow.com/a/34356351
// Convert a hex string to a byte array
var hexToBytes = function (hex) {
var bytes = [];
// Parse groups of two characters in the hex
// string and convert them to integer wvalues.
// Save the results of the converstion in a byte array.
//
// e.g., "OcOa" is converted to an array containing the
// wvalues [12, 10]
for (var ¢ = 0; c < hex.length; c += 2)
bytes.push(parselnt (hex.substr(c, 2), 16));
return bytes;

};

// Get the users’s "ntUniqueId" attribute from Keycloak.
var uuid = user.getFirstAttribute("ntUniquelId");

// Convert the "ntUntiquelId" string to the equivalent array
// of bytes.

var uuidBytes = hexToBytes (uuid);

// Compute the baseb64 encoding of the array of bytes.

var immutableId = b64.encodeToString(uuidBytes) ;

// Return the baseb64-encoded value as the mapper’s result.
exports = immutableld;

base64-encoded string. This is the same process that AD uses to compute
the immutableId value, and thus we get the same value that can be sent as a
response to an authentication request from the Microsoft SSO.

3.2. eduGAIN

eduGAIN" is an authentication inter-federation system for research and
education organisations, that uses SAML and is managed by GEANT". The
various identity providers and service providers that are part of the system
are managed by local federations (i.e., organisations from each participating
country, like RoEduNet for Romania).

"https://edugain.org/, [Online. Accessed: 20 September 2024]
hitps://geant.org/, [Online. Accessed: 20 September 2024]

12 Darius Mihai, Vlad Nastase, Elena Mihailescu, Mihai Carabas, Sergiu Weisz, Nicolae Tapus

According to their statistics'®, the system is currently composed of over
5700 identity providers and 3700 service providers. While it is not strictly
necessary to authorize communications between all service providers and all
identity providers, it is reasonable to expect a very large number of service
providers that can connect to our identity provider.

The configurations of the entities in eduGAIN are provided as a large
XML file (i.e., currently it is larger than 80 MB), that is processed by the
participating federations and then made available to local entities. The list of
entities in eduGAIN is dynamic, which means that an identity provider must
be able to import and update the federation information periodically, and also
be able to handle a very large number of client applications.

Since Keycloak did not natively support keeping a dynamic list of clients
and updating their information (including removing them), we have opted
to leverage simpleSAMLphp’s metarefresh module, which can automatically
download a file containing entity metadata and updating the entities registered
in the service. In this case simpleSAMLphp acts as a SAML bridge, which is
seen as a client from Keycloak’s perspective, and as an identity provider from
the perspective of the service providers in eduGAIN. When configured this way,
the bridge does not actually authenticate the user; instead, user authentication
and user attribute release is performed by Keycloak, and simpleSAMLphp
forwards the responses to the service providers with minimal changes.

3.3. SSH login through SSO

Extending authentication to CLI tools like SSH is a more exotic use-case,
since single sign-on protocols have mostly been designed for the web. Since
SSH clients cannot display a web interface to allow users to interact with
the single sign-on’s login page, we cannot use the code authentication flow.
Instead, we have to use one of the following authentication flows:

e resource owner password credentials flow;
e device authorisation flow.

The resource owner password credentials flow is a non-recommended au-
thentication flow that places a lot of trust on the client service. Most authenti-
cation flows redirect the user to the login page of the single sign-on service, so
only the SSO has access the user’s credentials during the entire authentication
process. The resource owner password credentials flow, however, works more
similarly to local authentication, where the user inputs their username, pass-
word and second authentication factor into a login form on the service’s login
page, and then the service sends the credentials to the SSO in the user’s stead.
This approach is both more risky, since the user credentials can be leaked if the
application (i.e., SSH) server is compromised, and provides less functionality
since some authentication tokens like security keys only work with a browser.

htps://technical.edugain.org/entities, [Online. Accessed: 20 September 2024]

Integrating Keycloak SSO with atypical clients 13

The device authorisation flow is a much better alternative in our case.
This flow has been specifically created for devices without browser support or
limited input (e.g., a TV) to achieve secure user authentication. The flow is
actually composed of two flows: a flow between the user and the service (in our
case, between SSH client and server), and a flow between the user and the SSO
server through the browser. When users try to authenticate to the application
service (i.e., SSH server), the service sends a special request to the SSO service
and receives an authorisation code that the user must input in order to autho-
rise the device. The user can then go to the SSO service’s device authorisation
page using their browser, enter the authorisation code they received from the
SSH server (they will be required to authenticate if they are not) and the au-
thorisation process is completed. After the process is completed, the service
can connect to the SSO’s token endpoint to get information about the user.
This approach is much more secure, as it does not provide any user credentials
to the SSH server, and can also leverage the familiar browser authentication
flows for users.

For our implementation we have drew inspiration from the Okta Devel-
oper blog'*. We also implemented this functionality as a PAM module library,
but instead of C, we wrote the implementation in the D programming language
in order to leverage its almost seamless inter-compatibility with C libraries (re-
quired for the PAM module library), and memory safety guarantees.

4. Results

GEANT provides a self-assertion test for attributes released to eduGAIN
by identity providers. As seen in Figure 1, our simpleSAMLphp bridge cor-
rectly provides the expected attributes, and can consequently be used for au-
thenticating to various connected services. We were also able to confirm that
the released information is correct using services provided by the European
Union that use eduGAIN to authenticate users, like the ERASMUS student
ID card programme.

For the Microsoft integration the only available test was confirming that
the authentication process correctly redirects users from Microsoft’s single sign-
on to our on-premise Keycloak deployment for authentication, and the response
is accepted afterwards. As a note, users are not redirected to Keycloak for
authentication often, as Microsoft’s Entra ID single sign-on service allows for
long-lasting user sessions, so re-authentication is not required in most cases.
After we have confirmed that everything works as expected, there have not
been any major changes that were required.

The SSH authentication integration with the single sign-on service using
OpenlID Connect is used on our front-end processor (fep) system. Users have
the option to authenticate using SSH keys, or using interactive authentication

Yhttps://developer.okta.com/blog/2021/08,/20/cli-ssh-oauth-device-grant, [Online. Ac-
cessed 20 September 2024]

14 Darius Mihai, Vlad Nastase, Elena Mihailescu, Mihai Carabas, Sergiu Weisz, Nicolae Tapus

eduGAIN Attribute Release Check

Test Results for Identity Provider University "Politehnica” from Bucharest

EntitylD: https://bridge login.upb.ro/sam|2/idp/metadata.php | Time of the test: 2024-01-08 12:31:13 UTC

%REFEDS Research and Scholarship Test EARC&IT Data Protection Code of Conduct

Test
EntityID: EntityID:
https://rns-ng.release-check.edugain.org/shibboleth https://coco release-check.edugain.org/shibboleth
verdict: [verdict: [
Great! IdP sends all necessary information Great! IdP sends all necessary information
More details on verdict More details on verdict
Details: Details: [Ee]
Attributes Received Attributes Received
« eduPersonPrincipalName [[T3 « mail [F73
+ mail T3 « eduPersonPrincipalName m
R — e —
+ eduPersonScopedAffiliation m + schacHomeOrganization m

p——— P ———

+ eduPersonScopedAffiliation [TJ

P——

e sn
p————

+ givenName 3 (=i
g‘_%_“__‘_» m Attributes Missing

e ——

Attributes Missing

Fig. 1. eduGAIN attribute self-check

that requires them to authorise the connection using the SSO service. In the
latter case, users receive a message asking them to log in using Keycloak and
authorise the connection using an authorization code, as seen in Listing 2.

LisTiNG 2. FEP interactive login prompt

Please login at https://login.upb.ro/auth/realms/UPB/device.
Then input code ABCD-EFGH

Press Enter to continue:

There have been some initial issues with some users because we did not
use the correct base64 decode functions for the responses from the SSO service.
The responses are sent using base64 URI-safe encoding without padding, which
means that the ”=" character that is normally used as padding for base64
encoded strings when the length is not a multiple of 4 was missing; this was
not an issue for most users, but there were some users who reported that they
could not log in, so we investigated the cause and fixed the issue within a few
days.

As an additional caution, we have also modified the device authorisation
flow to require an additional confirmation using the user’s one-time password.
We have done this as a preemptive measure to make some attack vectors
harder. Because the device authorisation process in the browser is not a result
of a redirect from a website the user has visited, if a malicious actor is able
to convince the user to click on a link that inputs the authorisation code au-
tomatically (e.g., using a URL like [...]/device?code=ABCD-EFGH, although

Integrating Keycloak SSO with atypical clients 15

this approach does not work in the current version), the SSO service could
authorise access for the attacker without properly asking the user for confir-
mation. In this scenario, adding the requirement to confirm the user’s identity
using a one-time password should provide an opportunity for the user to figure
out that the process is suspicious and interrupt it if it was not initiated by
them.

5. Conclusions

In this paper we have presented an analysis of existing single sign-on
solutions and the reasons why we have ultimately decided to use Keycloak.
While it did not provide a turnkey solution for every use-case we had planned,
we were able to leverage its modular architecture and extensibility to add the
required functionality. By employing Keycloak, we have managed to achieve
a good balance between better security for services, even beyond just web
services, and convenience for our users.

Through the use of the simpleSAMLphp bridge and eduGAIN we have
managed to extend the authentication service beyond our local services and
provide an opportunity for our users to access many web applications and
benefits even beyond the borders of our country. Additionally, we were able to
use custom plugins to add the JavaScript mapper functionality for the NamelD
attribute that was required to make Keycloak the authoritative authentication
server for Microsoft services in our tenant. Furthermore, through non-standard
authentication flows in the OpenlD Connect standard we have been able to
add authentication support for applications that are not based on web services.

We have so far used these client configurations for over two years, through-
out the university year (i.e., with increased loads near the exam sessions, or
lower loads during the summer break) and besides the issues mentioned in this
paper there have not been any performance or user satisfaction degradations
after the clients have been configured fully.

Acknowledgment

This work is funded under the SOC digital artifact analysis and threat in-
telligence sharing maturity buildout and operation in East Europe (Romania,
Lithuania, and beyond) (SOCcare) Project, with the support of the Euro-
pean Commission and Digital Europe Programme (DIGITAL), under Grant
Agreement No. 101145843. This project is funded by the European Union.
Views and opinions expressed are however those of the authors only and do
not necessarily reflect those of the European Union or the European Cyber-
security Competence Centre. Neither the Furopean Union nor the European
Cybersecurity Competence Centre can be held responsible for them.

16 Darius Mihai, Vlad Nastase, Elena Mihailescu, Mihai Carabas, Sergiu Weisz, Nicolae Tapus

1]

[10]

REFERENCES

Y. Sadgi and Y. Belfaik and S. Safi, Web oauth-based SSO systems security, Pro-
ceedings of the 3rd International Conference on Networking, Information Systems &
Security, 2020, 1-7

1. Nongbri and P. Hadem and S. Chettri, A survey on single sign-on., Int. J. Creative
Res. Thoughts , 2018, vol 6, nr 2, 595-602

F. Alaca and P. C. V. Oorschot, Comparative Analysis and Framework Evaluating Web
Single Sign-on Systems., ACM Comput. Surv. , Association for Computing Machinery
(2020), 25-29

J. Anderson and K. Keahey, Migrating towards single sign-on and federated identity,
Practice and Experience in Advanced Research Computing, 2022, 1-8

M. A Christie and A. Bhandar and S. Nakandala and S. Marru and E. Abeysinghe and
S. Pamidighantam and M. E Pierce, Using keycloak for gateway authentication and
authorization, 2017

A. Chatterjee and A. Prinz, Applying spring security framework with KeyCloak-based
OAuth2 to protect microservice architecture APIs: a case study, Sensors, MDPI, 2022,
vol 22, nr 5, page 1703

O Aslan and S. S. Aktu§ and M. Ozkan-Okay and A. A. Yilmaz and E. Akin, A com-
prehensive review of cyber security vulnerabilities, threats, attacks, and solutions, Elec-
tronics, MDPI, 2023, vol 12, nr 6, pages 1333

H. Hindy and D. Brosset and E. Bayne and A.K. Seeam and C. Tachtatzis and R.
Atkinson and X. Bellekens, A taxonomy of network threats and the effect of current
datasets on intrusion detection systems, IEEE Access, IEEE, 2020, vol 8, 104650-104675
J.R. Almeida and A. Ziquete and A. Pazos and J.L. Oliveira, A federated authenti-
cation schema among multiple identity providers, Heliyon, Elsevier, 2024, vol. 10, no.
7

J. Basney and P. Cao and T. Fleury, Investigating root causes of authentication failures
using a SAML and OIDC observatory, 2020 IEEE 6th International Conference on
Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys),
IEEE, 2020, pages 119-126

