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DYNAMIC MODELING OF A 6-DOF PARALLEL
MANIPULATOR

Sandra-Elena NICHIFOR?, lon STROE?

The purpose of this paper is the kinematic and dynamic modeling of a mobile
platform with six degrees of freedom. In this sense, both the direct kinematics and
the indirect kinematics of the Stewart platform PS-6TL-1500 are presented. The
problem of dynamic modeling for the parallel manipulator is approached
considering the entire Stewart platform as a complete sistem, the methodology
employed involves utilizing the Lagrange formalism.

This paper considers the validation of the dynamic model through two
simulation cases that consider the attitude angles and the position of the Stewart
platform. Based on the obtained results, the impact of certain parameters on the
system can be observed, indicating which configurations can be considered for
specific operational orientations.

Keywords: mobile platform, inverse kinematics, Stewart platform, dynamic
modeling.

1. Introduction

A general Gough-Stewart platform is a parallel manipulator with six
prismatic actuators, typically hydraulic jacks or linear electric actuators, which are
attached in pairs of three positions on the platform base plate over three points
mounted on a superior plate. The direct kinematics problem involves determining
the position and orientation of the moving platform relative to the base, given the
length of the legs and the coordinates of the attachment points in its local
reference frame [1].

The Stewart platform mechanism, mainly called a hexapod, is a parallel
kinematic structure that can be used as a basis for various controlled movements,
such as manufacturing processes, or for testing various biological theories related
to insect locomotion or neurobiology. Also, the desired position and orientation of
the mobile platform is determined by combining the lengths of the six actuators,
transforming the six transitional degrees of freedom into three translational and
three rotational degrees of freedom [2].
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The main objectives of this paper include developing a kinematics model
of a Stewart platform PS-6TL-1500 with 6-DOF, which was described by
analyzing each point of the upper and lower plate. The dynamic modeling of the
Stewart platform as a complete system is highlighted using the Lagrange
formalism taking into consideration the angular velocity of the mobile platform
relative to the base reference frame.

This paper aims to contribute to the field of understanding and controlling
the Stewart platform PS-6TL-1500 by presenting a comprehensive model, that
provides a more accurate and insightful perception of this platform, thereby
enhancing its control and performance. Its originality lies in its ability to provide a
holistic framework that integrates fundamental components of platform dynamics,
leading to the establishment of stability and performance configurations for the
Stewart platform.

2. Kinematics analysis of the Stewart platform

The Stewart platform contains parallel actuators with six degrees of
freedom, linear motions consist of longitudinal, lateral, and vertical motion, and
angular motions are expressed as Eulerian angular rotations known as roll, pitch,
and yaw. Inverse kinematics determines the lengths of the actuators based on the
position and orientation of the Stewart platform. The inverse kinematics model is
developed based on simplified models, as found in works [3], [4], [5], [6]. Also,
inverse kinematics deals with the mathematical problem of describing the position
and orientation of the platform in terms of actuator variables. As seen in the

figures below, two coordinate frames {P} and {B}are defined, assigned to the
payload and base platforms respectively.

Fig. 1 Stewart platform oordinate Fig. 2 Positioning points on the
frames [3] Stewart platform [3]
The origin of the frame {P} represents the centroid of the upper platform,

the y, axis is directed outward, the x, axis is perpendicular to the line connecting
the two attachment points P, and P,, and the angle between the actuators P, and
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P, is denoted by &,. Regarding the base platform, the origin of frame {B}
represents the centroid of the lower platform, the angle between actuators B, and
B, is denoted by &, . The Cartesian variables represent the position and relative
orientation of the frame {P}in relation to the frame{B}, assuming a vector
describing the position of each reference point P. in relation to the coordinate
system{P}, it is expressed

P r, COS A,
{R}= R, (=1sin4 =16 (1)
P 0

z

where 1, represents the radius of the top plate.
For B,R, R, points, the value of the angle 4 :i%—%, and for R,,P,, R,

points, 4 =4 , +6,, where 6, =x/2. Assuming another vector B, defined in
Fig.2, it describes the position of an attachment point relative to the frame{B},

where B, can be defined

B,| (r,cosA,
{B}=1B, {=1rssinA, {,i=16 )
B. 0

where 1, represents the radius of the bottom plate.
For B,, B,, B, points, the value of the angle A; = i%—%’ and for B,,B,, B,

points, A, =A, ,+0;,where 6, =7/6.
The rotation matrix [R] represents the orientation of the frame {P} relative
to the frame {B}[7]

COSY, COSH, COSy,SinG,sSing, —siny, COSep, COSY/,, Sin G, COS @, +Siny, Sin @,
[R], =| siny, cosd, siny,sing,sing, +cosy,cosp, siny, sind, cosp, —cosy, sing,
—-sin g, cosé, sin g, C0S 6, COS @,

©)
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where ¢,, 6,and w,represent the rotation angles of the upper platform,
corresponding to roll, pitch and yaw.

Roll

Fig. 3 Rotation angles of the upper platform of PS-6TL-1500

The rotations depicted in Fig.3 occur consecutively around the displacement
coordinate axes, resulting in the final rotation matrix given by relation (3). For
this analysis, the yaw-pitch-roll rotation matrix was considered, with the first
rotation of y, around z-axis, followed by the rotation of 6, around y-axis and

finally the rotation of ¢, around x-axis. This sequence of rotations can be
represented as the product of three established rotation matrices,

respectively[R]s = [RZWP }[Ryﬂp }[Rxwp } , Where

cosy, -—siny, O cosd, 0 sing, 1 0 0
[szp}z siny, cosy, O ;[Rygp}: 0 1 0 |; [Rxw]: 0 cosg, —sing,
0 0 1 —-singd, 0 coséb, 0 sing, cosg;,



Dynamic modelling of a 6-DOF parallel manipulator 65

As seen in Fig.3, each angle is constrained according to the physical
limitations, ~ therefore ¢, €[ -21.2°;21.2°|, 6, €[-202°;20.7°]  and

v, €| —24.8°24.8° |.
By adopting appropriate coordinate transformations, the actuation vector L,
corresponding to each actuator can be derived
{Li}=[RL{R}+{P}~{B}.i=16 )
where the vector {P}={x vy z}T represents the position of the coordinate
system {P}, as observed in Fig.1.

Given that the length of the actuator isl, =|L|, an inverse kinematics
solution is obtained
I, = | L|| = \/("11F)ix + r12F)iy +X- Bix)2 + (r21Pix + rzzpiy +y- Biy)2 + (r3lPiX + r32Piy +2)°
(5)

By performing mathematical calculations, the simplified equivalent form
of the inverse kinematics solution of equation (5) has been obtained. This
represents the link between the desired final state coordinates and the specific
kinematic parameters of the parallel manipulator, obtaining

Ii2 =x* +y2 +2° +r§ +rBZ "'2("11PiX +1,R )(X_Bix)+2(r21pix +1R )(y_Biy)

iy iy (6)

+2(r31P. +1,P, )Z—Z(XBiX +yBiy)

iy iy

The direct kinematics of the upper platform of the six-degree-of-freedom
parallel manipulator plays an important role in controlling or visualizing the
motion of the platform, but it is difficult to define due to the nonlinearity and
complexity of the platform. A popular method for solving the derivative problem
is the Newton Raphson method, but it suffers from repetitive steps before the
solution converges and therefore cannot become a real-time solution. Also, by
imposing wrong values of the initial conditions this method can lead to an infinite
loop in the solution.
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3. Dynamic analysis of the Stewart platform

The parallel mechanism is composed of an upper (movable) platform and
a lower (fixed) platform and six identical branches, each actuator in turn
consisting of a cylinder and piston.

The dynamic analysis of the parallel manipulator is much more difficult
compared to that of the serial manipulator due to the existence of multiple
kinematic chains, all connected by the mobile platform [8], [9], [10]. In this
chapter the Lagrange formulation will be used, because it offers a much better
structure to describe the dynamics of the manipulator. Regarding the derivation of
the dynamic equations for the Stewart platform, the approach considers the entire
mobile platform. It involves calculating both kinetic and potential energies, and
subsequently deriving the dynamic equations based on these energy
considerations.

The figure below shows the spatial direction of the Stewart platform, with
the lengths of each actuator being variable

Fig. 4 The structure and geometry of the Stewart platform

The dynamic analysis of the Stewart platform can be performed by
applying the Lagrange equations [5], [11], [12]

d|{oE| OE oU
—+ =

S|t =0Q (7)
dt o4 oq dq
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In this case q represent the generalized coordinates, respectively

q:[x y z ¢ 0 z//]T, x,yand z are positional displacement of the upper
platform, ¢,0and y are the angular displacement of the upper platform ,Q are

the generalized forces, E and U represent the kinetic energy and the potential
energy of the upper platform, respectively.

Knowing that the kinetic energy of the upper platform is composed of
translational and rotational kinetic energy, the two formulations will be explained
below. The translational kinetic energy arising due to the translational movement
of the center of mass is defined

Et=%mp(PX2+ P+ Pzzj (8)

where m, is the mass of the upper platform, P?,P?, P/ are the velocities on the

x1'y1z
three axes of the center of mass.
In terms of the rotational motion of the mobile platform about its center of
mass, the rotational kinetic energy can be written:
1
Er = ECOTI 0 (9)

where and w, are the rotational inertial mass and the angular velocity of the

Ip
mobile platform.

The parameters 1 and w, are described as follows

I, 0 0
IL=[0 1, 0 (10)
0 0 I

z

(@) =[Rey ] [Reo ] [Roo] {5} (11)
where @, represents the angular velocity of the mobile platform relative to the

base reference frame.
Given the definition of Euler angles, @, can be written

o, =9[R, |X+6Y +y[R,, ][R, ]Z (12)
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cosé 0 sing|ll 0 O O O O] {1 O 0 cosy -—siny 0([0 0 O ¢
{w,}=|| 0 1 0 |[0 1 0[+[0 1 0|+/0 cosp —sing|lsiny cosy 0[|0 0 0|0
—sind 0 cos@||0 0 1| [0 O O| |0 sing cose 0 0 1{0 0 1 .

174
(13)
cosd O 0 T
{a)pl}= 0 1 —sing [gp 0 1//} (14)
—singd 0 cose

Substituting the relation thus obtained into (12)
Cy CoSy —CeCy SO —CoSpSy + Copclspsy T
{a)p} =| Sy CoCy —CeCy Sy +CpsOsy +Cpcdspcy || ¢ 6 1//} (15)
0 -sp s’p+Cpcl
where the notations were made s(+)=sin(+),c(+)=cos().
The total kinetic energy of the upper platform written in compact form is
E=E +E, :E{PX P P o 0 W}[M ][PX P P o 0 V/} (16)
where M is a 6x6 diagonal matrix of the upper platform.
The mass matrix can be written

m 0 O O 0 0
0Om O O 0 0
[M]z 0O 0m O 0 0 a7
0 0 0 My, M, Mg
0 0 0 My My Mg
10 0 0 Mg Mg Mg

where
M,, =1, cos® fcos’ y + 1, cos® Bsin® y +1,sin*

M, =Mg, =(1, - 1,)cos Bcosysiny
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Also, the potential energy of the upper platform is
U=[0 0 mg 0 00J[R, B, P, ¢ 0 v] =mgP,  (18)

and g represents the gravitational acceleration.

Formulating the equation using redundant coordinates (the equations use
more coordinates than the degrees of freedom of the underlying system) of the
mechanism's kinematics is

|v|(x)>'i+c(x,>°<j>'<+e(x)=f(x)r (19)

where M (X)) is the mass matrix, C(X,Xj is the Coriolis and centrifugal force

term, G(X) is the gravitational force, J is the Jacobian matrix, J' is the

transposed Jacobian matrix, z represents torque.
The dynamic model of the six-degree-of-freedom parallel manipulator can

be described using the inverse transposed Jacobian matrix, J ', thus
X=J"q (20)
Given that q represent the generalized coordinates, respectively
[x y z ¢ 6 y] and q represents their derivative, {x y z ¢ 6 l//T the
Lagrange equation can be expressed

M(q)a+C(q,djd+G(q):r (21)

where
M (g)=J"M (X)J is symmetric and positive definite for any q e R"

C(q,d):JT[C(X)—M (X)J j}]
G(g)=J3"G(X)

Given that M—2C can represents a skew symmetric matrix, it will result
thath(M—Zij:O,VXeR”, this relation being fundamental in the use of

adaptive or robust control for classical robots with serial and parallel linkage.
The matrix of Coriolis and centrifugal forces can be written



70 Sandra-Elena Nichifor, lon Stroe

0 O
fo

where

-C, p-C,y Ca-C,B+C,y -C,a+C,p

C, =| C,a+C,y C.y C,a+C, (23)

C,a-C,f  -C,a-C.j 0

C, =cos Bsin B(cos’ y I, +sin” y1, —1,)
C, =cos’® Bcosysiny(l,—1,)
C, =cosysin® y(l,—1,) (24)
_ 1 2 s 2
C4_§cosﬂ(cos y—sin®y)(I,-1))
Cs=cosysiny(l,—1,)
The Jacobian matrix is defined according to [9]
‘](i’l)z(x+l:)ixr-11+l:)iyr12_Bix)/li
3G0,2)=(y+P 5 +P 5, — B, ) /1

J(i,3):(z+P. r31+P.yr32)/Ii (25)

3(i,5) :((—Pixsecz//+ Piyrazcw)(x—Bix)+(—Pixs¢951//+Ryr23sy/)(y—Biy)+(—Rxc9—PiysgosH)z)/li
J(i,6) :(_(Pixrzﬁ‘Hyrzz)(X_Bix)+(er11+ Piyr12)<y_Biy ))/Ii
where i=16,1,,1,,1,,F,, T, s, T, are the coefficients of the rotation matrix

and |, represents the length of the actuator. Using the obtained relations (25) the
force of the actuators can be determined by replacing them in the relation (21).
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4. Results

In this section, several dynamic simulations were carried out to highlight
the inertial effect of the actuators and their component parts on the dynamics of
the entire system. The simulation parameters of the PS-6TL-1500 platform are as

follows: r, =0.94m;r, =1.449m; 6, =100°;6, =31°;m_ =3kg;w=3rad /s

0.085 0 0 0.006 0 0 0006 0 O
l,=| 0 008 0 |kgm’; l,=| O 0006 O |kgm’; I, =| O 0.006 0

0 0 0.085 0 0  0.006 0 0 0
where m is the mass of platform including the payload, I is inertia matrix with

respect to the control point of platform including the payload, I, is inertia matrix
with respect to the center of gravity of the lower rotating part of the ith actuator
and |, is inertia matrix with respect to the center of gravity of the upper moving

part of the ith actuator. The positioning of the points associated with both the
mobile platform and the base are as follows

kgm?

P, =[0.9257 0.1632 1.6000]m B, =[1.0335 1.0156 O]m
P, =[-0.3215 0.8833 1.6000]m B, =[0.3628 1.4028 0O]m
P, =[-0.6042 0.7201 1.6000]m B, =[-1.3963 0.3872 0]m
P, =[-0.6042 -0.7201 1.6000]m B, =[-1.3963 -0.3872 0]m
P, =[-0.3215 -0.8833 1.6000]m B, =[0.3628 -1.4028 O]m
P, =[0.9257 0.1632 1.6000]m B, =[1.0335 -1.0156 0O]m

First simulation case represents a sinusoidal trajectory imposed along the
x-axis, while the orientation of the moving platform is kept constant.

x| [0.3sin(wt)
[p 0 w] =[0 0 0];|y|=| 02
z 0.3

25

n
o

=
o

Actuator forces [N]
)

Actuator lengths [m]
o

0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 25 3 3.5

Time [s] Time [s]
Fig. 5 Actuator lengths as a function of time Fig. 6 Actuator forces as a function of time

case 1 case 1
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The second simulation case represents a sinusoidal trajectory, while the
orientation of the moving platform is variable only as a function of the angle .
x| [-0.3+0.25sin(wt)
[p 0 w] =[0 0 20];|y|=| ~Odsin(at)
z 0.7 +0.5sin (ot)

2.5

zf\uf\\

g AOL A
1.5‘//\ Ve N
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1if

Actuator lengths [m]
Actuator forces [N]

— I2
13

05 i
—15
8 | | | | 16 \
0 0.5 1 1.5 2 25 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
Time [s] Time [s]
Fig. 7 Actuator lengths as a function of time Fig. 8 Actuator forces as a function of time
case 2 case 2

Sensitivity analysis is a methodology employed to examine how
alterations in input parameters or variables influence the outcome or effectiveness
of a system. The sensitivity analysis procedure involves identifying the essential
parameters for the performance of the Stewart platform, these being the
parameters expected to exert the most significant influence on the system.
Subsequently, a systematic modification of certain parameters is considered,
while keeping others constant, in this case, three simulations were considered.

In the first phase, the input parameters of the Stewart platform were kept
the same as in the second case, followed by a modification of the #angle and in
the last simulation, the ¢ angle was modified. In the figures below, variations in

forces have been identified based on the changes in input parameters.
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As observed in Fig.9 and Fig.14, the change in the pitch angle has a more
pronounced impact on the two actuators, resulting in a force variation of 10N and
15N, respectively, compared to the other two simulation cases.

Alterations in the roll angle result in reduced actuator forces, as evidenced
in Fig.10 and Fig.11, reaching values of -15N. This adjustment helps prevent
configurations that impose an undue burden on the actuators.

As observed in Fig.12 and Fig.13, the actuator forces follow a consistent
pattern of variation over the simulation time, reaching either maximum values
(Fig.12) or minimum values (Fig.13) after 1.5 seconds, regardless of the initial
parameter modifications. The purpose of the actuator force sensitivity analysis is
to highlight the dynamic capabilities of the PS-6TL-1500 Stewart platform and to
evaluate the stability and performance of the platform. This is achieved by
identifying some specific combinations of pitch, roll, and yaw angles that can
result in more stable platform configurations or enhanced performance in terms of
load capacity, accuracy, or speed.

5. Conclusions

In the present paper, the system of closed-form dynamic equations of a
parallel manipulator using the Lagrangian formalism has been presented, this
approach used a configuration of Stewart platform with six degrees of freedom, as
can be observed in others specialized papers [13], [14], [15], [16].

The algorithm was implemented using the Matlab simulation environment,
and the numerical results were studied to validate the dynamic formulation
presented in the chapter.

The results of the simulations demonstrate that the derivation of the
explicit dynamic equations in the load space is available for a manipulator with
six degrees of freedom, thus obtaining the actuation forces on the mobile platform
actuators. The previously presented case studies define an imposed movement of
the mobile platform, on a single axis, X, y, z, or according to the attitude angles,

@,0,y , following the variation of the actuation forces on the actuators and their

displacement during the simulation. Also, in the simulations, the stiffness of the
actuators caused by the movement of the platform was neglected, their joints
being considered ideal, having no frictional forces. The method described in the
dynamic analysis is used in both direct and inverse mechanics of serial and
parallel mechanisms in the context of autonomous control, which can be used in a
robust model for the computer control part of the Stewart manipulator.

As future development, the dynamic model obtained in this paper will be
verified and validated during experimental tests using the Stewart platform PS-
6TL-1500 and a sensor system of GPS (Global Positioning System) and IMU
(Inertial Measurement Unit). This experimental analysis will be carried out in the
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SpaceSysLab Maneciu Laboratory of the National Institute for Aerospace
Research “Elie Carafoli”.

RS

Fig. 15 INCAS — Stewart Platform PS-6TL-1500
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