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DYNAMIC MODELING OF A 6-DOF PARALLEL 

MANIPULATOR 

Sandra-Elena NICHIFOR1, Ion STROE2 

The purpose of this paper is the kinematic and dynamic modeling of a mobile 

platform with six degrees of freedom. In this sense, both the direct kinematics and 

the indirect kinematics of the Stewart platform PS-6TL-1500 are presented. The 

problem of dynamic modeling for the parallel manipulator is approached 

considering the entire Stewart platform as a complete sistem, the methodology 

employed involves utilizing the Lagrange formalism. 

This paper considers the validation of the dynamic model through two 

simulation cases that consider the attitude angles and the position of the Stewart 

platform. Based on the obtained results, the impact of certain parameters on the 

system can be observed, indicating which configurations can be considered for 

specific operational orientations. 

Keywords: mobile platform, inverse kinematics, Stewart platform, dynamic 

modeling. 

1. Introduction 

A general Gough-Stewart platform is a parallel manipulator with six 

prismatic actuators, typically hydraulic jacks or linear electric actuators, which are 

attached in pairs of three positions on the platform base plate over three points 

mounted on a superior plate. The direct kinematics problem involves determining 

the position and orientation of the moving platform relative to the base, given the 

length of the legs and the coordinates of the attachment points in its local 

reference frame [1].  

The Stewart platform mechanism, mainly called a hexapod, is a parallel 

kinematic structure that can be used as a basis for various controlled movements, 

such as manufacturing processes, or for testing various biological theories related 

to insect locomotion or neurobiology. Also, the desired position and orientation of 

the mobile platform is determined by combining the lengths of the six actuators, 

transforming the six transitional degrees of freedom into three translational and 

three rotational degrees of freedom [2].  
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The main objectives of this paper include developing a kinematics model 

of a Stewart platform PS-6TL-1500 with 6-DOF, which was described by 

analyzing each point of the upper and lower plate. The dynamic modeling of the 

Stewart platform as a complete system is highlighted using the Lagrange 

formalism taking into consideration the angular velocity of the mobile platform 

relative to the base reference frame.  

This paper aims to contribute to the field of understanding and controlling 

the Stewart platform PS-6TL-1500 by presenting a comprehensive model,  that 

provides a more accurate and insightful perception of this platform, thereby 

enhancing its control and performance. Its originality lies in its ability to provide a 

holistic framework that integrates fundamental components of platform dynamics, 

leading to the establishment of stability and performance configurations for the 

Stewart platform. 

2. Kinematics analysis of the Stewart platform 

The Stewart platform contains parallel actuators with six degrees of 

freedom, linear motions consist of longitudinal, lateral, and vertical motion, and 

angular motions are expressed as Eulerian angular rotations known as roll, pitch, 

and yaw. Inverse kinematics determines the lengths of the actuators based on the 

position and orientation of the Stewart platform. The inverse kinematics model is 

developed based on simplified models, as found in works [3], [4], [5], [6]. Also, 

inverse kinematics deals with the mathematical problem of describing the position 

and orientation of the platform in terms of actuator variables. As seen in the 

figures below, two coordinate frames  P  and  B are defined, assigned to the 

payload and base platforms respectively. 

                     
Fig. 1 Stewart platform coordinate    Fig. 2 Positioning points on the  

     frames [3]             Stewart platform [3] 

 

The origin of the frame  P represents the centroid of the upper platform, 

the 
Py  axis is directed outward, the Px  axis is perpendicular to the line connecting 

the two attachment points 1P  and 6P , and the angle between the actuators 1P  and 
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2P  is denoted by P . Regarding the base platform, the origin of frame  B  

represents the centroid of the lower platform, the angle between actuators 5B  and 

6B  is denoted by B . The Cartesian variables represent the position and relative 

orientation of the frame  P in relation to the frame B , assuming a vector 

describing the position of each reference point iP  in relation to the coordinate 

system P , it is expressed 
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where Pr  represents the radius of the top plate. 

For 
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1i i P  −= + , where / 2P = . Assuming another vector iB  defined in 

Fig.2, it describes the position of an attachment point relative to the frame B , 

where iB  can be defined 
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where Br  represents the radius of the bottom plate. 

For 1 3 5, ,B B B  points, the value of the angle 
3 2

B
i i


 = −  and for 

2 4 6, ,B B B  

points, 1i i B− =  + , where / 6B = . 

The rotation matrix  R  represents the orientation of the frame  P  relative 

to the frame  B [7] 
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where 
P , P and P represent the rotation angles of the upper platform, 

corresponding to roll, pitch and yaw.  

 
Fig. 3 Rotation angles of the upper platform of PS-6TL-1500 

     

The rotations depicted in Fig.3 occur consecutively around the displacement 

coordinate axes, resulting in the final rotation matrix given by relation (3). For 

this analysis, the yaw-pitch-roll rotation matrix was considered, with the first 

rotation of P around z-axis, followed by the rotation of P  around y-axis and 

finally the rotation of 
P  around x-axis. This sequence of rotations can be 

represented as the product of three established rotation matrices, 
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As seen in Fig.3, each angle is constrained according to the physical 

limitations, therefore 21.2 ;21.2o o

P   −  , 20.2 ;20.7o o

P   −   and 

24.8 ;24.8o o

P   −  . 

By adopting appropriate coordinate transformations, the actuation vector iL  

corresponding to each actuator can be derived 

         , 1,6
B
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L R P P B i= + − =                         (4) 

where the vector    
T

P x y z= represents the position of the coordinate 

system  P , as observed in Fig.1. 

Given that the length of the actuator is i il L= , an inverse kinematics 

solution is obtained 
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By performing mathematical calculations, the simplified equivalent form 

of the inverse kinematics solution of equation (5) has been obtained. This 

represents the link between the desired final state coordinates and the specific 

kinematic parameters of the parallel manipulator, obtaining 
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The direct kinematics of the upper platform of the six-degree-of-freedom 

parallel manipulator plays an important role in controlling or visualizing the 

motion of the platform, but it is difficult to define due to the nonlinearity and 

complexity of the platform. A popular method for solving the derivative problem 

is the Newton Raphson method, but it suffers from repetitive steps before the 

solution converges and therefore cannot become a real-time solution. Also, by 

imposing wrong values of the initial conditions this method can lead to an infinite 

loop in the solution.  
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3. Dynamic analysis of the Stewart platform 

The parallel mechanism is composed of an upper (movable) platform and 

a lower (fixed) platform and six identical branches, each actuator in turn 

consisting of a cylinder and piston.  

The dynamic analysis of the parallel manipulator is much more difficult 

compared to that of the serial manipulator due to the existence of multiple 

kinematic chains, all connected by the mobile platform [8], [9], [10]. In this 

chapter the Lagrange formulation will be used, because it offers a much better 

structure to describe the dynamics of the manipulator. Regarding the derivation of 

the dynamic equations for the Stewart platform, the approach considers the entire 

mobile platform. It involves calculating both kinetic and potential energies, and 

subsequently deriving the dynamic equations based on these energy 

considerations. 

The figure below shows the spatial direction of the Stewart platform, with 

the lengths of each actuator being variable 

 
Fig. 4 The structure and geometry of the Stewart platform 

 

The dynamic analysis of the Stewart platform can be performed by 

applying the Lagrange equations [5], [11], [12] 
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In this case q  represent the generalized coordinates, respectively 

 
T

q x y z   = , x , y and z  are positional displacement of the upper 

platform,  , and   are the angular displacement of the upper platform , Q  are 

the generalized forces, E  and U  represent the kinetic energy and the potential 

energy of the upper platform, respectively. 

Knowing that the kinetic energy of the upper platform is composed of 

translational and rotational kinetic energy, the two formulations will be explained 

below. The translational kinetic energy arising due to the translational movement 

of the center of mass is defined 

        2 2 21
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where 
pm  is the mass of the upper platform, 

2 2 2, ,x y zP P P  are the velocities on the 

three axes of the center of mass. 

In terms of the rotational motion of the mobile platform about its center of 

mass, the rotational kinetic energy can be written:  

1

2

T

r p p pE I =                    (9) 

where  
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p  are the rotational inertial mass and the angular velocity of the 
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where 
1p  represents the angular velocity of the mobile platform relative to the 

base reference frame. 

Given the definition of Euler angles, 
1p  can be written 

1 , , ,p y x zR X Y R R Z          = + +              (12) 
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Substituting the relation thus obtained into (12) 
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where the notations were made ( ) ( ) ( ) ( )sin , coss c= = . 

The total kinetic energy of the upper platform written in compact form is 

      
1

2

T

t r x y z x y zE E E P P P M P P P     
   

= + =       
     (16) 

where M is a 6x6 diagonal matrix of the upper platform. 

The mass matrix can be written 
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Also, the potential energy of the upper platform is 

0 0 0 0 0
T

p x y z p zU m g P P P m gP     = =             (18) 

and g represents the gravitational acceleration. 

Formulating the equation using redundant coordinates (the equations use 

more coordinates than the degrees of freedom of the underlying system) of the 

mechanism's kinematics is 
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where ( )M X  is the mass matrix, ,C X X
 
 
 

 is the Coriolis and centrifugal force 

term, ( )G X  is the gravitational force, J  is the Jacobian matrix, TJ  is the 

transposed Jacobian matrix,  represents torque.  

The dynamic model of the six-degree-of-freedom parallel manipulator can 

be described using the inverse transposed Jacobian matrix, TJ − , thus 

TX J q−=                                (20) 

Given that q  represent the generalized coordinates, respectively 
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( ) ( )TM q J M X J= is symmetric and positive definite for any 
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( ) ( )TG q J G X=    

Given that 2M C−  can represents a skew symmetric matrix, it will result 

that 2 0,T nx M C x x
 

− =   
 

, this relation being fundamental in the use of 

adaptive or robust control for classical robots with serial and parallel linkage. 

The matrix of Coriolis and centrifugal forces can be written 
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The Jacobian matrix is defined according to [9] 

( )11 12( ,1) /
x y xi i i iJ i x P r P r B l= + + −  

( )21 22( , 2) /
x yi i iy iJ i y P r P r B l= + + −  

( )31 32( ,3) /
x yi i iJ i z P r P r l= + +                            (25) 
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where  11 12 21 22 31 32 13 231,6, , , , , , , ,i r r r r r r r r=  are the coefficients of the rotation matrix 

and il  represents the length of the actuator. Using the obtained relations (25) the 

force of the actuators can be determined by replacing them in the relation (21).  
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4. Results 

In this section, several dynamic simulations were carried out to highlight 

the inertial effect of the actuators and their component parts on the dynamics of 

the entire system. The simulation parameters of the PS-6TL-1500 platform are as 

follows: 0.94 ; 1.449 ; 100 ; 31 ; 3 ; 3 /o o

P B P B pr m r m m kg rad s  = = = = = =  
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where 
pm is the mass of platform including the payload, 

pI is inertia matrix with 

respect to the control point of platform including the payload, bI  is inertia matrix 

with respect to the center of gravity of the lower rotating part of the ith actuator 

and 
tI  is inertia matrix with respect to the center of gravity of the upper moving 

part of the ith actuator. The positioning of the points associated with both the 

mobile platform and the base are as follows 

 
 
 
 
 
 

1

2

3

4

5

6

0.9257 0.1632 1.6000

0.3215 0.8833 1.6000

0.6042 0.7201 1.6000

0.6042 0.7201 1.6000

0.3215 0.8833 1.6000

0.9257 0.1632 1.6000

P m

P m

P m

P m

P m

P m

=

= −

= −

= − −

= − −

=

          

 
 
 
 
 
 

1

2

3

4

5

6

1.0335 1.0156 0

0.3628 1.4028 0

1.3963 0.3872 0

1.3963 0.3872 0

0.3628 1.4028 0

1.0335 1.0156 0

B m

B m

B m

B m

B m

B m

=

=

= −

= − −

= −

= −

 

First simulation case represents a sinusoidal trajectory imposed along the 

x-axis, while the orientation of the moving platform is kept constant. 
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    Fig. 5 Actuator lengths as a function of time             Fig. 6 Actuator forces as a function of time   

                         case 1                                     case 1 
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The second simulation case represents a sinusoidal trajectory, while the 

orientation of the moving platform is variable only as a function of the angle ψ. 
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      Fig. 7 Actuator lengths as a function of time          Fig. 8 Actuator forces as a function of time 

         case 2               case 2 

 

 

Sensitivity analysis is a methodology employed to examine how 

alterations in input parameters or variables influence the outcome or effectiveness 

of a system. The sensitivity analysis procedure involves identifying the essential 

parameters for the performance of the Stewart platform, these being the 

parameters expected to exert the most significant influence on the system. 

Subsequently, a systematic modification of certain parameters is considered, 

while keeping others constant, in this case, three simulations were considered.  

In the first phase, the input parameters of the Stewart platform were kept 

the same as in the second case, followed by a modification of the  angle and in 

the last simulation, the   angle was modified. In the figures below, variations in 

forces have been identified based on the changes in input parameters.  
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           Fig. 9 Sensitivity analysis for F1                      Fig. 10 Sensitivity analysis for F2         

         

  
              Fig. 11 Sensitivity analysis for F3                         Fig. 12 Sensitivity analysis for F4 

        
           Fig. 13 Sensitivity analysis for F5                       Fig. 14 Sensitivity analysis for F6                                                  
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As observed in Fig.9 and Fig.14, the change in the pitch angle has a more 

pronounced impact on the two actuators, resulting in a force variation of 10N and 

15N, respectively, compared to the other two simulation cases.  

Alterations in the roll angle result in reduced actuator forces, as evidenced 

in Fig.10 and Fig.11, reaching values of -15N. This adjustment helps prevent 

configurations that impose an undue burden on the actuators. 

As observed in Fig.12 and Fig.13, the actuator forces follow a consistent 

pattern of variation over the simulation time, reaching either maximum values 

(Fig.12) or minimum values (Fig.13) after 1.5 seconds, regardless of the initial 

parameter modifications. The purpose of the actuator force sensitivity analysis is 

to highlight the dynamic capabilities of the PS-6TL-1500 Stewart platform and to 

evaluate the stability and performance of the platform. This is achieved by 

identifying some specific combinations of pitch, roll, and yaw angles that can 

result in more stable platform configurations or enhanced performance in terms of 

load capacity, accuracy, or speed. 

 

5. Conclusions 

 

In the present paper, the system of closed-form dynamic equations of a 

parallel manipulator using the Lagrangian formalism has been presented, this 

approach used a configuration of Stewart platform with six degrees of freedom, as 

can be observed in others specialized papers [13], [14], [15], [16]. 

The algorithm was implemented using the Matlab simulation environment, 

and the numerical results were studied to validate the dynamic formulation 

presented in the chapter.  

The results of the simulations demonstrate that the derivation of the 

explicit dynamic equations in the load space is available for a manipulator with 

six degrees of freedom, thus obtaining the actuation forces on the mobile platform 

actuators. The previously presented case studies define an imposed movement of 

the mobile platform, on a single axis, , ,x y z , or according to the attitude angles, 

, ,   , following the variation of the actuation forces on the actuators and their 

displacement during the simulation. Also, in the simulations, the stiffness of the 

actuators caused by the movement of the platform was neglected, their joints 

being considered ideal, having no frictional forces. The method described in the 

dynamic analysis is used in both direct and inverse mechanics of serial and 

parallel mechanisms in the context of autonomous control, which can be used in a 

robust model for the computer control part of the Stewart manipulator.  

As future development, the dynamic model obtained in this paper will be 

verified and validated during experimental tests using the Stewart platform PS-

6TL-1500 and a sensor system of GPS (Global Positioning System) and IMU 

(Inertial Measurement Unit). This experimental analysis will be carried out in the 
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SpaceSysLab Maneciu Laboratory of the National Institute for Aerospace 

Research “Elie Carafoli”. 

 

 
Fig. 15 INCAS – Stewart Platform PS-6TL-1500 
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