
U.P.B. Sci. Bull., Series D, Vol. 78, Iss. 4, 2016                                                    ISSN 1454-2358 

 

THE ANALYSIS OF A REACTIVE HYDROMAGNETIC 

FLUID FLOW IN A CHANNEL THROUGH A POROUS 

MEDIUM WITH CONVECTIVE COOLING 
 

Anthony Rotimi HASSAN1 *and Riette MARITZ2 
 

This paper investigates the analysis of a reactive hydromagnetic fluid 

flowing between two parallel plates through a porous medium with convective 

boundary conditions. Neglecting the consumption of the material which is 

exothermic under Arrhenius kinetics; it is assumed that the flow system exchanges 

heat with the ambient following Newton’s law of cooling. Approximate solutions of 

the nonlinear dimensionless equations governing the fluid flow are obtained using 

the traditional perturbation method and Adomian decomposition method (ADM). 

Also, the diagonal Pade approximation technique is used to determine the thermal 

criticality values as well as bifurcation conditions. The entropy generation analysis 

and effects of all – important flow properties on the fluid flow are also presented 

and discussed. 
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1. Introduction 

Over the past few decades, studies relating to analysis of a reactive 

hydromagnetic fluid flow are on the increase due to its immense applications in 

many engineering and industrial processes as described in [1] – [6] such as, 

petroleum industries, chemical engineering, etc. In a reacting material undergoing 

an exothermic reaction in which reactant consumption is neglected, heat is being 

produced in accordance with Arrhenius rate law and Newtonian cooling where 

convection forms an integral part of heat transfer due to differences in ambient 

temperatures. The process of convection not only affects heat transfer, but also 

helps maintain comfort conditions. In addition to that, [7] mentioned that thermal 

explosions occur when the reactions produce heat too rapidly for a stable balance 

between heat production and heat loss to be preserved. 

Moreover, studies involving the fluid properties in a channel through a 

porous medium have been investigated in [8] – [11], just to mention few. Also, 

studies in [12] – [16] examined fluid flowing between walls with convective 

cooling effects because of its importance in technological applications, for 
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example, the cooling processes of nuclear reactors and refrigerators where 

investigations were done on convective boundary conditions of the flow system. 

However, as discussed in [11], it is needed to find out the property of 

porous medium which measures the capacity and ability of the formation to 

transmit fluids. Hence, in the present study, the analysis of [6] and [17] are 

extended to include and investigate the effects of fluid flow through a porous 

medium and symmetrical convective cooling on the overall flow structure in a 

reactive hydromagnetic fluid between two parallel porous plates which was not 

accounted for in the previously obtained results.  

This present study has significant benefits in engineering and industrial 

processes where there is an inherent simplicity for the applications just requiring 

some provision for natural heat flow to the ambient which is often achieve by 

adequate venting on the system of flow rather than forced convection. In order to 

obtain approximate solutions for the nonlinear dimensionless equations governing 

the fluid flow, traditional perturbation method shall be used to determine the 

temperature profile. Also, entropy generation analysis shall be investigated while 

Adomian decomposition method (ADM) together with the diagonal Pade 

approximation technique shall be used to determine the thermal criticality values 

as well as bifurcation conditions of the fluid flow system. 

In the rest of this paper, the problem is formulated in section 2. The 

governing equations are solved using traditional perturbation method in section 

3.The entropy generation analysis were derived and the thermal criticality 

conditions were determined using ADM and diagonal Pade approximation 

technique in section 4. Presentations of analytical results of the problem are 

shown in tables and graphs in section 5; while section 6 gives the concluding 

remarks. 

2. Mathematical Formulation 

Let us consider the steady flow of an incompressible reactive fluid through 

a channel made up of two parallel porous plates distant 2a apart and the fluid is 

subjected to convective cooling at the boundaries. The fluid is electrically 

conducted under the influence of a transversely applied magnetic field, 0B . The x- 

and y-axes are chosen parallel and perpendicular to the plates respectively as 

shown in Fig. 1.  
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Neglecting the consumption of the reactant, the differential equations 

governing the fluid flow in non – dimensionless form as in [6] and [17] may be 

written as:  
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 The flow is symmetric about the vertical x – axis. Hence the corresponding 

boundary conditions along the channel centreline is given as 

 0
du dT

d y d y
   on 0y         and 

   00,
dT

u k h T T
d y

     on y a  .   (3) 

In equations (1) – (3), u is the axial velocity, T is the absolute Temperature, P is 

the modified pressure, μ is the fluid viscosity, σ0 is the electrical conductivity, 0B  

is the magnetic field, K is the porous permeability of the medium, k is the thermal 

conductivity, Q is the heat of reaction term, Co is the reactant species initial 

concentration, A is the reaction rate constant, E is the activation energy, R is the 

universal gas constant, h is the heat transfer coefficient, a is the channel half width 

and ,x y  is the coordinate system measured in the axial and normal directions 

respectively. It should be noted that the last term in equations (1) and (2) are due 

to the influence of porosity as in [8 – 11]. Also, the first term in equation (4) is the 

rate of heat transfer while other terms account for viscous dissipations and 

magnetic effect.   

 Introducing the following dimensionless parameters and variables:  
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 The governing boundary value problem equations (1) – (3) become the 

following in dimensionless form: 
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together with the boundary conditions  

 0
dT du
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dT
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  on 1y    (7) 

In equations (1) – (7), other variables and parameters like T0 is the wall 

temperature, G is the pressure gradient, U is the fluid characteristic velocity, δ is 

the activation energy parameter, γ is the viscous heating parameter, α is the porous 

medium permeability parameter, Br is the Brinkman number, H is the Hartmann 

number, Bi is the Biot Number, λ is the Frank – Kamenettski parameter,   is the 

wall temperature parameter and Da is the Darcy number. 

3. Perturbation Method  

 The fluid velocity equation (5) is a linear second order non-homogeneous 

differential equation that has exact solution with the appropriate boundary 

conditions as  
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Substituting (8) in (6), it will be convenient to assume a series solution in the 

Frank Kamenettski parameter due to the non-linear nature of (6) in this form 

following [18]: 
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Where 0 < λ << 1, clearly, T

T

e 1  can be Taylor’s series expanded, using the 

solution series (9) in (6) and equating the orders of λ, we obtain and solve the 

following: 
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  such that 3 3 3'(0) 0, '( (11) )T T BiT    and so on. 

Solving equations (10) – (13) give us the fluid temperature profile and the effects 

of physical aspects of the flow properties are discussed in section 5. 
 

 4.1. Entropy Generation Analysis 
 The total entropy change observed in a closed system is the sum of the 

entropy change which can be attributed to reversible heat transfer and the entropy 

change attributable to irreversibility. Although, it is difficult to directly measure 

the magnitude of irreversibility in a closed system, but can be calculated from the 

entropy generation equation. The entropy production is due to heat transfer and 

the combined effects of fluid friction and Joules dissipation. Following [3, 5, 6 

and 20], the general equation for the entropy generation per unit volume in the 

presence of a magnetic field and porous medium is given by:  
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The first term in (14) is the irreversibility due to heat transfer; the second term is 

the entropy generation due to viscous dissipation and the last two are the local 

entropy generation due to the effects of magnetic field and porosity respectively.  

We express the entropy generation number in dimensionless form using the 

existing dimensionless variables and parameter in (4) as: 
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     as the irreversibility distribution ratio.  Relation (16) shows that heat transfer 

dominates when 10  and fluid friction dominates when ϕ > 1. This is used to 

determine the contribution of heat transfer in many engineering designs.  As an 

alternative to irreversibility parameter, the Bejan number (Be) is defined as  
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 4.2. Thermal Criticality  

The analysis of the thermal criticality for the fluid flow through a porous 

medium with convective cooling is done by using Adomian Decomposition 

Method (ADM) and Pade approximation to obtain the solution of the non – linear 

boundary value problem equations governing the fluid flow.  

Using ADM, the solution of the temperature profile is given as  
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where 0 (0)a T is to be determined by using the boundary conditions.  

The ADM requires that the approximate solution is the partial sum 
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 of the following series 
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where the components 0 1 2, , ,..., kT T T T are to be determined. Writing the non – 

linear term in (18) as a series of Adomian polynomials, we have  
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such that (18) becomes  
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and some of the Adomian polynomials obtained from (20) are 
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Following [3, 4, 17 and 20] and taking the zeroth components of (21), we have  
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To this end, the diagonal form of the series solutions (19a) is evaluated using the 

built – in Pade approximant procedure in MATHEMATICA and the boundary 

conditions in (7) given as: 

 '(1) (1)T BiT         (26) 

Taking the diagonal Pade approximant of (19a) at various values leads to an 

eigenvalue problem. To show that the series converge, the unknown constant 0a is 

evaluated using values for the known parameters. The critical values of the Frank 

– Kamenettski parameter ( c ) for the non – existence of solution or thermal 

runaway for the fluid flow are presented and discussed in the next section. 
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 5. Discussion of Results 

  

 In this section, we discuss the solutions of velocity and temperature 

profiles, solution branches, entropy generation and thermal criticality for 

hydromagnetic fluid flow through a porous medium with convective cooling.  

 The rapid convergence of the series solutions of the temperature profile 

which clearly shows the efficiency and reliability in the approximation is shown 

in Table 1 while Table 2 displays the computation of the entropy generation 

analysis which indicates that the entropy generation rate is maximum at the plate 

surfaces and minimum around the core region of the channel. Also, the 

irreversibility distribution ratio ( ) shows that heat transfer dominates at upper 

and lower plate surfaces because 10  and fluid friction dominates at the 

centerline of the region because 1 .  

Table 1 

Rapid convergence of the series solutions of the Temperature Profiles 

,5.0,10,1   BiGHy  

n 
nT  





kn

n n

nT
0
  

0 0 0 

1 0.109963 0.0549816 

2 0.0476533 0.0668949 

3 0.0103951 0.0681943 

4 − 0.0052743 0.0678646 

5 − 0.0045403 0.0677161 

6 − 0.0004259 0.0677161 

Table 2 

Computation of the Entropy Generation Analysis 

1.0,5.0,10,1 1  BrBiGH   

y  
1N  2N  sN    1

1
Be 


 

-1 0.535876 0.0394614 0.575338 0.0736391 0.931412 

-0.75 0.306524 0.020341 0.326865 0.0663601 0.93777 

-0.5 0.140285 0.0150814 0.155367 0.107505 0.902931 

-0.25 0.0358832 0.0144756 0.0503588 0.40341 0.71255 

0 1.73334 × 10- 31 0.00146287 0.0146287 8.43964 × 1028 1.18488 × 10-29 

0.25 0.0358832 0.0144756 0.0503588 0.40341 0.71255 

0.5 0.140285 0.0150814 0.155367 0.107505 0.902931 

0.75 0.306524 0.020341 0.326865 0.0663601 0.93777 

1 0.535876 0.0394614 0.575338 0.0736391 0.931412 
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Table 3 

 Effect of different parameters on the development of thermal runaway 

Pade H     G   Bi 
c  

2/2 1 0.1 0.1 1 0.1 10 0.8939930073508189 

2/2 1 0.1 0.1 1 0.5 10 0.8943907315538621 

2/2 1 0.1 0.1 1 1.0 10 0.8948222921987654 

2/2 1 0.1 0.1 1 0.1 10 0.8939930073508189 

2/2 1 0.1 0.1 1 0.1 25 1.0072845560814208 

2/2 1 0.1 0.1 1 0.1 50 1.0488443355711630 

2/2 1 0.1 0.1 1 0.1 10 0.8939930073508189 

2/2 2 0.1 0.1 1 0.1 10 0.8960742476940970 

2/2 3 0.1 0.1 1 0.1 10 0.8974303789687192 

 

Meanwhile, Table 3 shows the effects of different parameters on the development 

of thermal runaway. It shows that the magnitude of thermal criticality increases 

with increasing values of porous medium term (α), convective cooling term (Bi) 

and magnetic field intensity (H) which stabilizes the fluid flow.  

 The velocity profiles with variations in porous medium term and magnetic 

field are respectively shown in Figs. 2 and 3. It is shown that the fluid velocity 

reduces with increasing values of porous medium term (α) and magnetic field 

intensity (H) which is due to the retarding effect of the porosity and magnetic 

force present in the channel. 

    
Fig. 2: Fluid velocity profile with variations      Fig. 3: Fluid velocity profile with variations 

           in porous medium term                                          in magnetic field intensity 

 

The temperature profiles are shown in Figs. 4 – 8. In fig. 4, the fluid temperature 

increases as the viscous heating parameter increases, this is caused by the 

conversion of kinetic energy in the moving fluid to internal energy. The maximum 

fluid temperature is obtained at the minimum values of magnetic field intensity 

parameter (H) as shown in fig. 5. Also, in Fig. 6, the fluid temperature reduces as 

the porous medium term increases; this is due to the reduction in fluid flow and 

the time taken for fluid to flow within the porous medium thereby reduces the 

temperature. 
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 The fluid temperature profile with variations in convective cooling term 

(Bi) is shown in figure 7; it is observed that the minimum value of temperature is 

obtained at the maximum value of Biot number due to the influence of thermal 

conductivity on the fluid temperature. Also, the fluid temperature increases as 

Frank – Kamenettski parameter (λ) increases as shown in figure 8; this is due to an 

increase in the heat generated within the flow channel. 

 

          
Fig. 4: Fluid temperature profile with variations     Fig. 5: Fluid temperature profile with variations 

           in viscous heating parameter                                              in magnetic field intensity 

 

          
Fig. 6: Fluid temperature profile with variations    Fig. 7: Fluid temperature profile with variations 

            in porous medium parameter                             in convective cooling term 

 
Fig. 8: Fluid temperature profile with variations in Frank – Kamenettski parameter 
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Figs. 9 to 12 display the variation of parameters on entropy generation rate. 

Generally, it is noticed that the entropy generation rate is at maximum at the 

surfaces and at minimum around the core region of the channel of fluid flow. In 

figure 9, the influence of porous medium parameter ( ) is clearly noticed as it 

yields an interesting result with respect to the entropy generation rate with 

increasing value of  over moving surfaces. On the other hands, Figs. 10 and 11 

showed that the entropy generation rate increases respectively with increasing 

values of Frank – Kamenettski parameter (λ) and wall temperature parameter 

( 1Br ) in the thermodynamic performance of the flow system. In Fig. 12, the 

rate of disorder is reduced with an increase in magnetic field intensity (H) 
 

      
Fig. 9: Entropy generation rate for   Fig. 10: Entropy generation rate for 

 various values of porous medium parameter          various values of wall temperature parameter 

 

      
Fig. 11: Entropy generation rate for                               Fig. 12: Entropy generation rate for 

various values of Frank – Kamenettski parameter         various values of magnetic field intensity 

 

However, Figs. 13 – 15 show the Bejan number (Be) for various 

parametric values in the channel width. The general observation is that the fluid 

friction over irreversibility dominates at the channel core region while heat 

transfer rate over irreversibility dominates at both upper and lower wall surfaces. 

It is clearly noticed that, the dominant influence of heat irreversibility of the plate 

increases with increasing values of porous medium parameter ( ) and Frank – 
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Kamenettski parameter (λ) in Figs. 13 and 14, while the reverse is the case in Fig. 

15 where heat irreversibility of the plate decreases with an increasing value of the 

wall temperature parameter ( 1Br ) 

 

    
Fig. 13: Bejan number for various                                Fig. 14: Bejan number for various 

 values of porous medium parameter                         values of Frank – Kamenettski parameter 

 

     
Fig. 15: Bejan number for various                  Fig. 16: A slice of approximate bifurcation diagram 

 values of wall temperature parameter 

 

Finally, another interesting aspect of the problem is the critical point 

shown in figure 16, a slice of approximate bifurcation diagram, it is noticed that 

the problem has upper and lower solutions at c  , a single solution at 

c  and no solution at c  . 

 

6. Conclusion 

 

The analysis of a reactive hydromagnetic fluid flow between two parallel plates 

through a porous medium with convective boundary conditions is investigated 

using the traditional perturbation method together with Adomian Decomposition 

Method (ADM) and diagonal Pade Approximant to determine the thermal 

criticality values as well as bifurcation conditions. It is observed that the fluid 

velocity reduces with increasing values of porous medium and magnetic intensity 



The analysis of a reactive hydromagnetic fluid […] porous medium with convective cooling    55 

parameters. The fluid temperature decreases with increasing values of activation 

energy, porous medium, magnetic intensity and convective cooling terms. Also, 

an increase in the convective cooling, porous medium and magnetic intensity 

fields on the fluid flow will improve stability and this will help to bring about a 

delay in the appearance of thermal runaway. 
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