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AMENABILITY MODULO AN IDEAL OF FRÉCHET ALGEBRAS
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Amenability modulo an ideal of a Banach algebra have been defined and

studied. In this paper we introduce the concept of amenability modulo an ideal of

a Fréchet algebra and investigate some known results about amenability modulo

an ideal of a Fréchet algebra. Also we show that a Fréchet algebra (A, pn)n∈N is

amenable modulo an ideal if and only if A is isomorphic to a reduced inverse limit

of amenable modulo an ideal of Banach algebras.
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1. Introduction

Some parts of theory of Banach algebras, have been introduced and studied

for Fréchet algebras. For example the notion of amenability of a Fréchet alge-

bra and their applications to harmonic analysis was introduced by Helemskii in [8]

and [9], and was covered and studied by Pirkovskii [15]. Also in [11], approximate

amenability and approximate contractibility of Fréchet algebras was introduced and

investigated. Furthermore, in [1] we and Abtahi studied weak amenability of Fréchet

algebras and generalized some results related to weak amenability of Banach algebras

for Fréchet algebras. In [2] Amini and Rahimi introduced the notion of amenability

modulo an ideal of Banach algebras. They showed that amenability of the semigroup

algebra ℓ1(S) modulo ideals by certain classes of group congruence of S is equivalent

to the amenability of S. Then Rahimi and Tahmasebi [16] continued this vertifi-

cation and studied basic properties of amenability modulo an ideal such as virtual

diagonal modulo an ideal, approximate diagonal modulo an ideal and contractibility

modulo an ideal for Banach algebras.

In the present work, we continue our study on amenability of Fréchet algebras.

We generalize some basic definitions and results about the concept of amenability

modulo an ideal in Banach algebra case for Fréchet algebras. According to the

definition of amenability modulo an ideal of Banach algebras, we introduce the

concept of amenability modulo an ideal of Fréchet algebras. Then we verified some

concept in the Banach algebra case, for Fréchet algebras. The remainder of the paper
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is organized as follows. Section 2 presents some preliminaries and basic results and

definitions about locally convex spaces and Fréchet algebras. In section 3 we define

the notion of amenability modulo an ideal for a Fréchet algebra. As the main result

of this section we investigate the relation of the amenability modulo an ideal of a

Fréchet algebra with amenability modulo an ideal of Banach algebras which form

this Fréchet algebra. More precisely we show that if A = lim←−An be an Arens-

Michael decomposition of A and I = lim←−In be an Arens-Michael decomposition of

I, then A is amenable modulo I if and only if for each n ∈ N, An is amenable

modulo In. Also we discuss about the relation between amenability modulo an ideal

of a Fréchet algebra and the amenability of the quotient algebra of this Fréchet

algebra. Moreover we provide some examples of amenable modulo an ideal of Fréchet

algebras which are not amenable. Section 4 describes the notions of locally bounded

approximate identity modulo an ideal for a Fréchet algebra. In this section we

prove that all amenable modulo an ideal Fréchet algebras have locally bounded

approximate identities modulo an ideal.

2. Preliminaries

In this section, we first exhibit basic definitions and results related to locally

convex spaces and also Fréchet algebras, which will be used throughout the paper.

We refer the reader to [5], [6], [7], [12] and [13] for these results.

By a locally convex space E we mean a topological vector space in which the

origin has a local base of absolutely convex absorbing sets. We denote by (E, pα), a

locally convex space E with a fundamental system of seminorms (pα)α.

If (E, pα)α∈A and (F, qβ)β∈B be locally convex spaces, by applying [13, Propo-

sition 22.6] a linear mapping T : E → F is continuous if and only if for each β ∈ B

there exist an α ∈ A and C > 0, such that

qβ(T (x)) ≤ Cpα(x),

for all x ∈ E. Also by [6, page 24], for locally convex spaces (E, pµ), (F, qλ) and

(G, rν), the bilinear map θ : E × F → G is jointly continuous if and only if for any

ν0 there exist µ0 and λ0 such that the bilinear map

θ : (E, pµ0)× (F, qλ0) −→ (G, rν0)

is jointly continuous. Separate continuity of a bilinear map also defined in [17].

In fact the bilinear map f : E × F → G is said to be separately continuous if

all partial maps fx : F → G and fy : E → G defined by y 7→ f(x, y) and x 7→
f(x, y), respectively, are continuous for each x ∈ E and y ∈ F . By applying [17,

chapter.III.5.1], we have the fact that separate continuity implies joint continuity

for Fréchet spaces and in particular, Banach spaces.

By a topological algebra we mean a linear associative algebra A, whose un-

derlying vector space is a topological vector space such that the multiplication

A×A −→ A, (a, b) 7→ ab
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is a separately continuous mapping; see [15]. An outstanding particular class of

topological algebras is the class of Fréchet algebras. A Fréchet algebra, denoted by

(A, pn), is a complete topological algebra, whose topology is given by the countable

family of increasing submultiplicative seminorms; see [5] and [7]. Also every closed

subalgebra of a Fréchet algebra is clearly a Fréchet algebra.

For a Fréchet algebra (A, pn), a locally convex A-bimodule is a locally convex

topological vector space X with an A-bimodule structure such that the correspond-

ing mappings are separately continuous. Let (A, pn) be a Fréchet algebra and X be

a locally convex A-bimodule. Following [7], a continuous derivation of A into X is

a continuous mapping D from A into X such that

D(ab) = a.D(b) +D(a).b,

for all a, b ∈ A. Furthermore for each x ∈ X the mapping δx : A→ X defined by

δx(a) = a.x− x.a (a ∈ A),

is a continuous derivation and is called the inner derivation associated with x.

We recall definition of inverse limit from [4]. Let (Eα)α∈Λ be a family of alge-

bras, where Λ is a directed set. Also suppose that fαβ is a family of homomorphisms

defined from Eβ into Eα for any α, β ∈ Λ, with α ≤ β. A family {(Eα, fαβ)} is called
a projective system of algebras, if it has the above relation and in addition satisfies

the following condition

fαγ = fαβ ◦ fβγ , (α, β, γ ∈ Λ, α ≤ β ≤ γ).

Now consider the cartesian product algebra F =
∏

α∈ΛEα, and a subset of F ,

E = {x = (xα) ∈ F : xα = fαβ(xβ), α ≤ β}.

Then E is the projective (or inverse) limit of the projective system {(Eα, fαβ)} and
we denote it by E = lim←−{(Eα, fαβ)} or simply E = lim←−Eα.

Now let (A, pλ) be a locally convex algebra. Obviously for each λ ∈ Λ, Nλ =

ker pλ is an ideal in A and A
Nλ

is a normed algebra. Suppose that φλ : A →
Aλ, φλ(x) = xλ = x + Nλ be the corresponding quotient map. It is clear that φλ

is a continuous surjective homomorphism. Now if λ, γ ∈ Λ with λ ≤ γ, one has

Nλ ⊆ Nγ . So that the linking maps

φλγ :
A

Nγ
→ A

Nλ
, φλγ(x+Nγ) = x+Nλ,

are well defined continuous surjective homomorphisms such that φλγ ◦ φγ = φλ.

Hence φλγ ’s have unique extentions to continuous homomorphisms between the Ba-

nach algebras Aγ and Aλ, we use the symbol φλγ for the extentions too, which Aγ is

the completion of A
Nγ

. The families ( A
Nλ

, φλγ) [respectively, (Aλ, φλγ)], form inverse

system of normed,[ respectively, Banach] algebras. We denote the corresponding

inverse limits by lim←−
A
Nλ

and lim←−Aλ. Moreover if the initial algebra A is complete,

one has

A = lim←−
A

Nλ
= lim←−Aλ,
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up to topological isomorphisms. Now let A be a Fréchet algebra with fundamental

system of increasing submultiplicative seminorms (pn)n∈N. For each n ∈ N let

φn : A → A
ker pn

be the quotient map. Then A
ker pn

is naturally a normed algebra,

normed by setting ∥φn(a)∥n = pn(a) for each a ∈ A and the completion (An, ∥.∥n)
is a Banach algebra. We call the map φn from A into An, the canonical map. It is

important to note that φn(A) is a dense subalgebra ofAn and in generalAn ̸= φn(A).

The above is the Arense-Michael decomposition of A, which expresses Fréchet

algebra as reduced inverse limit of Banach algebras. Now choose an Arens-Michael

decomposition A = lim←−An and let I be a closed ideal of A. Then it is easy to see

that I = lim←−In is an Arens-Michael decomposition of I, where φn : I → In is the

canonical map.(see [15]).

According to [15] if A is a locally convex algebra and X is a left locally convex

A-module, then a continuous seminorm q on X is m-compatible if there exists a

continuous submultiplicative seminorm p on A such that

q(a.x) ≤ p(a)q(x), (a ∈ A, x ∈ X).

Also by [14, 3.4] if A is a Fréchet algebra and X is a complete left A-module with

a jointly continuous left module action, then the topology on X can be determined

by a directed family of m-compatible seminorms.

3. Amenability modulo an ideal of a Fréchet algebra

Let A be a Banach algebra and I be a closed ideal of A. According to [2], A

is amenable modulo I, if for every Banach A-bimodule E such that I.E = E.I = 0

and every derivation D from A into E∗, there exists φ ∈ E∗ such that

D(a) = a.φ− φ.a, (a ∈ A \ I).

We commence with the definition of amenability modulo an ideal of a Fréchet alge-

bra. We extend some results of [16], for Fréchet algebras. Recall that for the algebra

A,

A.A = {a.b : a, b ∈ A}.
Also A2 is the linear span of A.A.

Definition 3.1. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A. We

call A amenable modulo I, if for every Banach A-bimodule E such that E.I = I.E =

0 each continuous derivation from A into E∗ is inner on A \ I.

Note that the concept of amenability modulo an ideal of a Fréchet algebra A

coincides with the concept of amenability modulo an ideal, in the case where A is a

Banach algebra. Also in view of [15, Theorem 9.6] each amenable Fréchet algebra is

amenable modulo I for each closed ideal I. But at the end of this section we show

that in general the converse of it, is not true. An easy computation shows that if

a Fréchet algebra A is amenable modulo I = {0}, then A is amenable. Henceforth

amenability modulo an ideal for a Fréchet algebra is a generalization of the concept

of the amenability for a Fréchet algebra.
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As for first result we extend [16, Theorem 8] for Fréchet algebras. The proof

is similar to the Banach algebra case.

Proposition 3.1. Let A be a Fréchet algebra and I be a closed ideal of A and A

be amenable modulo I. Suppose that B is a Fréchet algebra and J is a closed ideal

of B. Let φ : A → B be a continuous homomorphism with dense range such that

φ(I) ⊆ J . Then B is amenable modulo J .

Proof. Suppose that E is a Banach B-bimodule such that J.E = E.J = 0 and

D : B → E∗ is a continuous derivation. Then E becomes a Banach A-bimodule

with the module actions defined by

a.x = φ(a)x and x.a = xφ(a) (a ∈ A, x ∈ E).

Obviously I.E = E.I = 0 and also D ◦ φ : A → E∗ is a continuous derivation.

On the other hand A is amenable modulo I, so there exists η ∈ E∗ such that

(D ◦φ)(a) = a.η− η.a on A \ I. Now if b ∈ B \ J , then there exists a net (aα)α ⊆ A

such that b = limα φ(aα). Since φ(I) ⊆ J , we may assume that (aα)α ⊆ A \ I. Now

we have

D(b) = lim
α
(D ◦ φ)(aα)

= lim
α
(aα.η − η.aα)

= lim
α
(φ(aα)η − ηφ(aα))

= bη − ηb.

Thus B is amenable modulo J . �

In [15, Theorem 9.5], Pirkovskii asserts that a Fréchet algebra A is amenable if

and only if A is isomorphic to a reduced inverse limit of amenable Banach algebras.

In the following theorem, we extend this result as the main result of this section, for

amenability modulo an ideal of Fréchet algebras.

During this section, for simplicity’s sake we use the notation In = φn(I), where

φn : A→ An is the canonical map for each n ∈ N.

Theorem 3.1. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A. Then

the following assertions are equivalent;

(i) A is amenable modulo I.

(ii) For each Arens-Michael decomposition of A = lim←−An all An’s are amenable

Banach algebras modulo In’s, where I = lim←−In is an Arens-Michael decompo-

sition of I.

Proof. (i) ⇒ (ii). Let A = lim←−An be an Arens-Michael decomposition of A and A

be amenable modulo I. Since φn : A → An is a continuous homomorphism with

dense range, by Proposition 3.1, An is amenable modulo In for each n ∈ N.
(ii) ⇒ (i). Let An be amenable modulo In for each n ∈ N and let E be a Banach

A-bimodule such that E.I = I.E = 0 and D : A → E∗ be a continuous derivation.
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Since (E∗, ∥·∥) is a Banach space, continuity of D implies the existence of a constant

C > 0 and an n0 ∈ N such that

∥D(a)∥ ≤ Cpn0(a), (a ∈ A).

Since {pn}n is a fundamental system of increasing seminorms, we have ∥D(a)∥ ≤
Cpm(a), for each m ≥ n0. Thus ker pm ⊆ kerD, for each m ≥ n0, so the function

Dm :
A

ker pm
→ E∗, Dm(a+ ker pm) = Dm(am) = D(a), (a ∈ A),

is well defined and is a continuous derivation on A
ker pm

, for each m ≥ n0. The unique

extention of Dm to the Banach algebra Am is a continuous derivation is denoted by

Dm. On the other hand since (E, ∥ · ∥) is a Banach A-bimodule, the norm on E is

m-compatible, so there exists n1 ∈ N such that ∥a.x∥ ≤ pn1(a)∥x∥, for all a ∈ A and

x ∈ E. (see [15, Page 7]). Thus

∥a.x∥ ≤ pm(a)∥x∥, (a ∈ A, x ∈ E, m ≥ n1).

Then E is a Banach Am-bimodule in a natural way for each m ≥ n1.(see [15, Page

7]). In conclusion, since E.I = I.E = 0 we have the following

E.Im = Im.E = 0, (m ≥ n1),

and so

E.Im = Im.E = 0, (m ≥ n1).

Now set n = max{n1, n0}. In view of the above arguments

Dn :
A

ker pn
→ E∗, Dn(a+ ker pn) = D(a),

is a continuous derivation and In.E = E.In = 0 and the unique extention of Dn to

the Banach algebra An is a continuous derivation also denoted by Dn. Since An is

amenable modulo In, there exists φ ∈ E∗ such that

Dn(an) = an.φ− φ.an (an ∈ An \ In).

Therefore D(a) = a.φ − φ.a for each a ∈ A \ I. Note that if a = (an) /∈ I = lim←−In,
then there is an n2 ∈ N such that an2 /∈ In2 . Since the mappings φmn2 are defined by

φmn2(am) = an2 , then am /∈ Im, for eachm ≥ n2. So we can assume that an ∈ An\In
for each n ≥ n2. Therefore similar to the definition of Dn for n = max{n1, n0} we
can define Dn for n = max{n2, n1, n0}. Since E is a Banach An-bimodule in natural

way we have

D(a) = Dn(an) = an.φ− φ.an = a.φ− φ.a (a ∈ A \ I).

So A is amenable modulo I. �

The following theorem is a generalization of [2, Theorem 1]. The proof is

completely different from the Banach algebra case.

Theorem 3.2. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A. Then

the following statements hold;
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(i) If A is amenable modulo I, then A
I is amenable.

(ii) If A is amenable modulo I and I is amenable, then A is amenable.

(iii) If A
I is amenable and I2 = I, then A is amenable modulo I.

Proof. (i). Let A = lim←−An be an Arens-Michael decomposition of A and I = lim←−In
be an Arens-Michael decomposition of I. By the hypothesis A is amenable modulo

I, so by using Theorem 3.1, An is amenable modulo In, for each n ∈ N. Moreover
A
I = lim←−

An

In
is an Arens-Michael decomposition of A

I , by [4, Theorem 3.14]. The

assertion now follows from [15, Theorem 9.5] and [2, Theorem 1].

(ii). Let A = lim←−An be an Arens-Michael decomposition of A. By [15, Theo-

rem 9.5] it is sufficient to show that An is amenable for each n ∈ N, for amenability

of A. Suppose that I = lim←−In is an Arens-Michael decomposition of I. Since A is

amenable modulo I, Theorem 3.1, implies that An is amenable modulo In, for each

n ∈ N and by [15, Theorem 9.5], In, is amenable for each n ∈ N. Consequently by

[2, Theorem 1], An is amenable for each n ∈ N.
(iii). Let E be a Banach A-bimodule such that I.E = E.I = 0 and D : A→ E∗ be

a continuous derivation. Suppose that A = lim←−An is an Arens-Michael decomposi-

tion of A. Since (E∗, ∥ · ∥) is a Banach space, by similar arguments to the proof of

Theorem 3.1, there exists n ∈ N and a continuous derivation on An defined by;

Dn : An → E∗, Dn(an) = Dn(a+ ker pn) = D(a), In.E = E.In = 0.

On the other hand since φn is a continuous homomorphism we have;

In = φn(I) = φn(I
2) = φn(span{ab : a, b ∈ I})

= span{φn(ab) : a, b ∈ I}
= span{φn(a)φn(b) : a, b ∈ I}
= span{anbn : an, bn ∈ In} = I2n.

Also In.E
∗ = E∗.In = 0. Therefore In ⊆ kerDn, but kerDn is a closed subspace

of An, so In ⊆ kerDn. Thus we can define a continuous derivation D̃n : An

In
→ E∗,

by D̃n(an + In) = Dn(an). On the other hand A
I = lim←−

An

In
is an Arens-Michael

decomposition of A
I , by [4, Theorem 3.14]. Since A

I is amenable, so An

In
is an amenable

Banach algebra for each n ∈ N by [15, Theorem 9.5]. Therefore there exists ηn ∈ E∗

such that D̃n(an + In) = (an + In).ηn − ηn.(an + In) for each an ∈ An. So for each

a ∈ A \ I we have

D(a) = Dn(a+ ker pn) = Dn(an) = D̃n(an + In)

= (an + In).ηn − ηn.(an + In)

= an.ηn − ηn.an

= a.ηn − ηn.a.

Thus A is amenable modulo I. �
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Some examples of amenable modulo an ideal of Banach algebras which are not

amenable can be found in [2]. Before we proceed to examples of amenability modulo

an ideal for Fréchet algebras we give some necessary background material. We shall

give the definitions and some basic properties of semigroup algebras.

Let S be a semigroup and s ∈ S, and let δs denote the function on S which is

1 at s, and 0 elsewhere. A generic element of ℓ1(S) is of the form

f =
∑
s∈S

αsδs,
∑
s∈S
|αs| <∞.

Now consider f =
∑

r∈S αrδr and g =
∑

s∈S βsδs ∈ ℓ1(S). Set

f ⋆ g =
∑
r∈S

αrδr ⋆
∑
s∈S

βsδs =
∑
t∈S

(
∑
rs=t

αrβs)δt,

where
∑

rs=t αrβs = 0 when there are no elements r and s in S with rs = t. Then

(ℓ1(S), ⋆) is called the semigroup algebra of S. Take

∥f∥1 =
∑
s∈S
|αs|.

Then (ℓ1(S), ⋆, ∥ · ∥1) is a Banach algebra. If θ : S → T is an ephimorphism of

semigroups, then by [3] there exists a contractive ephimorphism θ∗ : ℓ1(S)→ ℓ1(T )

determined by

θ∗(δs) = δθ(s), (s ∈ S).

Let S be a semigroup. A relation R on the set S is called left[respectively, right]

compatible if s, t, a ∈ S and (s, t) ∈ R implies that (as, at) ∈ R)[ respectively,

(sa, ta) ∈ R] and it is called compatible if s, t, s
′
, t

′ ∈ S and (s, t) ∈ R and (s
′
, t

′
) ∈ R

implies (ss
′
, tt

′
) ∈ R. A compatible equivalence relation is called congruence. By

[10, Theorem 1.5.2] if ρ is a congruence on the semigroup S, then the quotient set
S
ρ is a semigroup with respect to the operation defined by

(aρ)(bρ) = (ab)ρ, (a, b ∈ S).

A congruence ρ on S is called a group congruence on S if S
ρ is a group. We denote the

least group congruence on S by σ. Also we denote the set of idempotent elements of

S by E(S). A semigroup S is called an E-semigroup if E(S) forms a subsemigroup

of S and E-inverse if for all s ∈ S there exists t ∈ S such that st ∈ E(S). An inverse

semigroup S is called E-unitary if for each s ∈ S and e ∈ E(S), es ∈ E(S) implies

s ∈ E(S). According to [2], if R is a ring and S is a semigroup, the semigroup ring

R[S] is the ring whose elements are of the form
∑

s∈S rss, where rs ∈ R and all but

infinitely many of the cofficient are zero. If R = K is a field, then K[S] is called a

semigroup algebra. Now let S be a semigroup, ρ a congruence on S and π : S → S
ρ

be the quotient map. Then one can extends π to an algebra ephimorphim

π∗ : K[S]→ K[
S

ρ
],

whose kernel Iρ is the ideal in K[S], generated by the set

{s− t, s, t ∈ S with (s, t) ∈ ρ}.



Amenability modulo an ideal of  Fréchet algebras 133

Hence K[Sρ ]
∼= K[S]

Iρ
.

Now we provide some examples of Fréchet algebras which are amenable modulo

an ideal I, but are not amenable.

Example 3.1. Let S = (Sn, θ
m
n )n,m∈N be an inverse sequence of semigroups such

that the linking maps θmn are onto. Set L1(S) = lim←−(ℓ
1(Sn), (θ

m
n )∗). Clearly L1(S) is

a Fréchet algebra.

(1) If Sn is an amenable E-unitary inverse semigroup with E(Sn) infinite, then

ℓ1(Sn) is not amenable but is amenable modulo Iσn, by [2] . So L1(S) is

not amenable by [15, Theorem 9.5], but by applying Theorem 3.1, L1(S) is

amenable modulo Iσ = lim←−Iσn.

(2) For each n ∈ N, let Gn be an amenable group with identity 1n and T be an

abelian semigroup with infinitely many idempotents which is not an inverse

semigroup. Also set Sn = Gn × T . Then by applying [2, Example (iii)],

for each n ∈ N, ℓ1(Sn) is amenable modulo Iσn but is not amenable Banach

algebra. Therefore L1(S) is not amenable by [15, Theorem 9.5], but by applying

Theorem3.1, L1(S) is amenable modulo Iσ = lim←−Iσn.

All amenable Fréchet algebras are amenable modulo I for each closed ideal

I. In the next example we give a Fréchet algebra which is amenable by [15,

Corollary 9.8].

(3) All nuclear σ− C∗−algebras are amenable and so amenable modulo an ideal I

for each closed ideal I. (see [15, Corollary 9.8] for more details)

In the next example we give a Fréchet algebra which is not amenable and so

is not amenable modulo I = {0}.
(4) Let C∞([0, 1]) be the space of infinitely many differentiable functions on [0, 1]

with pointwise multiplication.Then C∞([0, 1]) is a Fréchet algebra with respect

to the system of seminorms pn given by

pn(f) = 2n−1 sup{|f (k)(x)| : x ∈ [0, 1], k = 0, ..., n− 1}.

C∞([0, 1]) is not weakly amenable by [1, Theorem 1.3] and so is not amenable

by [15, Theorem 9.6]. Therefore C∞([0, 1]) is not amenable modulo I = {0}.

4. Locally bounded approximate identity modulo an ideal of a

Fréchet algebra

We recall from [16] the concept of bounded approximate identity modulo an

ideal for a Banach algebra. A Banach algebra A has a bounded approximte identity

modulo I if there exists a bounded net (uα)α in A such that

lim
α

uαa = lim
α

auα = a, (a ∈ A \ I).

Also in [15] Pirkovskii asserts the concept of locally bounded approximate identity

for a locally convex algebra. Similar to these definitions we define bounded and

locally bounded approximate identities modulo an ideal for a Fréchet algebra.
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Definition 4.1. Let (A, pλ) be a locally convex algebra and suppose that I is a

closed ideal of A. A bounded net (eα)α is a bounded approximate identity modulo

I for A, if

lim
α

pλ(aeα − a) = lim
α

pλ(eαa− a) = 0, (a ∈ A \ I, λ ∈ Λ).

Furthermore we say that A has a locally bounded approximate identity modulo I,

if there exists a family {Cλ : λ ∈ Λ} of positive real numbers such that for each

finite set F ⊆ A \ I, each λ ∈ Λ, and each ε > 0 there exists b ∈ A with pλ(b) ≤ Cλ

and pλ(ab− a) < ε and pλ(ba− a) < ε, for all a ∈ F .

We commence with the following proposition which gives us necessary and

sufficient conditions for the exitence of a bounded approximate identity modulo an

ideal for a Fréchet algebra.

Proposition 4.1. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A. A

has a bounded approximate identity modulo I if and only if there exists a bounded

set B ⊆ A such that for each finite set F ⊆ A \ I, each n ∈ N and each ε > 0 there

exists b ∈ B such that

pn(ab− a) < ε and pn(ba− a) < ε,

for each a ∈ F .

Proof. First suppose that (eα)α ⊆ A is a bounded approximate identity modulo I

for A. So for each n ∈ N and each ε > 0 there exists α0 such that for each α ≥ α0

we have

pn(aeα − a) < ε and pn(eαa− a) < ε, (a ∈ A \ I).
Now set B = (eα)α ⊆ A and let n ∈ N, ε > 0 and F ⊆ A\I be a finite set. Therefore

there exists b = mα which α ≥ α0 such that

pn(ab− a) < ε and pn(ba− a) < ε, (a ∈ F ).

Conversely, suppose that there exists a bounded set B ⊆ A such that for each finite

set F ⊆ A \ I, each n ∈ N and each ε > 0 there exists b ∈ B with

pn(ab− a) < ε and pn(ba− a) < ε, (a ∈ F ).

Now take

S = {(n, ε, F ) : n ∈ N, ε > 0, F ⊆ A \ I is a finite set}.

So S is a directed set as follows:

(n1, ε1, F1) ≤ (n2, ε2, F2) ⇔ n1 ≤ n2, ε2 ≤ ε1, F1 ⊆ F2.

For each α = (n, ε, F ), there exists b = eα ∈ B and so we have a bounded net

(eα) ⊆ A. Furthermore let k ∈ N and ε > 0 and the finite set F ⊆ A\I be arbitrary.

Therefore for each (n, δ, C) ≥ (k, ε, F ) we have

pk(aeα − a) ≤ pn(aeα − a) < δ < ε,

pk(eαa− a) ≤ pn(eαa− a) < δ < ε, (a ∈ A \ I).
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So A has a bounded approximate identity modulo I. �

Remark 4.1. In view of Proposition 4.1, if A is normable, then the notions of

bounded and locally bounded approximate identity modulo I are equivalent.

By [16, Theorem 4] it is known that if a Banach algebra A is amenable modulo

an ideal I, it has a bounded approximate identity modulo I. The following results

are interesting in theirs own right. In fact we use them to extend [16, Theorem 4]

for Fréchet algebrs.

Proposition 4.2. Let φ : A → B be a continuous homomorphism of Fréchet al-

gebras with dense range and let I be a closed ideal of A and J be a closed ideal of

B such that φ(I) ⊆ J . Suppose that A has a locally bounded approximate identity

modulo I. Then B has a locally bounded approximate identity modulo J .

Proof. Let {pn : n ∈ N} be a family of fundamental system of seminorms generating

the topology of A and {qm : m ∈ N} generating the topology of B. Continuity of φ

implies for each m ∈ N the existence of km > 0 and n0 ∈ N such that

qm(φ(a)) ≤ kmpn0(a), (a ∈ A).

Since A has a locally bounded approximate identity modulo I one concludes from

Definition 4.1, there exists a family {Cn : n ∈ N} of positive real numbers, such

that for each finite set F ⊆ A \ I, each n ∈ N and each ε > 0 there exists a
′ ∈ A

such that

pn(a
′
) ≤ Cn and pn(a− aa

′
) <

ε

3km
and pn(a− a

′
a) <

ε

3km
,

for each a ∈ F . Without loss of generality we may assume that km and Cn0 > 1 for

each m ∈ N. Now consider the family {kmCn0 : m ∈ N} of positive real numbers.

Given a finite set F
′ ⊆ B \ J , ε > 0 and m ∈ N, find a finite set F ⊆ A \ I such

that, qm(φ(a)− b)) < ε
3kmCn0

, for each b ∈ F
′
and a ∈ F . Now set b

′
= φ(a

′
). From

our assumption it follows that

qm(b
′
) = qm(φ(a

′
)) ≤ kmpn0(a

′
) ≤ kmCn0

and

qm(b− bb
′
) ≤ qm(φ(a− aa

′
)) + qm(b− φ(a)) + qm((φ(a)− b)b

′
)

≤ kmpn0(a− aa
′
) +

ε

3
+ qm(φ(a)− b)qm(b

′
)

≤ km
ε

3km
+

ε

3
+

ε

3kmCn0

kmCn0

= ε,

and similarly qm(b− b
′
b) < ε, for each b ∈ F

′
. �

By using Proposition 4.2 and [15, Remark 6.2] the following is immediate.

Corollary 4.1. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A. If A

has a locally bounded approximate identity modulo I, then A
I has a locally bounded

approximate identity.
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An immediate cosequence of Proposition 4.2 and Remark 4.1 is the following

result.

Corollary 4.2. Let A and B be two Banach algebras and φ : A→ B be a continuous

homomorphism with dense range. Suppose that I is a closed ideal of A and J is a

closed ideal of B such that φ(I) ⊆ J . If A has a bounded approximate identity

modulo I, then B has a bounded approximate identity modulo J .

It is not hard to see the following lemma holds.

Lemma 4.1. Let D be a dense subspace of normed algebra A. If A has a bounded

approximate identity (eα)α modulo I, then A has a bounded approximate identity

(fµ)µ modulo I such that fµ ∈ D for each µ.

In the sequel we shall use the notation In = φn(I), where φn : A→ An is the

canonical map.

Proposition 4.3. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A.

Then the following statements are equivalent;

(i) A has a locally bounded approximate identity modulo I.

(ii) For each Banach algebra B such that there exists a continuous homomorphism

φ : A → B with dense range, B has a bounded approximate identity modulo

J , where J is a closed ideal of B such that φ(I) ⊆ J .

Proof. (i)⇒ (ii). This follows by using Proposition 4.2 and viewing Remark 4.1.

(ii) ⇒ (i). Let n ∈ N be arbitrary and let A = lim←−An be an Arens-Michael de-

composition of A and I = lim←−In be an Arens-Michael decomposition of I. Since

φn : A → An is a continuous homomorphism with dense range, by assumption

the Banach algebra An has a bounded approximate identity modulo In. Hence by

Lemma 4.1, the same is true for the dense subalgebra φn(A) ⊆ An. Therefore

Proposition 4.1, yields the exitence of a bounded set B ⊆ A such that for each finite

set F
′ ⊆ φn(A) \ In and each ε > 0 there exists b ∈ B such that

∥b′φn(b)− b
′∥n < ε and ∥φn(b)b

′ − b
′∥n < ε,

for each b
′ ∈ F

′
. Note that if F = {a1, a2, ..., am} ⊆ A \ I is a finite set, then there

exists n0 ∈ N such that for each n ≥ n0, a
i
n /∈ In, where ai = (ain) and 1 ≤ i ≤ m.

In fact if ai /∈ I, then there exists ni ∈ N, such that aini
/∈ Ini . So for each n ≥ ni,

ain /∈ In. Now put n0 = max{ni : 1 ≤ i ≤ m}. Therefore for each n ≥ n0,

ain /∈ In. In the sequel take a finite set F ⊆ A \ I, k ∈ N and ε > 0. Then for each

n ≥ max{k, n0}, we can find a finite set F
′
= φn(F ) ⊆ φn(A) \ In, such that

pk(ab− a) ≤ pn(ab− a)

= ∥φn(ab− a)∥n
= ∥φn(a)φn(b)− φn(a)∥n
< ε
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and

pk(ba− a) ≤ pn(ba− a)

= ∥φn(ba− a)∥n
= ∥φn(b)φn(a)− φn(a)∥n
< ε,

for each a ∈ F . Since b ∈ B and B is a bounded set, for each k ∈ N there exists

Ck > 0 such that pk(b) ≤ Ck. By Definition 4.1, this completes the proof. �

Corollary 4.3. Let (A, pn) be a Fréchet algebra and I be a closed ideal of A. Suppose

that A = lim←−An be an Arens-Michael decomposition of A and I = lim←−In is an Arens-

Michael decomposition of I. Then A has a locally bounded approximate identity

modulo I if and only if each An has a bounded approximate identity modulo In.

Proof. Since φn : A→ An is a continuous homomorphism with dense range, Propo-

sition 4.3 implies that if A has a locally bounded approximate identity modulo I,

then An has a bounded approximate identity modulo In.

Conversely, suppose that each An has a bounded approximate identity modulo In
and B be a Banach algebra such that there exists a continuous homomorphism

Φ : A → B with dense range. Arguing as in the proof of Theorem 3.1, we deduce

that there exists a continuous homomorphism with dense range Φn : An → B, for

some n ∈ N. On the other hand if J is a closed ideal of B such that Φ(I) ⊆ J , we

have Φn(In) = Φ(I) ⊆ J . Therefore by Corollary 4.2, B has a bounded approximate

identity modulo J such that Φ(I) ⊆ J . Thus by using Proposition 4.3, A has a

locally bounded approximate identity modulo I. �

Now we are in position to prove [16, Theorem 4] for Fréchet algebras.

Corollary 4.4. Let A be a Fréchet algebra and I be a closed ideal of A. If A is

amenable modulo I, then A has a locally bounded approximate identity modulo I.

Proof. Suppose that A = lim←−An be an Arens-Michael decomposition of A and I =

lim←−In be an Arens-Michael decomposition of I. Since A is amenable modulo I, each

An is amenamble modulo In, by Theorem 3.1 . So An has a bounded approximate

identity modulo In for each n ∈ N, by [16, Theorem 4]. In view of Corollary 4.3,

this completes the proof. �
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