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AMENABILITY MODULO AN IDEAL OF FRECHET ALGEBRAS

S. Rahnama! and A.Rejali?

Amenability modulo an ideal of a Banach algebra have been defined and
studied. In this paper we introduce the concept of amenability modulo an ideal of
a Fréchet algebra and investigate some known results about amenability modulo
an ideal of a Fréchet algebra. Also we show that a Fréchet algebra (A, pn)nen is
amenable modulo an ideal if and only if A is isomorphic to a reduced inverse limit
of amenable modulo an ideal of Banach algebras.
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1. Introduction

Some parts of theory of Banach algebras, have been introduced and studied
for Fréchet algebras. For example the notion of amenability of a Fréchet alge-
bra and their applications to harmonic analysis was introduced by Helemskii in [8]
and [9], and was covered and studied by Pirkovskii [15]. Also in [11], approximate
amenability and approximate contractibility of Fréchet algebras was introduced and
investigated. Furthermore, in [1] we and Abtahi studied weak amenability of Fréchet
algebras and generalized some results related to weak amenability of Banach algebras
for Fréchet algebras. In [2] Amini and Rahimi introduced the notion of amenability
modulo an ideal of Banach algebras. They showed that amenability of the semigroup
algebra ¢1(.5) modulo ideals by certain classes of group congruence of S is equivalent
to the amenability of S. Then Rahimi and Tahmasebi [16] continued this vertifi-
cation and studied basic properties of amenability modulo an ideal such as virtual
diagonal modulo an ideal, approximate diagonal modulo an ideal and contractibility
modulo an ideal for Banach algebras.

In the present work, we continue our study on amenability of Fréchet algebras.
We generalize some basic definitions and results about the concept of amenability
modulo an ideal in Banach algebra case for Fréchet algebras. According to the
definition of amenability modulo an ideal of Banach algebras, we introduce the
concept of amenability modulo an ideal of Fréchet algebras. Then we verified some
concept in the Banach algebra case, for Fréchet algebras. The remainder of the paper
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is organized as follows. Section 2 presents some preliminaries and basic results and
definitions about locally convex spaces and Fréchet algebras. In section 3 we define
the notion of amenability modulo an ideal for a Fréchet algebra. As the main result
of this section we investigate the relation of the amenability modulo an ideal of a
Fréchet algebra with amenability modulo an ideal of Banach algebras which form
this Fréchet algebra. More precisely we show that if A = @An be an Arens-
Michael decomposition of A and I = limI,, be an Arens-Michael decomposition of
I, then A is amenable modulo I if and only if for each n € N, A,, is amenable
modulo I,,. Also we discuss about the relation between amenability modulo an ideal
of a Fréchet algebra and the amenability of the quotient algebra of this Fréchet
algebra. Moreover we provide some examples of amenable modulo an ideal of Fréchet
algebras which are not amenable. Section 4 describes the notions of locally bounded
approximate identity modulo an ideal for a Fréchet algebra. In this section we
prove that all amenable modulo an ideal Fréchet algebras have locally bounded
approximate identities modulo an ideal.

2. Preliminaries

In this section, we first exhibit basic definitions and results related to locally
convex spaces and also Fréchet algebras, which will be used throughout the paper.
We refer the reader to [5], [6], [7], [12] and [13] for these results.

By a locally convex space E we mean a topological vector space in which the
origin has a local base of absolutely convex absorbing sets. We denote by (F,ps), a
locally convex space E with a fundamental system of seminorms (pq)q-

If (E,pa)aca and (F, qg)sep be locally convex spaces, by applying [13, Propo-
sition 22.6] a linear mapping 7' : F — F' is continuous if and only if for each g € B
there exist an o € A and C' > 0, such that

q3(T(x)) < Cpal(),

for all z € E. Also by [6, page 24], for locally convex spaces (E,p,), (F,q\) and
(G,ry,), the bilinear map 0 : E' x F' — G is jointly continuous if and only if for any
Vg there exist pg and Ag such that the bilinear map

0 : (Eap,uo) X (F7q>\o) — (Gvruo)

is jointly continuous. Separate continuity of a bilinear map also defined in [17].
In fact the bilinear map f : £ x F — (G is said to be separately continuous if
all partial maps f, : FF — G and fy, : E — G defined by y — f(z,y) and z —
f(z,y), respectively, are continuous for each z € F and y € F. By applying [17,
chapter.II1.5.1], we have the fact that separate continuity implies joint continuity
for Fréchet spaces and in particular, Banach spaces.

By a topological algebra we mean a linear associative algebra A, whose un-
derlying vector space is a topological vector space such that the multiplication

AxA— A, (a,b)+— ab
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is a separately continuous mapping; see [15]. An outstanding particular class of
topological algebras is the class of Fréchet algebras. A Fréchet algebra, denoted by
(A,pn), is a complete topological algebra, whose topology is given by the countable
family of increasing submultiplicative seminorms; see [5] and [7]. Also every closed
subalgebra of a Fréchet algebra is clearly a Fréchet algebra.

For a Fréchet algebra (A, py,), a locally convex A-bimodule is a locally convex
topological vector space X with an A-bimodule structure such that the correspond-
ing mappings are separately continuous. Let (A, p,) be a Fréchet algebra and X be
a locally convex A-bimodule. Following [7], a continuous derivation of A into X is
a continuous mapping D from A into X such that

D(ab) = a.D(b) + D(a).b,
for all a,b € A. Furthermore for each z € X the mapping ¢, : A — X defined by
dz(a) =ax—x.a (a€A),

is a continuous derivation and is called the inner derivation associated with x.

We recall definition of inverse limit from [4]. Let (Eq)aea be a family of alge-
bras, where A is a directed set. Also suppose that f,z is a family of homomorphisms
defined from Ejg into E, for any a, f € A, with o < 5. A family {(Eq, fag)} is called
a projective system of algebras, if it has the above relation and in addition satisfies
the following condition

fa'y:faﬂofﬂw (Oé,,B,’YEA,O{SﬁS’Y)
Now consider the cartesian product algebra F' =[] cx Ea, and a subset of F,
E={x=(z4) € F:xq= fap(xg), o <p}.
Then E is the projective (or inverse) limit of the projective system {(Ey, fo3)} and
we denote it by F = @{(Ea, fap)} or simply E = NmFE,.

Now let (A,py) be a locally convex algebra. Obviously for each A € A, N, =
kerp, is an ideal in A and NAA is a normed algebra. Suppose that ¢y : A —
Ax,oa(x) = ) = x + Ny be the corresponding quotient map. It is clear that oy
is a continuous surjective homomorphism. Now if A\;v € A with A < ~, one has
Ny € N,. So that the linking maps

. ‘A %
Py : ny N>\7

are well defined continuous surjective homomorphisms such that ¢y, o ¢, = @\.

QD)\A/(m' +NA/) =x+ N)\,

Hence ¢),’s have unique extentions to continuous homomorphisms between the Ba-
nach algebras A and A), we use the symbol ¢, for the extentions too, which A, is
the completion of NAW. The families (NAA, ©xy) [respectively, (Ay, ¢ay)], form inverse
system of normed,| respectively, Banach] algebras. We denote the corresponding
inverse limits by @NAA and @AA. Moreover if the initial algebra A is complete,
one has

A :
A=l =,
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up to topological isomorphisms. Now let A be a Fréchet algebra with fundamental
system of increasing submultiplicative seminorms (p,)nen. For each n € N let
on A — ﬁ be the quotient map. Then ﬁ is naturally a normed algebra,
normed by setting ||¢n(a)||n = pn(a) for each a € A and the completion (Ay, ||.||n)
is a Banach algebra. We call the map ¢,, from A into A,, the canonical map. It is
important to note that ¢, (A) is a dense subalgebra of A,, and in general A,, # ¢, (A).

The above is the Arense-Michael decomposition of A, which expresses Fréchet
algebra as reduced inverse limit of Banach algebras. Now choose an Arens-Michael
decomposition A = @An and let I be a closed ideal of A. Then it is easy to see
that I = L&nﬂ is an Arens-Michael decomposition of I, where ¢, : I — I, is the
canonical map.(see [15]).

According to [15] if A is a locally convex algebra and X is a left locally convex
A-module, then a continuous seminorm ¢ on X is m-compatible if there exists a
continuous submultiplicative seminorm p on A such that

q(a.z) < pla)g(z), (a€A,zeX).

Also by [14, 3.4] if A is a Fréchet algebra and X is a complete left A-module with
a jointly continuous left module action, then the topology on X can be determined
by a directed family of m-compatible seminorms.

3. Amenability modulo an ideal of a Fréchet algebra

Let A be a Banach algebra and I be a closed ideal of A. According to [2], A
is amenable modulo I, if for every Banach A-bimodule E such that I.EE = E.] =0
and every derivation D from A into E*, there exists ¢ € E* such that

D(a) =a.p—p.a, (acA\I).

We commence with the definition of amenability modulo an ideal of a Fréchet alge-
bra. We extend some results of [16], for Fréchet algebras. Recall that for the algebra
A,

AA={ab: a,bec A}
Also A? is the linear span of A.A.

Definition 3.1. Let (A, p,) be a Fréchet algebra and I be a closed ideal of A. We
call A amenable modulo I, if for every Banach A-bimodule F such that F.I = [.E =
0 each continuous derivation from A into E* is inner on A \ I.

Note that the concept of amenability modulo an ideal of a Fréchet algebra A
coincides with the concept of amenability modulo an ideal, in the case where A is a
Banach algebra. Also in view of [15, Theorem 9.6] each amenable Fréchet algebra is
amenable modulo [ for each closed ideal I. But at the end of this section we show
that in general the converse of it, is not true. An easy computation shows that if
a Fréchet algebra A is amenable modulo I = {0}, then A is amenable. Henceforth
amenability modulo an ideal for a Fréchet algebra is a generalization of the concept
of the amenability for a Fréchet algebra.
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As for first result we extend [16, Theorem 8| for Fréchet algebras. The proof
is similar to the Banach algebra case.

Proposition 3.1. Let A be a Fréchet algebra and I be a closed ideal of A and A
be amenable modulo I. Suppose that B is a Fréchet algebra and J is a closed ideal

of B. Let ¢ : A — B be a continuous homomorphism with dense range such that
o(I) C J. Then B is amenable modulo J.

Proof. Suppose that E is a Banach B-bimodule such that JE = E.J = 0 and
D : B — E* is a continuous derivation. Then F becomes a Banach A-bimodule
with the module actions defined by

ax=epla)xr and za=zpla) (a€A,zek).

Obviously I.LE = E.I = 0 and also Doy : A — E* is a continuous derivation.
On the other hand A is amenable modulo I, so there exists n € E* such that
(Dog)(a) =an—naon A\I. Nowifbe B\ J, then there exists a net (ay)o C A
such that b = lim,, ¢(aq). Since p(I) C J, we may assume that (aq)q €A\ 1. Now
we have

D) = lior}l(D op)(aq)
= ligl(aa.n —1N.0q)
= lim(p(aa)n — np(aa))
= bn—nb.
Thus B is amenable modulo J. D

In [15, Theorem 9.5], Pirkovskii asserts that a Fréchet algebra A is amenable if
and only if A is isomorphic to a reduced inverse limit of amenable Banach algebras.
In the following theorem, we extend this result as the main result of this section, for
amenability modulo an ideal of Fréchet algebras.

During this section, for simplicity’s sake we use the notation I,, = ¢, (I), where
on : A — Ay is the canonical map for each n € N.

Theorem 3.1. Let (A, py) be a Fréchet algebra and I be a closed ideal of A. Then
the following assertions are equivalent;

(i) A is amenable modulo 1.

(ii) For each Arens-Michael decomposition of A = T&lﬂn all Ay’s are amenable
Banach algebras modulo I,,’s, where I = @E is an Arens-Michael decompo-
sition of I.

Proof. (i) = (ii). Let A = ImA, be an Arens-Michael decomposition of A and A
be amenable modulo I. Since ¢, : A — A, is a continuous homomorphism with
dense range, by Proposition 3.1, A,, is amenable modulo I,, for each n € N.

(ii) = (i). Let A, be amenable modulo I,, for each n € N and let E be a Banach
A-bimodule such that .l = I.F =0 and D : A — E* be a continuous derivation.
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Since (E*, ||-||) is a Banach space, continuity of D implies the existence of a constant
C > 0 and an ng € N such that

D) < Cppola),  (a€A).

Since {pp}n is a fundamental system of increasing seminorms, we have ||D(a)| <
Cpm(a), for each m > ng. Thus ker p,,, C ker D, for each m > ng, so the function

nt e = ' Dylactkerpy) = Dyfan) = D(a), (a € A),

is well defined and is a continuous derivation on ﬁ, for each m > ng. The unique
extention of D,, to the Banach algebra A,, is a continuous derivation is denoted by
D,y,. On the other hand since (E, || - ||) is a Banach A-bimodule, the norm on E is
m-~compatible, so there exists n; € N such that ||a.z|| < pp, (a)|/z]], for all a € A and
x € E. (see [15, Page 7]). Thus

la.z|| < pm(a)|zll, (a€A, € E, m>n).

Then F is a Banach A,,-bimodule in a natural way for each m > nj.(see [15, Page
7]). In conclusion, since E.I = I.E = 0 we have the following

E.l,=1,E=0, (m>n),
and so

El,=1,E=0, (m2>n).
Now set n = max{ni,ng}. In view of the above arguments

A

n - @ — E*,  Dyp(a+kerp,) = D(a),

is a continuous derivation and I,,.E = E.I,, = 0 and the unique extention of D,, to
the Banach algebra A,, is a continuous derivation also denoted by D,,. Since A,, is
amenable modulo I,,, there exists ¢ € E* such that

Dy(an) = an-¢ — p.an  (an € Ay \E)

Therefore D(a) = a.p — p.a for each a € A\ I. Note that if a = (ay) ¢ I = @E,

then there is an ny € N such that a,, ¢ I,,,. Since the mappings ,,,, are defined by
O (Am) = Gn,, then a,, ¢ I, for each m > ny. So we can assume that a,, € A,\I,
for each n > ny. Therefore similar to the definition of D,, for n = max{ni,no} we
can define D,, for n = max{ng,n1,np}. Since E is a Banach A,-bimodule in natural
way we have

D(a) = Dy(an) = an.p —p.an = a.p —p.a (a € A\I).
So A is amenable modulo I. O

The following theorem is a generalization of [2, Theorem 1]. The proof is
completely different from the Banach algebra case.

Theorem 3.2. Let (A, py) be a Fréchet algebra and I be a closed ideal of A. Then
the following statements hold;
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(i) If A is amenable modulo I, then f% is amenable.
(ii) If A is amenable modulo I and I is amenable, then A is amenable.
(ili) If 4 s amenable and I* = I, then A is amenable modulo I.

Proof. (i). Let A = l'&lfln be an Arens-Michael decomposition of A and I = @E
be an Arens-Michael decomposition of I. By the hypothesis A is amenable modulo
I, so by using Theorem 3.1, A, is amenable modulo I,,, for each n € N. Moreover
f% = L% is an Arens-Michael decomposition of f%, by [4, Theorem 3.14]. The
assertion now follows from [15, Theorem 9.5] and [2, Theorem 1].

(7i). Let A = limA;, be an Arens-Michael decomposition of A. By [15, Theo-

rem 9.5] it is sufficient to show that A,, is amenable for each n € N, for amenability
of A. Suppose that I = @E is an Arens-Michael decomposition of I. Since A is
amenable modulo I, Theorem 3.1, implies that A,, is amenable modulo I,,, for each
n € N and by [15, Theorem 9.5], I, is amenable for each n € N. Consequently by
[2, Theorem 1], A,, is amenable for each n € N.
(7i7). Let E be a Banach A-bimodule such that I.E = E.] =0 and D : A — E* be
a continuous derivation. Suppose that A = @An is an Arens-Michael decomposi-
tion of A. Since (E*,|| - ||) is a Banach space, by similar arguments to the proof of
Theorem 3.1, there exists n € N and a continuous derivation on A,, defined by;

D, : A, = E*, Dy(a,) = Dy(a+kerp,) = D(a), I,.E=E.I,=0.
On the other hand since ¢, is a continuous homomorphism we have;

In=on(I) = p,(I*) = ou(spanfab: a,beI})
= span{pp(ab): a,bel}
= span{pn(a)pn(b) : a,be I}
= span{anby, : an,by € I,} = I
Also I,.E* = E*.I, = 0. Therefore I, C ker D,,, but ker D,, is a clgsed subspace
of Ay, so I, C ker D,,. Thus we can define a continuous derivation D,, : % — E*,
by lf)vn(an +I,) = Dp(ay). On the other hand % = @% is an Arens-Michael

decomposition of /71, by [4, Theorem 3.14]. Since le is amenable, so “;l:" is an amenable

Banach algebra for each n € N by [15, Theorem 9.5]. Therefore there exists mn € EF
such that Dy,(a, + I,,) = (an + 1) — Mn.(an + I,,) for each a, € A,,. So for each
a € A\ I we have

D(a) = Dyp(a+kerp,) = Dy(a,) = Dpla, + 1)
(an + In) 1 — Mn-(an + In)
AnMp — Mn-Gp,
= a.n, — ..

Thus A is amenable modulo I. OJ



132 S. Rahnama, A.Rejali

Some examples of amenable modulo an ideal of Banach algebras which are not
amenable can be found in [2]. Before we proceed to examples of amenability modulo
an ideal for Fréchet algebras we give some necessary background material. We shall
give the definitions and some basic properties of semigroup algebras.

Let S be a semigroup and s € S, and let Js denote the function on .S which is
1 at s, and 0 elsewhere. A generic element of ¢1(S) is of the form

f= Zoz555, Z lag| < o0.

ses ses
Now consider f =3 cqa6, and g =Y ¢ Bs0s € £1(S). Set

f*g = Zar(sr *Z/Bs(ss = Z(Z arﬁs)ét,

res sesS teS rs=t

where ), a,8s = 0 when there are no elements r and s in S with 7s = ¢. Then
(£1(S),*) is called the semigroup algebra of S. Take

171 =3 Jal.

seS

Then (¢£1(S),*,| - ||l1) is a Banach algebra. If # : S — T is an ephimorphism of
semigroups, then by [3] there exists a contractive ephimorphism 6, : £1(S) — ¢}(T)
determined by
0+(0s) = dg(s), (s €S).

Let S be a semigroup. A relation R on the set S is called left[respectively, right]
compatible if s,t,a € S and (s,t) € R implies that (as,at) € R)[ respectively,
(sa,ta) € R] and it is called compatible if 5,¢,5 ;¢ € S and (s,t) € Rand (s ,t') € R
implies (ss/, tt,) € R. A compatible equivalence relation is called congruence. By
[10, Theorem 1.5.2] if p is a congruence on the semigroup S, then the quotient set
% is a semigroup with respect to the operation defined by

(ap)(bp) = (abp, (a,b€ S).
A congruence p on S is called a group congruence on S if % is a group. We denote the
least group congruence on S by o. Also we denote the set of idempotent elements of
S by E(S). A semigroup S is called an E-semigroup if F(S) forms a subsemigroup
of S and E-inverse if for all s € S there exists ¢ € S such that st € E(S). An inverse
semigroup S is called E-unitary if for each s € S and e € E(S), es € E(S) implies
s € E(S). According to [2], if R is a ring and S is a semigroup, the semigroup ring
R[S] is the ring whose elements are of the form ) _g7ss, where 74 € R and all but

infinitely many of the cofficient are zero. If R = K is a field, then KS] is called a
S

semigroup algebra. Now let .S be a semigroup, p a congruence on S and 7 : S — >

be the quotient map. Then one can extends 7 to an algebra ephimorphim
S
et K[S] = K[—],
P
whose kernel I, is the ideal in K[S], generated by the set

{s—t, s,teS with (s,t) € p}.
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Hence K[%] = %ﬂ.
Now we provide some examples of Fréchet algebras which are amenable modulo

an ideal I, but are not amenable.

Example 3.1. Let 8 = (Sy, 0, )nmen be an inverse sequence of semigroups such
that the linking maps 0™ are onto. Set L'(8) = @(61(571), (0™),). Clearly L(8) is
a Fréchet algebra.

(1) If S, is an amenable E-unitary inverse semigroup with E(S,) infinite, then
01(S,) is not amenable but is amenable modulo I,,, by [2] . So LY(8) is
not amenable by [15, Theorem 9.5], but by applying Theorem 3.1, L(8) is
amenable modulo I, = @Ign.

(2) For each n € N, let Gy, be an amenable group with identity 1, and T be an
abelian semigroup with infinitely many idempotents which is not an inverse
semigroup. Also set S, = Gn x T. Then by applying [2, Example (iii)],
for each n € N, (1(S,,) is amenable modulo I,, but is not amenable Banach
algebra. Therefore £1(8) is not amenable by [15, Theorem 9.5], but by applying
Theorem3.1, LY(8) is amenable modulo I, = Hmlg, .

All amenable Fréchet algebras are amenable modulo I for each closed ideal
I. In the next example we give a Fréchet algebra which is amenable by [15,
Corollary 9.8].

(3) All nuclear c— C*—algebras are amenable and so amenable modulo an ideal I
for each closed ideal I. (see [15, Corollary 9.8] for more details)

In the next example we give a Fréchet algebra which is not amenable and so
is not amenable modulo I = {0}.

(4) Let C*°([0,1]) be the space of infinitely many differentiable functions on [0, 1]
with pointwise multiplication. Then C*°([0,1]) is a Fréchet algebra with respect
to the system of seminorms p, given by

pu(f) = 2" sup{|fP(2)]: w€[0,1],k=0,..,n—1}.

C*°([0,1]) is not weakly amenable by [1, Theorem 1.3] and so is not amenable
by [15, Theorem 9.6]. Therefore C*°([0, 1]) is not amenable modulo I = {0}.

4. Locally bounded approximate identity modulo an ideal of a
Fréchet algebra

We recall from [16] the concept of bounded approximate identity modulo an
ideal for a Banach algebra. A Banach algebra A has a bounded approximte identity
modulo [ if there exists a bounded net (uq)q in A such that

limuya =limaug, =a, (a€A\I).

Also in [15] Pirkovskii asserts the concept of locally bounded approximate identity
for a locally convex algebra. Similar to these definitions we define bounded and
locally bounded approximate identities modulo an ideal for a Fréchet algebra.
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Definition 4.1. Let (A,p)) be a locally convex algebra and suppose that [ is a
closed ideal of A. A bounded net (e, )q is a bounded approximate identity modulo
I for A, if

limpy(aeq —a) =limpy(eqa —a) =0, (a€ A\I, XA€A).
Furthermore we say that A has a locally bounded approximate identity modulo I,
if there exists a family {C) : A € A} of positive real numbers such that for each

finite set FF C A\ I, each A\ € A, and each £ > 0 there exists b € A with py(b) < C)
and py(ab—a) < € and py(ba —a) < ¢, for all a € F.

We commence with the following proposition which gives us necessary and
sufficient conditions for the exitence of a bounded approximate identity modulo an
ideal for a Fréchet algebra.

Proposition 4.1. Let (A, py) be a Fréchet algebra and I be a closed ideal of A. A
has a bounded approximate identity modulo I if and only if there exists a bounded
set B C A such that for each finite set ' C A\ I, each n € N and each € > 0 there
exists b € B such that

pn(ab—a) <e and pp(ba—a)<e,
for each a € F.

Proof. First suppose that (eq)o € A is a bounded approximate identity modulo I
for A. So for each n € N and each € > 0 there exists g such that for each a > ay
we have

pn(aeq —a) <e and ppleqa—a) <e, (a€A\I).
Now set B = (eq)a C Aandlet n € N, e > 0 and F C A\ I be a finite set. Therefore
there exists b = m,, which a > g such that

pn(ab—a) <e and pp(ba—a) <e, (a€F).

Conversely, suppose that there exists a bounded set B C A such that for each finite
set ' C A\ I, each n € N and each £ > 0 there exists b € B with

pn(ab—a) <e and py(ba—a)<e, (a€F).
Now take
S={(n,e,F): neN, e>0, FCA\I is a finite set}.
So S is a directed set as follows:
(n1,e1, 1) < (n2,e2,F2) < ny <ng, e3<¢e1, F1 C Fy.

For each a = (n,¢, F'), there exists b = e, € B and so we have a bounded net
(ea) € A. Furthermore let k € N and £ > 0 and the finite set F' C A\ I be arbitrary.
Therefore for each (n,d,C) > (k,e, F) we have

pr(aeq — a) < pplaey, —a) < < g,
Pr(aa —a) < ppleaa —a) <6 <e, (GE‘A\I)'
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So A has a bounded approximate identity modulo I. O

Remark 4.1. In view of Proposition 4.1, if A is normable, then the notions of
bounded and locally bounded approrimate identity modulo I are equivalent.

By [16, Theorem 4] it is known that if a Banach algebra A is amenable modulo
an ideal I, it has a bounded approximate identity modulo I. The following results
are interesting in theirs own right. In fact we use them to extend [16, Theorem 4]
for Fréchet algebrs.

Proposition 4.2. Let ¢ : A — B be a continuous homomorphism of Fréchet al-
gebras with dense range and let I be a closed ideal of A and J be a closed ideal of
B such that o(I) C J. Suppose that A has a locally bounded approzimate identity
modulo I. Then B has a locally bounded approximate identity modulo J.

Proof. Let {p, : n € N} be a family of fundamental system of seminorms generating
the topology of A and {¢,,, : m € N} generating the topology of B. Continuity of ¢
implies for each m € N the existence of k,, > 0 and ng € N such that

Gm(p(a)) < kmpng(a), (a € A).

Since A has a locally bounded approximate identity modulo I one concludes from
Definition 4.1, there exists a family {C,, : n € N} of positive real numbers, such
that for each finite set F¥ C A\ I, each n € N and each € > 0 there exists a €A
such that
pn(a@) < C, and pula—ad) < % and ppla—da) < %,

for each a € F. Without loss of generality we may assume that k,, and Cy, > 1 for
each m € N. Now consider the family {k,,Cyp, : m € N} of positive real numbers.
Given a finite set F' C B\ J,e>0and m €N, find a finite set F C A \ I such
that, gm(¢(a) —b)) < m, for each b € F' and a € F. Now set b’ = ¢(a’). From
our assumption it follows that

Qm(b/) = Qm(@(a/)) < kmpno (al) < kano

and
(b —=1) < gmlpla—aa)) + (b —p(a)) + gn(((a) = D)V
< bpag(a — @) + 5 + g (p(@) = D) (b)
< kmﬁ +o+ ﬁ%km%
= e
and similarly g,,(b—b'b) < ¢, for each b € F'. O

By using Proposition 4.2 and [15, Remark 6.2] the following is immediate.

Corollary 4.1. Let (A,p,) be a Fréchet algebra and I be a closed ideal of A. If A
has a locally bounded approximate identity modulo I, then f% has a locally bounded
approrimate tdentity.
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An immediate cosequence of Proposition 4.2 and Remark 4.1 is the following
result.

Corollary 4.2. Let A and B be two Banach algebras and ¢ : A — B be a continuous
homomorphism with dense range. Suppose that I is a closed ideal of A and J is a
closed ideal of B such that o(I) C J. If A has a bounded approximate identity
modulo I, then B has a bounded approrimate identity modulo J.

It is not hard to see the following lemma holds.

Lemma 4.1. Let D be a dense subspace of normed algebra A. If A has a bounded
approzimate identity (eq)o modulo I, then A has a bounded approximate identity
(fu)u modulo I such that f, € D for each p.

In the sequel we shall use the notation I,, = ¢,,(I), where ¢, : A — A, is the
canonical map.

Proposition 4.3. Let (A,p,) be a Fréchet algebra and I be a closed ideal of A.
Then the following statements are equivalent;

(i) A has a locally bounded approzimate identity modulo I.

(ii) For each Banach algebra B such that there exists a continuous homomorphism
v : A — B with dense range, B has a bounded approrimate identity modulo
J, where J is a closed ideal of B such that p(I) C J.

Proof. (i) = (i1). This follows by using Proposition 4.2 and viewing Remark 4.1.
(79) = (7). Let n € N be arbitrary and let A = imA, be an Arens-Michael de-
composition of A and [ = @E be an Arens-Michael decomposition of I. Since
on : A = A, is a continuous homomorphism with dense range, by assumption
the Banach algebra A,, has a bounded approximate identity modulo I,,. Hence by
Lemma 4.1, the same is true for the dense subalgebra ¢,(A) C A,. Therefore
Proposition 4.1, yields the exitence of a bounded set B C A such that for each finite
set F' C ¢, (A)\ I, and each e > 0 there exists b € B such that

“bl@n(b) - b/Hn <e and HSOn(b)bl - bl”n <g,

for each b’ € F'. Note that if F' = {a1,a2,...,am} € A\ is a finite set, then there

exists ng € N such that for each n > ng, a’, ¢ I,,, where a; = (a’) and 1 < i < m.
In fact if a; ¢ I, then there exists n; € N, such that af,, ¢ I,,. So for each n > n,
al, ¢ I,. Now put ng = max{n; : 1 < i < m}. Therefore for each n > no,
al, ¢ I,. In the sequel take a finite set F C A\ I, kK € N and € > 0. Then for each

n > max{k,ng}, we can find a finite set F' = ¢, (F) C @, (A) \ I, such that
pr(ab—a) < pp(ab—a)
lon(ab — a)lln

= [lon(a)pn(d) — pn(a)lln
< €
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and

pr(ba —a) < pp(ba—a)
= |enlba —a)ln

= [lon(b)pn(a) — pn(a)lln
< e,

for each @ € F. Since b € B and B is a bounded set, for each £ € N there exists
C > 0 such that pi(b) < Cj. By Definition 4.1, this completes the proof. O

Corollary 4.3. Let (A, py,) be a Fréchet algebra and I be a closed ideal of A. Suppose
that A = @An be an Arens-Michael decomposition of A and I = @E is an Arens-
Michael decomposition of I. Then A has a locally bounded approximate identity
modulo I if and only if each A, has a bounded approximate identity modulo I,,.

Proof. Since ¢, : A — A, is a continuous homomorphism with dense range, Propo-
sition 4.3 implies that if A has a locally bounded approximate identity modulo I,
then A,, has a bounded approximate identity modulo I,,.

Conversely, suppose that each A,, has a bounded approximate identity modulo I,,
and B be a Banach algebra such that there exists a continuous homomorphism
® : A — B with dense range. Arguing as in the proof of Theorem 3.1, we deduce
that there exists a continuous homomorphism with dense range ®,, : A, — B, for
some n € N. On the other hand if J is a closed ideal of B such that ®(I) C J, we
have ®,,(1,) = ®(I) C J. Therefore by Corollary 4.2, B has a bounded approximate
identity modulo J such that ®(I) € J. Thus by using Proposition 4.3, A has a
locally bounded approximate identity modulo I. O

Now we are in position to prove [16, Theorem 4] for Fréchet algebras.

Corollary 4.4. Let A be a Fréchet algebra and I be a closed ideal of A. If A is
amenable modulo I, then A has a locally bounded approximate identity modulo I.

Proof. Suppose that A = T&nﬂn be an Arens-Michael decomposition of A and I =
@In be an Arens-Michael decomposition of I. Since A is amenable modulo I, each
A, is amenamble modulo I,,, by Theorem 3.1 . So A,, has a bounded approximate
identity modulo I, for each n € N, by [16, Theorem 4]. In view of Corollary 4.3,
this completes the proof. ]
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