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HYDROGEN-LIKE ATOMS AND SPECTRA: SPECIAL
QUANTUM STATES AND MAXIMUM RELATIVE

INTENSITY LINE OF ITS MULTIPLET

Diana R. Constantin1, Liliana Preda2, Mark Rushton3

Using the quantum model of the hydrogen-type atom, we compute the
wave-functions and the expressions of Dirac energy both in Bohr approxi-
mation as well as in fine structure approximation. Based on this quantum
model (QM), we identify some special quantum states called maximum lo-
calization sub-shells. Then, we present numerical values of the radial dis-
tributions and the electron density functions, as well as the average radii
ordered sequences of sub-shells. Analyzing the NIST atomic database, we
observe that the transition between these special quantum states explains the
occurrence of the maximum relative intensity line of the corresponding fine
structure multiplet. Thus, using NIST database, the QM-results are vali-
dated for the α-Lyman, α-Balmer, .., and α-Pfund spectral H-lines in fine
structure approximation.

Keywords: astrophysics, hydrogen spectra, fine structure approximation,
quantum states, average radii of sub-shells.
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1. Introduction

The work of Schrödinger (1926), Dirac (1928), Born and Jordan, and
others paved the way for development of Quantum Mechanics [13, 3].

Quantum and Atomic Physics [1] and their applications in Astrophysics
and Astrochemistry ([14, 15] can successful explain spectra of various cosmic
sources such as galaxies, stars and interstellar clouds ([16, 2, 12]), as well as
Astroseismology [11].

The atomic models are the basis for understanding atomic-scale processes
and phenomena in different types of gases and plasma [10]. Historically speak-
ing, there are several atomic models: the planetary model, the Bohr’s model
[7], the quantum model (QM ) in fine structure approximation [4, 6] and in
hyperfine structure approximation [9], respectively.
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Furthermore, according to Kramida’s work, the accuracy of reference
wavelengths of the H-Lyman and H-Balmer series lines are useful for wave-
length calibration of various laboratory discharge lamps or in diagnosis and
modeling of solar spectra [2]. The intensity of certain spectral lines of the
emitting plasma, correlated to the electron density, may be useful for plasma
diagnosis.

The main goal of this paper is to analyze the quantum states of H-
likes atoms and to correlate them to the experimental line spectra. Useful
information about certain quantum states involved in transitions can be found
by analyzing hydrogen atom different models for the first six levels and their
corresponding of αLy, αBa, .., αPf lines measured in the H-absorption spectra
[5].

The corresponding quantum states are analyzed using a computer based
model and thus the numerical values of some observables are calculated and
interpreted.

The structure of our paper is as follows:
In section 2, the mathematical framework of the hydrogen-like atom (H-

like atom), both in Bohr approximation as well as in fine structure (fs) ap-
proximation, is described.

In section 3, for the first four hydrogen levels, the values of maximum lo-
calization density, the electron density depending on an angular factor, several
maximum localization-radii and also average radii of sub-shells are calculated
and tabulated. Thus, we identify some special quantum states which are cor-
related with the relative intensity of fine structure multiplets lines for the
hydrogen αLy, αBa, .., αPf lines, according with NIST atomic database.

Finally, we give a synthesis consisting of two sets of results: the QM-
analysis which helped us in identifying of the special quantum states in order
to explain the profile of fine structure multiplets, and also the number values
of the maximum localization-radii and sub-shells average-radii for the first four
H levels.

2. METHODOLOGY

QM: The H-like atomic model

For the construction of QM, we need some key equations and quantum
concepts.

The physical model of a H-like atom is made by a spherical nucleus with
an electric charge of +Ze and an electron orbiting around it. This system can
be mathematical described by the Schrödinger’s equation [1] expressed in SI
units: [

− ~2

2µ
∇2 + V (r)

]
· ψn`m(r, θ, ϕ) = En · ψn`m(r, θ, ϕ) (1)

where r > 0, θ ∈ (0, π), and ϕ ∈ [0, 2π) are the spherical coordinates and V (r)
is the atemporal potential-function which describes the interactions between
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the components’ system. Due to the spherical symmetry of the atom, this 
potential can be considered to depend only of the radial coordinate r.

The simplest approximation takes in consideration only the coulombian
interaction between electron and nucleus which is described by the Coulomb
potential. In our case of H-like atom, the potential expresion is:

V (r) =
−Ze2

4πε0r
(2)

where e is the electron charge and ε0 is the permittivity of vacuum. According
to the literature, in this approximation, the solution of Schrödinger’s equation
from eq. 1 provides the energy eigenvalues: [1]

En = E1/n
2 (3)

where E1 = −13.6eV , and the principal quantum number n = 1, 2, 3, .. which
quantifies the total energy of the electron. In the same approximation, the
space components of wave-functions are:

ψn`m(r, θ, ϕ) = Rn`(r) · Y m
` (θ, ϕ) (4)

One can observe that the space-wave-function is indexed by 3 indices repre-
senting the following quantum numbers (n, l.m) where the quantum number of
the orbital angular momentum ` = 0, 1, 2, .., n− 1 and the magnetic quantum
number m = −`, .., 0, .., `.

Returning to wave-functions, the radial components are:

Rn`(r) = −

√(
2Z

naµ

)3
(n− `− 1)!

2n[(n+ `)!]3
e

−Zr
naµ

(
2Zr

naµ

)`
L2`+1
n+`

(
2Zr

naµ

)
(5)

with associated Laguerre’s polynomials, electron mass me, reduce mass µ,
aµ = me

µ
a0, and a0 the first Bohr radius. The harmonic components are:

Y m
` (θ, ϕ) = (−1)m

√
(2`+ 1)(`−m)!

4π(`+m)!
Pm
` (cosθ)eimϕ,m ≥ 0 (6)

and

Y ∗m` (θ, ϕ) = (−1)|m|Y
|m|
` (θ, ϕ),m < 0 (7)

with associated Legendre’s polynomials.
For a quantum state described by 3 quantum numbers (n, `,m), we com-

pute the electron localization probability density by formula:

|ψn`m(r, θ, ϕ)|2 (8)

The average radius formula of various quantum states becomes:

〈r〉n` =
n2aµ
Z

[
1 +

1

2

(
1− `(`+ 1)

n2

)]
(9)
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In order to identify some significant states, two important tools for quan-
tum spectral analysis are used: the radial distribution function defined as:

DMLn`(r) = (rRn`(r))
2 (10)

and the electron density in angular factor function defined as:

Del`m(cos(θ)) = |Y m
` (θ, ϕ)|2 (11)

Remark 1: The atomic orbitals present a geometrical symmetry in spher-
ical coordinates (θ, ϕ)(see eqs. (5) and (11)).

So, in order to simplify our presentation, we take only the positive values
of m, namely the convention m = |m|.

In the approximation of Dirac theory which includes relativistic effects
as a perturbation of the Coulomb potential [1], the Dirac energy is:

Enj = En

[
1 +

(Zα)2

n2

(
n

j + 1/2
− 3

4

)]
(12)

with the total angular momentum quantum number j = 1/2, 3/2, .., n − 1/2.
According to Bransden & Joachain 1990, ch 5, we specify:

Definition: The transitions n`j → n′`′j′ between the fs components of
the levels n` and n′`′ form a set of spectral lines known as a multiplet of lines.

Remark 2: In Dirac’s theory, for a fixed n, two states having the same
value of j but with values of ` = j ∓ 1/2 have the same energy.

3. RESULTS

In astrophysics analysis, the H-Lyman, H-Balmer, and H-Paschen series
lines from measured solar spectra are already presented by Brown and Kramida
[2, 9]. Above all, Kramida in his work explains that the spectra of the other
chemical elements are determined based on the H-spectrum. So, the study of
H-spectra constitutes a fundamental aspect.

3.1. QM: Identification of ML-quantum states

Using the model already presented above and according to the eq. (10)
and (11) for the first four H shells, we calculate the probability density function
DMLn` and the electron density Del`m, respectively. The results are presented
in table 1 and for each level (n, `), the maximum values of these functions are
marked as bold.

The left panel of table 1 shows us that the DMLn` of each quantum state
(n, `) has the radius variable r as an argument. As a consequence, for level
(n, n− 1) there is a maximum localization radius (ML-radius).

Proposition 1.1: For any orbital (n, n − 1), the maximum localization
radius r corresponds to the n-th Bohr radius, namely n2a0.

Calculating the average radius for n = 1 as in the eq (9), we obtain
〈r〉1s = 1.5a0. Because the value of DML10 is maximum, the quantum state
(1,0,0) is a significant state. Then, using values from table 1, we see that radial
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n ` DMLn`(r · a0) 〈r〉n` · a0 r ·a0 `B = n− 1 m Del`m(w) w=cos(θ)
1 0 0.54100 1.5 1 0 0 0.080 w
2 0 0.19000 6 5.24 1 0 0.238 1

1 0.19500 5 4 1 0.119 0
3 0 0.10150 13.5 13.07 2 0 0.397 1

1 0.10170 12.5 12.00 1 0.149 0.707
2 0.10700 10.5 9 2 0.149 0

4 0 0.06440 24 24.60 3 0 0.557 1
1 0.06444 23 23.60 1 0.198 0.860
2 0.06490 21 21.21 2 0.154 0.580
3 0.06970 18 16 3 0.174 0
Table 1. The values of DMLn` (left panel) and Del`m (right panel).

distribution DML2` reaches its maximum value for ` = 1. Average radii
〈r〉2` corresponding to the shell n = 2 respect the following order relation:
5a0 = 〈r〉2p < 〈r〉2s = 6a0. Also, the electron density in the angular factor
Del1m reaches its maximum value for m = 0. So, the quantum state (2, 1, 0)
is a significant state. Then, for n = 3, the radial distribution DML3` reaches
its maximum value for ` = 2. Average radii 〈r〉3` give the sub-shells order
relation: 10.5a0 = 〈r〉3d < 〈r〉3p < 〈r〉3s = 13.5a0. The electron density Del2m
reaches its maximum value for m = 0. So, for shell n = 3, the probability
function reaches its maximum on sub-shell ` = 2 exactly on an its orbital with
m = 0. Thus, we obtain that state (3, 2, 0) is also a significant state. For
n = 3, the radial distribution DML4` reaches its maximum value for ` = 3.
For average radii 〈r〉4` the sub-shells order relation is: 18a0 = 〈r〉4f < 〈r〉4d <
〈r〉4p < 〈r〉4s = 24a0. The electron density Del3m reaches also its maximum
value for m = 0. As in the above cases, we obtain the state (4, 3, 0) as a
significant state, too.

Proposition 1.2: For a fixed n, the radial distribution DMLn` reaches its
maximum for a certain ML-radius on ML-sub-shell (n, n − 1) which we call
the special quantum state. Moreover, the electron density Deln−1m reaches its
maximum on ML-orbital (n, n − 1, 0) which we call the significant quantum
state. So, for the shell n there are two types of maximum localization quan-
tum states (MLqs), namely a ML-sub-shell corresponding to its ML-radius,
respectively a ML-orbital for m = 0 (inside of ML-sub-shell).

3.2. QM: Maximum relative intensity lines of fine structure
multiplets

The spectral lines of hydrogen (H I) measured by spectroscopic methods
are obtained as the radiation emission to the transition from one quantum
state to another. According to NIST database [8] which includes the fs lines,
the relative intensities of multiplets are given in tables 2, 3, and 4. We
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Range ( Å) HI series line-α Wavelength ( Å) Intensity (a.u.)
1200 - 1230 αLy 1215.66823 7.003e+08

1215.67364 3.502e+08
6550 - 6565 αBa 6562.70970 4.756e+07

6562.72483 1.982e+07
6562.75181 9.290e+05
6562.77153 9.909e+06

6562.85177 8.561e+07
6562.86734 9.512e+06
6562.90944 1.858e+06

18700 - 18800 αPa 18750.68381 4.767e+06
18750.72050 2.491e+06
18750.82881 2.486e+05
18750.88135 1.246e+06
18751.01086 1.569e+07
18751.01149 8.580e+06
18751.06422 2.825e+04
18751.06508 9.533e+05

18751.11120 2.241e+07
18751.13794 1.121e+06
18751.19130 2.542e+05
18751.21008 4.974e+05
18751.22507 1.413e+05

Table 2. The relative intensity lines of αLyman multiplet
(measured in vacuum) and also αBalmer and αPaschen mul-
tiplets (measured in air) for H I.

present in table 5 Ritz -λ values in air [8], for transitions n → n + 1 with
n = 1, 2, .., 5 and between their special states or ML-sub-shells.

Proposition 2.1: Comparing the wavelength values from tables 2, 3, and
4 with the ones from table 5, we observe that transitions between special quan-
tum states or ML-sub-shells (see tab. 5) give the maximum relative intensity
lines (bolded values in tables 2, 3, and 4) of their multiplets. These multiplets
correspond of αLy, αBa, .., αPf series transitions in fs approximation.

To support our discovery, we can see Kramida’s considerations about
the observed H spectrum of αBalmer transition. In accord with Kramida’s
research (see [9] p. 5), we observe that the transition between the states 2P3/2

and 3D5/2 (in other words between the ML-sub-shells (2, 1) and (3, 2)) provides
the spectral line of maximum relative intensity in the associated multiplet.
This is further confirmation of our above results.

Finally, we can generalize all of these thus:
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Range ( Å) HI series line-α Wavelength ( Å) Intensity (a.u.)
40500 - 40530 αBr 40521.86640 9.686e+05

40521.93760 5.767e+05
40522.21210 8.411e+04
40522.32220 2.884e+05
40522.48747 2.830e+06
40522.48920 1.744e+06
40522.61740 1.937e+05
40522.67380 6.418e+06
40522.67420 4.044e+06
40522.73768 2.022e+05
40522.73840 2.821e+03

40522.76012 8.320e+06
40522.79858 2.377e+05
40522.86320 5.641e+04
40522.86490 1.327e+05
40522.86650 3.949e+04
40522.96310 1.682e+05
40522.99920 7.373e+04

Table 3. The relative intensity lines of αBrackett multiplet
(measured in air) for H I.

Proposition 2.2: For the transition n → n + 1, the maximum relative
intensity line of corresponded fs multiplet is given exactly by the transition
between corresponded ML-sub-shells, namely the transition (n, n− 1)→ (n+
1, n).
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Range ( Å) HI series line-α Wavelength ( Å) Intensity (a.u.)
70090 - 78109 αPf 74597.17250 2.870e+05

74597.29760 1.862e+05
74597.85200 3.425e+04
74598.05170 9.308e+04
74598.21910 7.758e+05
74598.22440 5.166e+05
74598.46910 7.351e+03
74598.47570 5.740e+04
74598.52770 1.108e+06
74598.53009 1.634e+06
74598.65340 5.542e+04
74598.65542 2.139e+03
74598.67000 2.118e+06
74598.67160 3.081e+06
74598.74500 6.051e+04
74598.74663 4.841e+02

74598.75164 3.781e+06
74598.80192 7.002e+04
74598.87100 4.278e+04
74598.87232 1.307e+04
74598.87695 1.694e+04
74598.90340 6.616e+04
74598.90674 2.995e+04
74599.15530 6.850e+04
74599.22330 3.676e+04

Table 4. The relative intensity lines of αPfund multiplet (mea-
sured in vacuum) for H I.

n → n+ 1 Wavelength ( Å) Lower level: Conf., Term, J Upper level: Conf., Term, J
1 → 2 1 215.66823 1s 2S 1/2 2p 2P 0 3/2
2 → 3 6 562.85177 2p 2P 0 3/2 3d 2D 5/2
3 → 4 18 751.11120 3d 2D 5/2 4f 2F 0 7/2
4 → 5 40 522.76012 4f 2F 0 7/2 5g 2G 9/2
5 → 6 74 598.75164 5g 2G 9/2 6h 2H0 11/2

Table 5. The wavelength values for transitions between special
quantum states (n, n− 1), n = 1, .., 6 for H I.
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4. Conclusions

In our approach, we used a quantum model whereby we identified both
the special quantum states (n, n− 1) or ML-sub-shells which show a maximum
value for the radial distribution as well as the significant quantum states (n, n−
1, 0) or ML-orbitals which show also a maximum value for the electron density
(table 1, Prop. 1.1 & 1.2). Furthermore, the transition between ML-sub-shells
explains the occurrence of maximum relative intensity line of fine structure
multiplet. We confirmed this key result of QM by using NIST database for
the first five H-spectral series (Prop. 2.1 & 2.2).

Also, for the first four H levels, we obtained numeric values of radial
distribution, electron density, ML-radii and also the ordered sequences of the
sub-shells average radii showing that, such as for n = 4:

18a0 = 〈r〉4f < 〈r〉4d < 〈r〉4p < 〈r〉4s = 24a0.
Consequently, we consider that the transitions 1S1/2 → 2P3/2, 2P3/2 →

3D5/2, .., 5G9/2 → 6H11/2, are the main contributors to αLy, αBa, .., αPfund
lines in the H-absorption spectra, respectively.

Note that these orbitals are suitable for studying alkali metals and ionic
species X+, namely the hydrogen-like atoms.

We will continue this subject in a future paper.
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