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PSO OPTIMIZED SVM PARAMETERS FOR FAR INFRARED
PEDESTRIAN DETECTION

Yang YU?, Lin KONG?, Yanju LIU*", Jianhui SONG*

Aiming at the problem that the uncertainty of manual selection of penalty
factor C and Gauss kernel parameter y of support vector machine (SVM) in OpenCV
leads to the unsatisfactory accuracy of infrared pedestrian detection, an infrared
pedestrian detection method based on particle swarm optimization (PSO) optimized
SVM s proposed. Samples are selected to establish the sample database. HOG
feature vectors are extracted from the samples to calculate the feature matrix and
put into SVM for training. Then, PSO is used to optimize the parameters of penalty
factor and Gauss kernel, and SVM is trained again to get the best pedestrian
classifier model, which is used to identify pedestrians. The results show that by
applying PSO optimized SVM parameters to far-infrared pedestrian detection, the
rate of missed detection and false detection is significantly reduced, the accuracy of
pedestrian classification is significantly improved, and the operating time is
shortened.

Keywords: PSO, SVM, Penalty factor, Gauss kernel parameter, Infrared
pedestrian detection

1. Introduction

In recent years, pedestrian detection technology [1, 2] has matured.
Compared with visible light, far infrared pedestrian detection has better
research value. Far infrared pedestrian detection technology generally
includes two parts: ROIs (Regions of Interest) extraction and pedestrian
recognition. ROIs extraction is the selection and extraction of features. At
present, the descriptions of infrared pedestrian features include Histograms of
Oriented Gradients (HOG) [3], Histograms of Oriented Gradients-Intensity
Self Similarity (HOG-ISS) [4], Histograms of Local Intensity Differences
(HLID) [5], and Histograms of Oriented Gradients-Local Binary Patterns
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(HOG-LBP) [6], etc. Pedestrian recognition is based on the design of
pedestrian classifier. The commonly used methods of pedestrian classifier are
SVM [7], various boosting [8] and artificial neural network [9]. In addition,
combining the optimization algorithm to search for the optimal parameters of
the penalty factor and Gaussian kernel parameter, the commonly used
methods are genetic algorithm [10], PSO [11], ant colony algorithm [12] and
simulated annealing method [13]. The genetic algorithm has good
convergence, and has the support of mathematical theory. It is suitable for
solving discrete problems. The ant colony algorithm has the advantage of
finding the global optimal solution, which is mainly suitable for path search,
but the computational overhead is large. Simulated annealing algorithm has
the advantage of strong local search ability, but the global search ability is
poor, and it is mainly used in image recovery and other work. Compared with
genetic algorithm, PSO has the advantages of no crossover, mutation
operation, fewer parameters, easy implementation, and faster convergence to
the optimal solution. Compared with ant colony algorithm and simulated
annealing algorithm, PSO has low computational cost. The above advantages
make it widely used in neural networks, function optimization and other
fields.

Aiming at the optimal selection of SVM kernel parameters, this paper
proposes a pedestrian recognition method based on the selection of HOG
features and SVM to design pedestrian classifier, which combines PSO to
optimize the parameters of SVM [14] to obtain pedestrian classifier. This
method not only obtains the appropriate SVM kernel parameters efficiently,
but also solves the problem of time-consuming optimization, and improves the
accuracy of pedestrian detection, which has very important engineering
significance and application value.

2. Far infrared pedestrian HOG feature extraction and SVM
classifier

Far infrared pedestrian detection methods mainly include probability
template matching method and statistical analysis method. In this paper, the
method based on statistical analysis is used for far infrared pedestrian
detection. Far-infrared pedestrian recognition based on statistical analysis is
divided into two parts, one is the extraction of ROIs, and the other is the
training classifier. The recognition process is shown in Fig. 1.
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Fig. 1. Pedestrian detection system solution
2.1 HOG feature extraction

In this paper, HOG feature is extracted from candidate pedestrian area,
which is a feature descriptor for detecting human targets. The core idea of
HOG feature extraction is to gray the far infrared image of the target to be
detected. Gamma correction method is used to normalize the color space of
the input image. The size and direction of each pixel gradient are calculated.
The target image area to be detected is scanned by a sliding window of 4x4
pixels to find the target. The image is divided into a plurality of connected
areas (called cells) of 4x8 pixels, and the number of statistical cells constitutes
a descriptor. In order to improve the accuracy, two cells form a block, and the
gradient features of all cells of a block are combined to form a block
descriptor. Finally, the HOG features of all blocks are combined to form a
descriptor of the gray image.

In the gradient calculation phase, the first-order central gradient
operator is used, and the gradient operator in the horizontal direction of the
image is [1, 0, 1]. When the distribution of gradient direction is counted in
each image, the cell unit is set to a circle and the number of bins in the
gradient direction is set to 9. All gradients are projected into 0-180 degrees
(unsigned) interval, forming a gradient direction interval every 20 degrees on
average.

2.2 SVVM classifier

The SVM is a two-class classification model whose basic model is
defined as the linear classifier with the largest interval in the feature space.
The algorithm defines one or more classification hyper planes by defining a
distance function between any two points in a high-dimensional space and
selects different kernel functions to determine the classification hyper plane to
achieve optimal classification in high-dimensional space. The principle of
SVM algorithm is as follows [15]:

The training sample set are set to be (x,y,).,i=12------n; x, €R";
d =2 is a two-dimensional space; y e (-1,+1) is the category mark. If the sample
is linearly separable, then:

y.[(wxx)—b]-1>0,i=1,2------ n Q)
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Where: o is the hyper plane normal vector and b is the hyper plane bias
value.

Based on formula (1), the minimum value of @(w) =||vv||2/2 is found as

the optimal classification surface. Thus, the optimal plane problem is
transformed into a constraint as formula (2):

. 1, 2
min g(w) = =||w|
o) =3 lof -
y.[(wxx)+b]-1>0
To this end, Lagrange functions can be defined as formula (3) and convert
it to a dual problem:

(Wb, ) = g(w) ~ Dy, [(wox,) + b] -1} &)

Where: «; is a Lagrange multiplication operator.
The obtained ¢(w) -minimum value is converted to the values of @ and b

when the Lagrange function is obtained to get the minimum. The decision
function of the optimal hyper plane is obtained as formula (4):

f(x)=sgn((w xx)+b)= Sgn(zai'yi(xi xX)+b) 4)
i=1
In order to solve the problem of sample linearity and inseparability, the
relaxation variable & >0 and penalty factor C are introduced, then the constraints
of the optimal classification hyper plane are as formula (5):
. N T 3
min g(w) =min =|w| +C ) &
S +C2 )
Vil(wxx)+b]+¢ =1
Because SVM maps the input feature vector to a high-dimensional plane

through a non-linear mapping to form an optimal classification hyper plane,
according to Mercer theorem in the functional, formula (4) is changed to:

f(x)=sgn((w xp(x)+b) = Sgn(zailyi K(x,x)+b) (6)
i=1
Where K(x;,Xx) is a kernel function. Different kernel functions can be
selected to implement different support vector machines. In this paper, the radial
basis kernel function (RBF) is selected as shown in formula (7):
K(x, %) = exp(—7|x = x[) Y
Where: y is the Gaussian kernel parameter and y > 0.

Equation (6) is the optimal classification hyper plane, and the optimal
hyper plane is closely related to the two factors of penalty factor and Gaussian
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kernel parameter. From formula (5), it can be concluded that the value of C
weighs the empirical risk and the structural risk. The larger the C value, the easier
it is to over-fitting. The smaller the C value, the lower the complexity of the
model. Formula (7) shows that the selection of » is closely related to the fine

procedure of sample division. The smaller the value of y, the better it can be

distinguished from other samples. Therefore, it is very important to select suitable
C and y to get a good classifier.

3. Far infrared pedestrian detection
3.1 HOG+SVM far infrared pedestrian detection

After selecting the far-infrared pedestrian candidate region, the training of
the far-infrared pedestrian classifier is performed. The training process of the
pedestrian classifier after the HOG feature vector extraction is described as below.

(1) The OTCBVS database is downloaded. Pedestrians from Ground Truth
in OSU Thermal Pedestrian Database are cut as positive samples to extract
features and marked as 1. The randomly extracted unmanned samples are cut as
negative samples and marked as -1 after extracting feature. The positive and
negative samples are shown in Fig. 2.

Az 444301

(a) Positive sample (b) Negative sample
Fig. 2. Training samples
(2) The labeled sample matrix is put into SVM for training, and the kernel

function is RBF. The penalty factor is C=10 and y =8.0. The obtained classifier is
reloaded to obtain the detection factor.

(3) The negative factor of the detection factor is re-trained to obtain the
difficult sample, that is, negative samples with wrong classification. Then difficult
samples are put into SVM to extract the feature as the negative sample marked as
-1, and then retrained until the best results are obtained.

(4) The image is tested, and the best classifier is selected.

3.2 HOG+PSO+SVM Far Infrared Pedestrian Detection

From the above, it is very important to search for the best penalty
factor C and Gauss kernel parameter y. In order to optimize the parameters C
and y of the classifier, the PSO algorithm is introduced to find the best kernel
parameters. The principle of PSO is as follows [16]:
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A population consists of m particles. One of the particles p, is iterated

k times in a N-dimensional space to obtain the position, the velocity,
individual extremum and global extremum as equations (8), (9), (10), (11):

X =0, Xk, xt) 1=1,2,-----m (8)
vy = (v, V), v) i=12,..,m 9)
P =(p;, Py, P) i=12,.....,m (10)

R =(p. P2 p7) (11)

Where: m is the number of particles, k is the number of iterations, x, is
the position vector of particle i after k times iteration, v, is the velocity of the

particle, P, is the individual extremum, and P2 is the global extremum.
The standard PSO formula can be obtained as formula (12):

{vLH =WV +Ch (P —x) +C,, (RS —X1)

i i i (12)
X = X T X

Where C, and C, are learning factors, which are used to adjust the

individual optimal value of the particle group and the step size of the group's
optimal particle direction flight. Choosing the appropriate learning factor can
speed up the convergence of the algorithm and is not easy to cause local
optimization. Generally, the value between 0 and 2 is selected. This paper chosen
C,=C, =2.0 to have the best effect; w, is the weight (also known as the inertia

factor); g and ¢, are random numbers between 0 and 1.

The penalty factor obtained by formula (5) and the Gaussian kernel
parameter obtained by formula (7) are optimized by formula (12). The
optimization parameter process is shown in Fig. 3.

(1) The training samples with optimal parameters are selected. The
positive samples with infrared pedestrians are marked as 1, while the negative
samples without infrared pedestrians are marked as - 1. The HOG features are
extracted, and the feature matrix is formed.

(2) The number of PSO is initialized to 20. The position x’and velocity

v{ of the PSO, the global extremum Grest and the individual extremum Ppes; are
initialized.
(3) Cross validation is carried out. The speed of the initial particle swarm
and the location of the particle swarm search are put into SvmTrain for training.
(4) The particle's adaptability is calculated. If it is better than the current
individual extreme value, the particle’s position is set to the Ppest, and the
individual extreme value is updated. If the optimal individual extremum of all
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particles is better than the current global extremum, the optimal individual
extremum is set to Geest, the serial number of particles is recorded, and the global
extremum is updated.

(5) Whether the iteration has reached the maximum number of iterations is
determined, and if it has been reached, the optimization is completed. The global
optimum C and vy are returned. Otherwise, the velocity and position of the particle
are updated. The program returns to step 4 to continue execution.

Read training samples
and test samples

Initialize PSO
parameters

v

SVM training ‘

r—

Calculated the
particle's adaptability

v

Update the individual
extreme and the
global extremum

Update speed and
location

A

Meet the
maximum number
of iteration

Return the global
optimum C and y

End

Fig. 3. The parameter optimization process of C and y
4. Experimental results

The experimental platform of this paper is OpenCV built by VS2013. The
operating environment is AMD A6-4400M APU with Radeon(tm) HD Graphics;
clocked at 2.70GHz; memory is 6G; Windows 7 64-bit operating system.

Using OTCBVS far-infrared pedestrian database, each picture pixel is
360*240px, compared with visible light picture 720*480px, the picture is
relatively small, and the pedestrian area is small.
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Indicators describing pedestrian detection are as follows:

(1) False alarm rate fa: the ratio of the number of negative samples
identified as positive samples to those positive and negative samples identified as
positive samples;

(2) Precision Pr: the ratio of the number of positive samples identified as
positive samples to those positive and negative samples identified as positive
samples;

(3) Accuracy Ac: the ratio of the sum of positive samples identified as
positive samples and negative samples identified as negative samples to the
number of targets marked.

By selecting different feature dimensions, the accuracy data of pedestrian
classification is shown in Table 1. The number 1 is the pedestrian classification
accuracy obtained by HOG feature dimension 3780. The number 2 is the
pedestrian classification accuracy obtained by HOG feature dimension 144 when
the number of blocks of the HOG feature dimension is 8x8. The number 3 is the
pedestrian classification accuracy rate obtained by HOG feature dimension 144

when the number of blocks of the HOG feature dimension is 4x4.
Table 1.
The pedestrian accuracy comparison results corresponding to the feature dimensions of
different histograms

Number bin block Characteristic dimension C e Ac
1 9 16x16 3780 10 8 13.34%
2 9 8x8 144 10 8 46.67%
3 9 4x4 144 10 8 40.0%

It can be seen from Table 1 that the classification accuracy corresponding
to the number 2 and the number 3 after dimension reduction of the number 1 is
significantly improved. For the selection of the block, the number 2 is obviously
more ideal than the number 3. Therefore, the ideal simulation parameters are as
follows: the number of blocks is 8x8, the feature dimension is 144, the sliding
window is 16x32, and the histogram merge number is 9 for feature extraction. On
the basis of determining the HOG feature dimension of 144, the OTCBVS
infrared pedestrian database is used. The number of positive samples is 509, the
number of negative samples is 926, and the sample of difficult sample is 11675.
The SVM parameters are : classifier type is C_SVC and the kernel function is
RBF.

Document 17 proposed a method for pedestrian recognition based on
genetic algorithm to optimize SVM parameters in visible light. This method has
the disadvantage that it does not fall into local extreme points and leads to
inaccurate optimization. In order to compensate for the shortcomings of only
obtaining a single extremum in GA, this paper uses PSO to optimize SVM
parameters for pedestrian recognition. The number of particle swarms is 20 and



PSO optimized SVM parameters for far infrared pedestrian detection 23

the number of iterations is 25. This method can search for global extremum and
local extremum well. Due to the randomness of PSO, the SVM parameters are
determined by the 5-fold cross-validation method. The optimized penalty factor
and Gauss kernel parameter obtained by HOG+PSO+SVM are used to test the
infrared image with resolution 360*240. The experimental results are compared
with those of HOG+SVM and HOG+GA+SVM. The comparison results of the
accuracy and operating time for far-infrared pedestrian recognition are shown in
Table 2.

Table 2.
The comparison results of the accuracy and operating time for
far-infrared pedestrian recognition
Classifier type HOG+SVM HOG+GA+SVM HOG+PSO+SVM
Penalty factor C 10 0.8 1.0
Gauss kernel parameter y 8 0.1 0.25
Cross validation rate (%) 78.7% 79.2% 79.6%
Number of SVs 1455 373 353
Operating time (s) 0.510302s 0.123732s 0.123765s
Accuracy Ac 46.67% 83.8% 87.7%

As can be seen from Table 2, the parameters C=10 and y =8 of the SVM

are the default visible light parameter in OpenCV, and its effect in far infrared is
not very satisfactory. The accuracy of pedestrian classification of SVM obtained
by GA optimization is lower than that of SVM obtained by PSO optimization. The
operating time of the two is similar, which is shortened to one third of the
traditional HOG+SVM. The number of SVs is reduced, and the accuracy Ac is
also improved.

The OSU Thermal Pedestrian Database sequence in the OTCBVS far-
infrared pedestrian database was selected to verify its pedestrian recognition
accuracy. The accuracy of far-infrared pedestrian recognition is compared by
using five sequences with the number of 90, 95, 100, 105 and 110, respectively.
The results are shown in Fig. 4.

The comparison results show that the pedestrian classifier obtained by
PSO optimized SVM can improve the accuracy of pedestrian recognition in far
infrared pedestrian detection.

The OSU Thermal Pedestrian Database sequence in the OTCBVS far-
infrared pedestrian database was selected for detection. HOG+PSO+SVM
pedestrian detection is defined as method 1, HOG+SVM is defined as method 2,
and document 17 method HOG+GA+SVM is defined as method 3.

The number of test mark targets is 106, 98, 112, 101, 91 and 92 test
sequences respectively. The results are shown in Table 3.
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Fig. 4. The accuracy comparison result

Table 3.
Sequences detection results of OSU Thermal Pedestrian Database
positive
samples negative samples
Numbering | method tagggtﬁ;r?(]; d identifigd as io!e'ntified as fa Pr
positive positive samples
samples
method 1 106 99 2 2.0% 98.0%
1 method 2 106 58 41 41.4% 58.6%
method 3 106 85 14 14.2% 85.8%
method 1 98 83 2 2.4% 97.6%
2 method 2 98 53 44 45.4% 54.6%
method 3 98 78 15 16.2% 83.8%
method 1 112 105 3 2.8% 97.2%
3 method 2 112 65 43 39.9% 60.1%
method 3 112 95 13 12.1% 87.9%
method 1 101 98 1 1.1% 98.9%
4 method 2 101 55 36 39.6% 60.4%
method 3 101 85 14 14.2% 85.8%
method 1 91 78 2 14.3% 98.7%
5 method 2 91 42 43 50.6% 49.4%
method 3 91 72 16 18.2% 81.8%
method 1 92 82 3 3.5% 96.5%
6 method 2 92 37 53 58.9% 41.1%
method 3 92 72 16 18.2% 81.8%

From Table 3, it can be seen that after the parameters are optimized by
method 1 and method 3, the precision of far infrared pedestrian recognition is
significantly improved, and the false alarm rate fa is greatly reduced compared
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with method 2. However, compared with Method 1, Method 3 has a slightly lower
precision of pedestrian recognition. From Table 3, it can be seen that the
pedestrian detector optimized by PSO achieves over 85% accuracy in far infrared
pedestrian detection, which proves that the precision of far infrared pedestrian
detection can be improved by optimizing the parameters of SVM. Through the
previous experiments, the key codes of HOG feature parameters and SVM
parameters are as follows:

HOGDescriptor hog(Size(16, 32), Size(8, 8), Size(8,8), Size(4,8), 9);

CvSVMParams param(CvSVM::C_SVC, CvSVM::RBF, 10, 0.25, 1.0,
1.0, 0.5, 1.0, NULL, criteria); The pedestrian classifiers obtained by HOG+SVM
and HOG+PSO+SVM are used for far-infrared pedestrian recognition, as shown
in Fig. 5.

(a) HOG+SVM (b) HOG+PSO+SVM (c) HOG+SVM (d) HOG+PSO+SVM
Fig. 5. Pedestrian test results comparison chart

It can be seen from Fig. 5 that the far-infrared pedestrian recognition
precision obtained after optimizing the parameters is effective. This method has a
good effect in far infrared pedestrian recognition. The ideal parameters obtained
are put into the SVM for training to obtain a pedestrian classifier.

5. Conclusions

Aiming at the accuracy and operating time of far-infrared pedestrian
detection, an infrared pedestrian detection method based on PSO optimized SVM
is proposed to find the ideal parameters under the conditions. Compared with the
pedestrian classifier obtained by the traditional HOG+SVM training, the
pedestrian classifier obtained by HOG+PSO+SVM not only improves the far
infrared pedestrian precision and the system running speed, but also reduces the
false detection rate and increases the accuracy of pedestrian recognition. The
experimental results show that the method has achieved good results in far
infrared pedestrian recognition.
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