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RESEARCH ON OPTIMAL CONTROL OF MINE-USED
PERMANENT MAGNET DIRECT-DRIVE VARIABLE
FREQUENCY INTEGRATED MACHINE BASED ON
EXTENDED KALMAN FILTER

Sen WANG?, Nan CHEN?, Chong TANG?, Jianmin DU*, Zhanyang Y U?®

The vector control of the motor relies on the motor terminal voltage and stator
current as important feedback signals. Conventional motor control systems obtain
them by using mechanical sensors. However, such sensors are not conducive to
smooth operation of mining motors. We have designed a control strategy based on the
Extended Kalman Filter. We enhance the observation accuracy by modifying the noise
matrices Q and R within the EKF. Simulation results demonstrate that the optimized
EKF exhibits improvements in reducing convergence time and minimizing speed
impact values.

Keywords: permanent magnet direct drive machine, extended Kalman filter,
position-sensorless control, optimal control

1. Introduction

As the mining industry moves towards intelligent mining, researchers have
developed a high-power, high-voltage variable frequency motor integrated drive
system. This strategy combines the frequency converter and the motor more
effectively. This fundamentally resolves the issue of poor coordination between the
motor and the inverter switches. It enhances the safety and automation level of
mining operations. It holds significant economic value in terms of reducing energy
consumption by Wang L et al. (2020) and Kakihara M et al. (2020) .

By Gaolin L et al. (2017) and Gao W et al. (2021), they apply PI control to
the vector control system. This achieves constant voltage-to-frequency ratio control
for asynchronous motors without the need for speed sensors. However, due to the
dependency of vector control on the motor, it has not led to improved control
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accuracy. Chebaani M et al. (2018) was proposed early on to apply sensorless
control technology to mining permanent magnet direct-drive variable frequency
integrated machines. They adopted a high-frequency signal injection control
strategy and achieved good control results.However, the injection of high-
frequency signals still causes motor vibrations. The issue at hand has not been
appropriately resolved. Demir et al. (2018) and Noori, O. B.et al. (2020) proposed
the incorporation of extended Kalman filtering to estimate the position and velocity
of the rotor.This strategy has demonstrated commendable stability in both motor
unloaded and loaded conditions. However, they lack comparative simulations and
have not achieved optimization outcomes. Lingrui L.et al. (2017) and Aleksandr,
S.et al. (2020) proposed manipulating the rotor resistance of the motor to emulate
its operating conditions. They utilized this variation to evaluate the stability of the
EKF-based control strategy. The simulation results indicated that the system was
not sensitive to variations in motor parameters. Its value still maintained a high level
of robustness. However, they did not conduct any research on the optimization
aspects of the EKF. Khadar, S.et al. (2021), Khanesaret al. (2022) and Emrah, Z.et
al. (2018) established an EKF-based direct torque control system. They obtained
the speed and flux waveforms at low speeds. However, they did not set up a control
group for comparison when assigning values to the covariance matrix in the control
strategy. We will pay particular attention to addressing this issue.

We adopt an integrated design approach, combining the inverter with a
permanent magnet synchronous motor. This fact breaks the disadvantages of the
conventional separate design of motors and frequency converters, followed by
integration in the later stages. Due to its smaller size and limited space, we have
higher requirements for the control strategy. We are studying the application of the
mine-used permanent magnet integrated frequency converter in low-speed direct
drive scraper conveyors. Its rated speed is 80 r/min. So, the design emphasis of the
control system should be placed on the low-speed range. Its speed control range is
within the range of 0-100 r/min. We conducted a study on the selection of
covariance matrix initial values in the algorithm by establishing a simulation model
of the EKF. From this study, we obtained the patterns of variation and were able to
construct an optimized EKF accordingly.

2. Motor control principle based on Extended Kalman Filter

Currently, EKF is widely used in motor observation applications. It includes
observations of parameters such as speed, position, or angle measurements of the
motor. EKF extends the Kalman filter by Jacobian matrix formulation of the state
transition matrix and the observation matrix. This allows for local processing of
nonlinear systems using Taylor expansion, approaching the optimal estimation
value. It can utilize the observed results to perform system adjustment and tuning.
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And it filters out the influence of uncertainties, making the final result tend towards
linearization.

The control system of the permanent magnet direct drive inverter is
nonlinear in terms of output. Therefore, EKF algorithm will have a good control
performance. By discretizing the mathematical model of the motor, we obtain:
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Where i, ig are the motor a and /5 axis current; u,, ug are the motor a and
axis voltage; we, e are rotor electric angular velocity and rotor position angle; R, Ls
are motor stator phase resistance and phase inductance; yr is permanent magnet flux
linkage.

The control system of the all-in-one machine is nonlinear for the output, so
the EFK algorithm will have a good control performance. To begin with, we take
into account formula (2).
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Where x is composed of a, f axis current, rotor speed and position; u is
composed of a, S axis voltage; y is composed of «, £ axis current.
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Where f(x) is composéd of the motor stator c_equation and the rotor position.
By discretizing the mathematical model of the all-in-one machine, formula
(7) and (8) are obtained.
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Where V(K) is system noise; W(K) is measuring noise.

The noise vectors V and W are not directly involved in the iterative process
of EKF. The EKF relies primarily on the covariance matrix Q for V and the
covariance matrix R for W. The noise matrices Q and R are defined as follows:
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The state estimation of the EKF can be roughly divided into two phases.
The initial phase corresponds to the prediction stage. The second phase involves the
correction stage.

First, the state vector is predicted. The state vector at time step (k+1) is
predicted based on input u(k) and the previous state estimate x(k).

X(k+1)=R(k)+T[f (X(k))+B(k)u(k)] (10)

In the equation, Ts represents the state sampling period. ‘*’ represents the
state sampling period. ‘~’ represents the state prediction value.

To calculate the corresponding output y(k+1) for this prediction, the process
involves:

y(k +1)=CX(k +1) (11)
To calculate the error covariance matrix, the process involves:
Bk +1)= p(k)+T.[F(k)p(k)+ p)FT (K)]+Q (12)

In the formula, the variables are as follows:
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To calculate the gain matrix K(k+1) for EKF, the process involves:
K(k+1)= p(k +1)CT[CR(k +1)cT +R]" (15)

By performing the feedback correction on the predicted state vector x(k+1),
we obtain the optimized state estimate x(k+1). The process involves:
Kk +1)=X(k +2)+ K(k +1fy(k +1)- y(k +1)] (16)
In order to prepare for the next estimation, we need to pre-calculate the
estimation error covariance matrix. The process involves:
ple+1)=p(k+1)= K(k+1)Cp(k +1) (17)
Can be seen from the formula (14), the permanent magnet variable
frequency direct drive integrated machine system is a 4th-order nonlinear system.
It takes stator flux, motor speed, and position as state variables. It takes the voltage
in the a-p coordinate system as the system input. It takes the current as the output.
The entire system is linear with respect to the input, but nonlinear with respect to
the output. Based on this, it can be seen that EKF is applicable to the field-oriented
control system of permanent magnet variable frequency direct drive integrated
machines without position vectors. The control structure of the system is shown in
Figure 1.
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Fig. 1. System control structure diagram based on extended Kalman filter
3. Extended Kalman filter optimization control

We selected a 400kW mining-grade permanent magnet direct drive variable
frequency integrated machine as the research object. As shown in Table 1, the
specific parameters of the permanent magnet direct drive variable frequency
integrated machine are listed. The system simulation diagram is shown in Figure 2.
The entire simulation control system mainly consists of the EKF algorithm module,
Pl speed loop, PI current loop, and space vector pulse width modulation
module.The EKF module is established using the s-function. We set the motor rated
speed at 80 r/min. And the simulation time is set to 0.5 seconds.

Table 1
Mining permanent magnet direct drive inverter integrated machine parameters
Parameter Value
RJ/Q 0.06532
Pn 30
L/H 0.0085
WD 0.175
J/(kg'm?) 0.0048
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Fig. 2. Vector control system based on EFK

By Yin Z, Gao F, Zhang Y et al. (2019), the noise matrices Q and R will
affect the filtering effect and speed estimation accuracy of EKF. Increasing the Q-
value would intensify the noise in the EKF system. It amplifies the uncertainty of
the EKF system model. The EKF prediction covariance and filter gain increase.
Thus enhancing the observation error and responsiveness of the EKF. If the
measurement noise R-value increases, this results in a reduction of the filter gain.
The transient characteristics of the filter slow down, even to the extent of causing
the filtering process to become unstable or divergent. In related EKF control
systems, they often employ the following combinations:

Q=diag(0.1 0.1 1 0.01)

18
R =diag(0.01 0.01) (18)

The performance of EKF mainly includes observation accuracy and
response speed. It is imperative for us to investigate the relationship between the
noise matrix QR and the performance of EKF. We necessitate delving into the
correlation between the noise matrices Q and R, and the performance of EKF.
Sequentially altering the values of the noise matrices Q and R, we juxtapose the
observational errors and response times of the system under varying conditions. In
light of the values assigned to matrices Q and R, we configure ten distinct
simulations for each. With regard to the values assigned to Q, we incrementally
raise them from 0.02 to 0.2. With regard to the values assigned to R, we
incrementally raise them from 0.002 to 0.02.
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According to Figure 3, it is evident that as the value of Q increases, the
overall observational error of the EKF exhibits an upward trend. Due to the fact that
the noise matrix Q is a fourth-order matrix, the increase in observational error of
the EKF is not linear. If we aim to enhance the observational accuracy of EKF, it is
necessary to reduce the value of Q. The range of its increase is from 0.3985r/min to
0.6856r/min. Due to the significant improvement in optimization results with such
a large range, it holds certain research value.
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Fig. 3. The relationship between the value of Q and the observation error of EKF

According to Figure 4, it can be discerned that the augmentation of Q values
induces a diminution in the response time of the EKF system. It shall elevate the
responsiveness of the control system. By recalibrating the Q value, the response
time was reduced from 0.1095s to 0.0742s. Such optimization proves advantageous
for the motor control system. Hence, the adjustment of the Q value concurrently
impacts the observational accuracy and responsiveness of the EKF.
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Fig. 4. The relationship between the value of Q and the response time of EKF

According to Figure 5, increasing the R value results in a reduction of
observation error in the EKF, thereby enhancing its observational accuracy. By
increasing the R value, the observation error decreased from 0.6654r/min to
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0.5012r/min. Since R is a second-order matrix, we observe a pronounced decrease

in the observation error trend.
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Fig. 5. The relationship between the value of R and the observation error of EKF
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Fig. 6. The relationship between the value of R and the response time of EKF
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According to Figure 6, with an increase in the R value, the response time of
the EKF system also increases. By increasing the R value, the response time
increased from 0.0756s to 0.0996s. This leads to a decrease in the system's response
velocity, which hampers the stability of the control system. Consequently, adjusting
the R value concurrently affects both the observation precision of EKF and the
velocity influence. Moreover, the impact of the R value is contrary to that of the Q
value.

Through the aforementioned analysis, we achieve a harmonious
enhancement in both the observation precision and response velocity of EKF. The
ultimate values for the selection of the noise matrices Q and R are as follows:

Q=diag(0.12 0.12 0.8 0.008)

R =diag(0.012 0.008)

Subsequently, we incorporate this value into the control system of EKF. We
validate the optimization effectiveness of EKF through the simulated model
illustrated in Figure 2. The electric motor is initiated under no-load conditions, and

(19)
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at 0.25 seconds, we apply a torque of 3 N-m to the motor. This procedure allows
for the assessment of the control performance of EKF under various states. Figure
7 and Figure 8 represent the optimization effect of the observation accuracy in the
EKF system. From Figure 7, it can be observed that the improved EKF significantly
enhances its own speed observation accuracy in both the no-load and loaded states
of the motor. From Figure 8, it can be concluded that in the loaded state of the
motor, the improved EKF exhibits some improvement in the observed accuracy of
the rotor position. Therefore, it can be inferred that the observation accuracy of the

EKF is effectively improved.
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Fig. 7. Improving the speed observation error curve of EKF
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Fig. 8. Improving the rotor position observation error curve of EKF

Figure 9 and Figure 10 represent the optimization effect of the response
speed in the EKF system. From Figure 9 and Figure 10, it can be observed that the
improved EKF effectively reduces torque, speed overshoot, and improves the
convergence speed of the curve when state transitions occur. Therefore, it can be
concluded that the response speed of the EKF is effectively improved.
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Fig. 9. Improving the torque response curve of EKF
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Fig. 10. Improving the speed response curve of EKF

4. Conclusion

Based on the findings, we propose the adoption of EKF for controlling
mining permanent magnet variable frequency integrated machines. We have
designed a vector control system based on EKF and conducted optimization
research on it. We investigated the relationship between the initial values of the
noise matrices Q and R within EKF and the performance of the EKF itself. By
conducting comparative simulations, we obtained insights into the relationship
between the noise matrices Q and R and the observation accuracy as well as
response speed of the EKF. Based on the observed variations, we selected the
optimal values for the noise matrices and applied them to the control system,
resulting in an improved EKF control system. Through comparative simulations of
parameters such as rotational speed and torque, we have demonstrated that the
improved EKF exhibits higher observation accuracy and faster response speed. This
finding holds significant reference value for the control research of mining
permanent magnet variable frequency integrated machines.
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