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ON THE DETERMINATION OF A COMPLEX FINITE JACOBI
MATRIX FROM SPECTRAL DATA

Gusein Sh. Guseinov!

In this paper, we study the necessary and sufficient conditions for solv-
ability of an inverse spectral problem for finite order complexr Jacobi matrices
(tri-diagonal symmetric matrices with complex entries). The problem is to recon-
struct the complex Jacobi matrixz from the spectral data consisting of eigenvalues
and normalizing numbers of this matriz. An explicit procedure of reconstruction
of the matrixz from the spectral data is given.
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1. Introduction

Jacobi matrices appear in a variety of applications. Spectral theory of Jacobi
matrices plays a fundamental role in the investigation of the classical moment prob-
lem and in the theory of orthogonal polynomials [1, 2, 3|. Inverse spectral problems
for Jacobi matrices form a powerful tool for solving nonlinear discrete dynamical
systems (see [11, 15, 17] and references given therein).

An N x N complex Jacobi matrix is a matrix of the form

b() ag 0 s 0 0 0
a b1 ap - 0 0 0
0 aq b2 e 0 0 0
(1) =0 E : ;
0 0 0 PN bN_3 anN_3 0
0 0 0 -+ anv—3 by_2 an—2
i 0 0 0 e 0 anN—2 bN_1 ]

where for each n, a, and b, are arbitrary complex numbers such that a,, is different
from zero:

(2) an,bn € C, an #0.

A distinguishing feature of the Jacobi matrix (1) from other matrices is that
the eigenvalue problem Jy = Ay for a column vector y = {yn}g:_o1 is equivalent to
the second order linear difference equation

(3) Ap—1Yn—1 + bnyn + anyYnt+1 = Ayna
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nef{0,1,....,.N—1}, a1=any_1=1,
for {y,}N__,, with the boundary conditions y_; = yy = 0. This allows, using
techniques from the theory of three-term linear difference equations [2], to develop
a thorough analysis of the eigenvalue problem Jy = \y.
Eq. (3) with the boundary conditions y_; = yy = 0, arises, for example, in
the discretization of the (continuous) Sturm-Liouville eigenvalue problem

(4) i [m)d?f)} +a@)y(@) = Ay(@), @ € fa,b,

y(a) = y(b) =0,
where [a, b] is a finite interval. To the equation in (4) considered on the semi-infinite
interval [0,00) or on the whole real axis (—o0,00) there correspond infinite Jacobi
matrices.

Quantities connected with the eigenvalues and eigenvectors of the matrix are
called the spectral chracteristics of the matrix. The general inverse spectral problem
is to reconstruct the matrix given some of its spectral characteristics (spectral data).
Many versions of the inverse spectral problem for finite and infinite Jacobi matrices
have been investigated in the literature and many procedures and algorithms for
their solution have been proposed (see [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14]). Some of
them form analogs of problems of inverse Sturm-Liouville theory [4, 16], in which
a coefficient-function or “potential” in a second order differentrial equation is to be
recovered, given either the spectral function, or alternatively given two sets of eigen-
values corresponding to two given boundary conditions at one end, the boundary
condition at the other end being fixed.

Note that, in general, one spectrum consisting of the eigenvalues of the Jacobi
matrix does not determine this matrix. It turns out that the eigenvalues together
with the normalizing numbers or the so-called ”two spectra” are enough to determine
the Jacobi matrix in essential uniquely.

The spectral data, consisting of eigenvalues and normalizing numbers of the
matrix J given by (1) and (2), is introduced as follows [6]. Let R(\) = (J —
A)~! be the resolvent of the matrix J (by I we denote the identity matrix of
needed dimension) and eg be the N-dimensional column vector with the components
1,0,...,0. The rational function

(5) w(\) = — (R(N)eg, e0) = (M — J) 'eg, eq)

introduced earlier in [14], we call the resolvent function of the matrix J, where (-, )
denotes the standard inner product in CV. This function is known also as the Weyl-
Titchmarsh function of J. Denote by Aq,..., A, all the distinct eigenvalues of the

matrix J and by myq,...,m, their multiplicities, respectively, as the zeros of the
characteristic polynomial det(J — AI),so 1 <p < N, mj;+...+m, = N, and
(6) det(AM —J) = (A=) - (A= Xp)™

We can decompose the rational function w(\) into partial fractions to get:

P& By
(7) => > . ;k

kljl
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where f3;; are some complex numbers uniquely determined by the matrix .J. For each
ke {1,...,p} the (finite) sequence {B1, ..., Bkm, } is called the normalizing chain
(of the matrix J) associated with the eigenvalue \y.

The collection of the eigenvalues and normalizing numbers,

(8) {Aku Bk] (,7 = 17"'7mk; k= 1:---717)},

of the matrix J of the form (1), (2) is called the spectral data of this matrix.

The inverse spectral problem is to reconstruct the matrix using the eigenvalues
and normalizing numbers (spectral data) of the matrix.

In this paper, we present solutions of the direct and inverse spectral problems
for complex finite Jacobi matrices in terms of eigenvalues and normalizing numbers.
These problems were elaborated by the author before in [6, 7] using the obtained
there solution of the direct and inverse problems with respect to the so-called general-
ized spectral function that is a linear functional on the linear space of all polynomials
with complex coefficients. In this paper we present a straightforward solution of the
direct and inverse problems for spectral data consisting of eigenvalues and normal-
izing numbers of the complex matrix, not using the solution of the inverse problem
for the generalized spectral function.

2. Spectral data

Given a Jacobi matrix J of the form (1) with the entries in (2), denote by
{P,(N)}Y__; and {Q,(N\)}Y__, the solutions of Eq. (3) satisfying the initial condi-
tions
(9) P_i(A) =0, Bh(\) =1; Q-1(A) = -1, Qo(A) = 0.

For each n > 0, P,(\) is a polynomial of degree n and is called a polynomial of the
first kind and @, () is a polynomial of degree n — 1 and is known as a polynomial

of the second kind. These polynomials can be found recurrently from Eq. (3) using
initial conditions (9).

Lemma 2.1. ([8, Lemma 1]) The equality
(10) det (J — M) = (=1)Nagay - --an_2Pn(N)

holds so that the eigenvalues (counted according to their multiplicities) of the matriz
J coincide with the zeros (counted according to their multiplicities) of the polynomial
Pn(A).

Lemma 2.2. ([7, Lemma 3.1]) The entries Rum(\) of the matriz R(\) = (J—AI)~!
(resolvent of J) are of the form

PoN[Qm(\) + MO PR(N)], 0<n<m<N-—1,
(11) &MM_{fMM@MM+M0MMW,OSmSnSNL

where

(12) M(X) = —%VV((?))
According to (5), (11), (12) and using initial conditions (9), we get
(13 () = ~Roo(3) = =M () = L
w = 00()\) = M()\) =

Py(\)
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y (10) and (6) we have Pn(A) = ¢(A — A)™ -+ (A — X\p)™», where ¢ is a
nonzero constant. Therefore from (13) we can get for the resolvent function w(\)
the decomposition (7) with

1 A Qn(A)
1 m
= A e A=W

GJ=1,....mp; k=1,...,p)
called the normalizing numbers of the matrix J.
Determination of the spectral data (8) of a given Jacobi matrix is called the
direct spectral problem for this matrix.
The resolvent function w(A) of the matrix J can be constructed by using Eq.
(13). Another convenient formula for computing the resolvent function is ([6, Section

5))

Brj =

det(J; — AI det(A\] —
(1) wiy) = ~SHAZAD _ CHALZ ),

det(J — AI) det(N — J)
where Jj is the truncated matrix obtained from J by deleting its first row and first
column.

It follows from (14) that Aw(\) tends to 1 as A — oo. Therefore multiplying
(7) by A and passing then to the limit as A — oo, we find that

p

(15) > B=1

k=1
3. The orthogonality relations
Lemma 3.1. ([7, Lemma 3.2]) Let Rym(A) (n,m = 0,1,...,N — 1) be entries

of the matriz R(\) = (J — X)~'. For any vector f = {f,})—y € CN and each
n € {0,1,...,N — 1}, the representation

N-1 f

holds and there exist sufficiently large positive constants A and C such that
C
17 rn(A)| < —
(1) ) < 11

for allmn € {0,1,...,N — 1} and all X € C with |\ > A.

Let us define a linear functional ) on the linear space of all polynomials in A
with complex coefficients as follows: if G(\) is a polynomial then the value (€2, G(X))
of the functional €2 on the element (polynomial) G is

my
G(J 1) )\k)
(18) CXCEVESD 9 g wcams L2}
k=1 j=1 !

where Ay, Bi; (j = 1,...,my; k = 1,...,p) are the spectral data of the matrix J,
G ()\) denotes the n-th order derivative of G(\) with respect to \.
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Theorem 3.1. The “orthogonality” relations
(19) (Q, Pp,(A)Pr(N) = 0mm, m,ne{0,1,...,N — 1},
hold, where 6y, 1s the Kronecker delta.

Proof. Let f be an arbitrary element (column vector) of CV, with the components
fo, fi,- .-, fnv—1. Writing (16) for this vector f and then integrating both sides, we
obtain for each n € {0,1,... 7N - 1}

1
where 7 is a sufficiently large p081tlve number, ', is the circle in the A-plane, of
radius 7 centered at the origin which encloses all the eigenvalues Aq, ..., \, of J. By

(11), (12), (13), and the fact that the integral of a regular function over I'; is zero,
we have

1
(21) —5 {Z Rum(\ } A= 3 w(N)F(N) P, (M)A,
where
N-1
(22) F()‘) = Z fmpm()‘>
m=0

Next, applying the residue theorem and using the Leibnitz formula

N
™ = 3 (M)ue D9 ),

J

we find, taking into account (7),

2% 3 w(N)F(A\)Py(A)dA = éResA:Ak [wW(A)F(A) Pa(N)]
-3~ G, e (0 A PR
2 <L e kzmz Ty 1[F<A>Pn<A>1}Mk-

Substituting (23) in (21) and then (21) in (20), passing then to the limit as
r — o0, and taking into account that the second integral in the right side of (20)
tends to zero by (17), we get

(24) fn—zz O {dci;_l [F(A)Pn(A)]} , ne{0,1,...,N -1},

—1)!
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where F'(\) is defined by (22). Now by using (18), formula (24) can be written in
the form f, = (Q, F(A\)P,(\)),n € {0,1,..., N —1}. Substituting here (22), we can
write

N-1
(25) Fo =) fm (0, Pu(NPa(N), ne{0,1,...,N -1}

m=0

Since the numbers fo, f1,..., fnv—1 in (25) are arbitrary, it follows that the “orthog-
onality” relations (19) hold. O

4. The fundamental equation of inverse problem

As the P, ()) is a polynomial of degree n, we can write the representation

n—1
(26) P,(\) = ap (A"—Fank)\k) , ne{0,1,...,N},

k=0

where ay,, Xk are some complex numbers. Substituting (26) in (3), we find that the
coefficients a,, b, of system (3) and the quantities o, xnx of decomposition (26),
are interconnected by the equations

(27) an = an 0<n<N-=-2), a=1, ay=an-_1,
Q41
(28) by, = Xn,n—1 — Xn+1,n (O <n<N - 1), X0,—1 = 0.
Let us set
L l 1—j+1
_ I\ _ A=+ _
(29) sl_<Q,)\>_;;<j_l>,8kj>\k , 1=0,1,2,... ,

where (jil) is a binomial coefficient and we put (jil) =0ifj—-1>1.

Using the decomposition M = j:() cjiP;(\), j €{0,1,...,N} it is easy to
see that the relations (19) are equivalent to the relations

5mn
(30) (QA"P,(A)) = 22 monef0,1,....,N—1}

Qp

Replacing P,(\) in (30) by its expansion given in (26), we obtain

n—1
(B1)  Spam+ D XnkSkem =0, m=0,1,...,n—1, ne{l,2,...,N -1},
k=0
n—1 1
(32) 32n+zxnksk+n:a—2, ne{0,1,...,N—1}.
k=0 n
Note also that since Py(A\g) = Py(Ag) = ... = P](mG*l)()\k) =0,k=1,...,N, we
have, according to (18), (2, AP (X)) =0, m =0,1,2,... . This gives

N-1

SN4+m + Z XNkSk+m = 07 m = 071727°"'
k=0
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Therefore Eq. (31) holds also for n = N and we can write
n—1
(33)  Snim+ D XnkSkem =0, m=0,1,...,n—1, ne{1,2,...,N}.
k=0
Eq. (33) is the fundamental equation (a discrete version of the Gelfand-Levitan
equation [4]) of the inverse problem, in the sense that it enables the problem to
be formally solved. For, if we are given the spectral data (8), we can find the
quantities s; from (29) and then we consider the inhomogeneous system of linear
algebraic equations (33) with unknowns Xxno, Xn1,- .-, Xnn—1, for every fixed n €
{1,2,..., N}. If this system is uniquely solvable, and sg, + Zz;é XnkSk+n 7 0 for
n€{1,2,..., N — 1}, then the entries a,, b, of the required matrix J can be found
from (27) and (28), respectively, o, being found from (32). Below in Theorem 5.1
of Section 5 we give the conditions under which the indicated procedure of solving
the inverse problem is rigorously justificated.
Given a collection (8), define the numbers s; (I =0,1,2,...) by (29) and using
these numbers introduce the determinants

SD S]. e S’I’L
51 82 0 Spyl

(34) Dp=| . . . S, n=0,1,2,... .
Sn Sp+1 S2n

Lemma 4.1. ([10, Lemma 2]) Given any collection (8), for the determinants D,
defined by (34) and (29) we have D, =0 for n > N, where N =mj + ...+ m,.

Lemma 4.2. ([10, Lemma 3]) If collection (8) is the spectral data of a matriz J of
the form (1) with entries belonging to the class (2), then for the determinants D,
defined by (34) and (29) we have D,, # 0 for n € {0,1,...,N —1}.

5. Solution of the inverse problem

The following theorem gives a complete solution of the inverse spectral prob-
lem.

Theorem 5.1. Let an arbitrary collection (8) of numbers be given, where 1 < p < N,
mi,...,my are positive integers with my + ... +my, = N, A,...,\, are distinct
complex numbers. In order for this collection to be the spectral data for a Jacobi
matriz J of the form (1) with entries belonging to the class (2), it is necessary and
sufficient that the following two conditions are satisfied:

(): X7 B = L;

(ii): D, #0, for ne{l,2,...,N — 1}, where D,, is the determinant defined

by (34), (29).

Under the conditions (i) and (ii) the entries a, and by, of the matriz J for
which the collection (8) is spectral data, are recovered by the formulae

+ V anan+1

(35) ay = = , ne{0,1,....N—2}, D=1,
A, AL

(36) bn:F_D 17 ’I’LG{O,I,,N—I}, A_1:0’ Aﬂzsly
n n—1
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where D,, is defined by (34), (29), and Ay, is the determinant obtained from the de-

terminant D, by replacing in D,, the last column by the column with the components
Sn+1;Sn+2y - -+ S2n+1-

Proof. The necessity of the conditions of Theorem 5.1 follows from (15) and Lemma
4.2. The proof of the sufficiency we shall give in several stages.

(a) Given a collection (8) satisfying the conditions (i) and (ii) of Theorem
5.1, consider Eq. (33) for fixed n € {1,2,..., N} with the unknowns y,x, k =
0,1,...,n—1, in which s; are found with the aid of the collection (8) from expression
(29). The determinant of system (33) coincides with the D,,_; and is different from
zero by the condition (ii) of the theorem. Therefore system (33) is uniquely solvable.
The solution can be found by making use of Cramer’s rule. For this purpose, denote
by Dgi)l (k=0,1,...,n—1) the determinat that is obtained from the determinant
D,,_1 by replacing in D,,_; the (k+1)-th column by the column with the components
Sny Sntly - - -5 Son—1. Then we have

(37) Xnk = —

Using this expression for y,r we have

n—1 D(k
Son + Z XnkSk+n = S2n — Z D, _ 5k+n

n—1
1 (k) Dy,
=—— | Dp_159, — E D" n| = .
(38) D,y ( 152 = n—15k+ ) D, . # 0

Given the solution (x,x);—y of the fundamental equaton (33), we find o, from
(32) which gives, by (38),
1_ D,
04721 B Dn—l7

(39) nef{0,1,...,.N—1}, D_y=1,

with ap = 1 and set ay = an—1. Then we construct polynomials P,(\) by

n—1
(40) Py(\) = ap (Auzxnm), ne€{0,1,...,N}.

k=0

Given collection (8) let us set

P my (
() @a0) =33 a0,

k=1 j=1

where G(\) is any polynomial. We can show that for the constructed polynomials
P,(\) the orthogonality relations in (19) hold with this functional 2. In fact, it is
enough to show that (30) holds. But it is straightforward to get (30) from (33) and
(32).

(b) We can show as in [6, pp.9-10] that the polynomials P,(\),n =0,1,..., N,
constructed in accordance with (40) with the aid of the numbers x,x and a, obtained
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by (37) and (39), satisfy the equations
(42) boPo()\) + CL()Pl(/\) = )\P()()\),
n—1Pn—1(A) + 0n Po(N) + anPryi(A) = AP, (M),
ne{l,2,...,.N—1}, any_1 =1,

where the coefficients a,, b, are given by the expressions

(43) Gy, = il 0<n<N-2), a=1, ay=an-1,
Qnpt1
(44) bn = Xn,n—1 — Xn+1,n (O <n<N - 1)a X0,-1 = 0.

Now letting A,, be the determinant obtained from the determinant D, by
replacing in D,, the last column by the column with the components s,1, Spt2,
.., Sont1, we get from (43), (44), by virtue of (37), (39), the formulae (35), (36).

(c) We show that Py(A) = c(A — Ay)™ --- (A — Ap)"», where ¢ is a nonzero

constant. This will mean, in particular, that Ai,..., A, are eigenvalues of the con-
structed matrix J with the entries a,,, b,, of multiplicities myq,...,m,, respectively.
Set

(45) H(A) = (A= A)™ (A= Ap)™

Let us show that there exists a constant ¢ such that

(46) a/N_QPN_Q()\) + bN—le—l()\) + CH()\) = )\PN_1(>\)

for all A. If we prove this, then from (42) with n = N — 1 we get that Py(\) =
cH(). Since deg P,(A) = n (0 < n < N —1), degH(A) = N, the polynomials
Py(N),...,Pny_1(N\), H(\) form a basis of the linear space of all polynomials of degree
< N with complex coefficients. Therefore we have the decomposition

(47) APy_1(A) = cH()\) + Z en P

where ¢, cg, ¢1, ..., cn_1 are some complex constants. By (45) and (41) it follows that
(QH(A)P,(N) =0, ne{0,1,..., N}. Hence taking into account the relations (19)
and an, = (Q,AP,(A)Poy1(N)), (0 <n < N=2); by, = (Q,AP2(N)), (0 <n < N-1),
which follow from (42), we find from (47) that ¢, =0 (0 <n < N-3),cy_2 = an—_2,
cn—1 =by_1. So (46) is shown.

It remains to show that for each k € {1,...,p} the sequence {B1, ..., Bim, } is
the normalizing chain of the constructed matrix J, associated with the eigenvalue \.
Since we have already shown that A is an eigenvalue of the matrix J of multiplicity
my, the normalizing chain of J associated with the eigenvalue Ay has the form

{ﬁkl, . ,Bkmk} We have to show that Bk] Brj G=1,...,mk, k=1,...,p). Let
us set
b mg G(] 1) )\k
< > ZZ ki =7  1\1 -_ )
k=1 j=1 !

where G()) is any polynomial. By the direct spectral problem we have
(48) <§,Pm(A)Pn(A)> = Spns man €{0,1,..., N —1}.
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From (48) and (19) we get <fz Pm()\)Pn()\)> = (Q, P(NPa(A)),m,n € {0,1,...,N—
1}. Since the 2N — 1 polynomials P,(\) = Py(A\)P,(A) (n = 0,1,...,N — 1),
Py, (A)Pn-_1(A) (m =1,2,...,N — 1) of degree < 2N — 2 are linearly independent
(they have distinct degrees), any polynomial of degree < 2N — 2 can be represented
as a linear combination of these polynomials. Consequently, <S~), G()\)> = (Q,G(\))

for all polynomials G(\) of degree < 2N — 2. Hence

P ok (G-1)
D (B - ﬁkj)G(j_S\!k) —
k=1 j=1
for all polynomials G(\) of degree < 2N — 2. Note that 2N —2 > N for N > 2.
Since the GU~1)();,) can be arbitrary numbers (by the Hermite general interpolation
theorem), it follows that Ekj B =0(G=1,...,m, k=1,...,p). Theorem 5.1 is
completely proved. U

It follows from the above solution of the inverse problem that the matrix (1)
is not uniquely restored from the spectral data. This is linked with the fact that
the a, are determined from (35) uniquely up to a sign. Thus, we can say that the
inverse problem with respect to the spectral data is solved uniquely up to signs of
the off-diagonal elements of the recovered Jacobi matrix.

6. Examples and discussion of Theorem 5.1

Note that in the case of arbitrary real distinct numbers A1, ..., Ay and positive
numbers [, ..., Sy the condition (ii) of Theorem 5.1 is satisfied automatically and
in this case we have D,, > 0, forn € {1,2,..., N —1}, (see [8, Lemma 7]). However,
in the case of complex valued spectral data the condition (ii) of Theorem 5.1 may
not be satisfied automatically.

1. Let N = 2 and take as collection (8) the data{\1, Aa, 81, P2}, where Ay,
A2, b1, and By are arbitrary complex numbers such that Ay # Ao, 51 # 0, B2 # 0,
B1 + B2 = 1. Since in this case D_1 =1, Dg = sg = 1, D1 = B12(A\1 — X2)? # 0, we
see that all the conditions of Theorem 5.1 are satisfied.

2. Let again N = 2 and take as collection (8) the data {A1, 811 = 1, B2},
where A\; and (19 are arbitrary complex numbers (hence we get N = 2, p = 1,
my =2) . We have D_y = 1, Dy = sg = 1, D; = —f3%,. We see that the condition
D1 # 0 of Theorem 5.1 is equivalent to the condition that 812 # 0.

3. Let now N = 3 and as the collection (8) we take {1, A2, A3, B1, B2, B3},
where A1, Ao, A3, B1, B2, B3 are arbitrary complex numbers such that Ay # Ao,

M F A3, Ao F A3, B1#0,B2#0, B3#0, B1+ B2+ 3 = 1. We have
Dy = B1B2(A1 — A2)? + BiBs(A1 — A3)® + B2B3(A2 — A3)?,

Dy = B1B283(A1 — A2)2 (A1 — A3)2 (A2 — A3)?,

We see that the condition D; # 0 is not satisfied automatically and therefore one
must require D; # 0 as a condition. For example, if 51 = 53 = 83 = 1/3, A\ =
(14+14v/3)/2, Ao = 1, A3 = 0 then Dy = 0.
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7. Conclusions

In this work, a thorough spectral analysis of the finite order complex Jacobi
matrices has been carried out. In particular, the concept of spectral data for such
matrices has been introduced. The spectral data consist of the complex-valued
eigenvalues and associated normalizing numbers derived by decomposing the resol-
vent function of the Jacobi matrix into partial fractions using the eigenvalues. The
crucial point is derivation of the orthogonality relations (Theorem 3.1 in Section
3). Then the inverse problem has been studied and discussed how to reconstruct
the complex Jacobi matrices from the spectral data. The uniqueness and existence
results for solution of the inverse problem have been established and an explicit
procedure of reconstruction of the matrix from the spectral data has been given.

A distinguishing feature of the Jacobi matrices from other matrices is that
they are related to certain three-term recursion relations (second order linear differ-
ence equations). This allows, using techniques from the theory of linear difference
equations, to develop more detailed analysis of the eigenvalue problem for Jacobi
matrices. Spectral and inverse spectral problems for Jacobi matrices play a fun-
damental role in the investigation of completely integrable nonlinear lattices, in
particular, in the investigation of the Toda lattices.
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