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ON THE DETERMINATION OF A COMPLEX FINITE JACOBI

MATRIX FROM SPECTRAL DATA

Gusein Sh. Guseinov1

In this paper, we study the necessary and sufficient conditions for solv-
ability of an inverse spectral problem for finite order complex Jacobi matrices
(tri-diagonal symmetric matrices with complex entries). The problem is to recon-
struct the complex Jacobi matrix from the spectral data consisting of eigenvalues
and normalizing numbers of this matrix. An explicit procedure of reconstruction
of the matrix from the spectral data is given.
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1. Introduction

Jacobi matrices appear in a variety of applications. Spectral theory of Jacobi
matrices plays a fundamental role in the investigation of the classical moment prob-
lem and in the theory of orthogonal polynomials [1, 2, 3]. Inverse spectral problems
for Jacobi matrices form a powerful tool for solving nonlinear discrete dynamical
systems (see [11, 15, 17] and references given therein).

An N ×N complex Jacobi matrix is a matrix of the form

(1) J =



b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 · · · 0 aN−2 bN−1


,

where for each n, an and bn are arbitrary complex numbers such that an is different
from zero:

(2) an, bn ∈ C, an ̸= 0.

A distinguishing feature of the Jacobi matrix (1) from other matrices is that

the eigenvalue problem Jy = λy for a column vector y = {yn}N−1
n=0 is equivalent to

the second order linear difference equation

(3) an−1yn−1 + bnyn + anyn+1 = λyn,
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n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,

for {yn}Nn=−1, with the boundary conditions y−1 = yN = 0. This allows, using
techniques from the theory of three-term linear difference equations [2], to develop
a thorough analysis of the eigenvalue problem Jy = λy.

Eq. (3) with the boundary conditions y−1 = yN = 0, arises, for example, in
the discretization of the (continuous) Sturm-Liouville eigenvalue problem

(4)
d

dx

[
p(x)

dy(x)

dx

]
+ q(x)y(x) = λy(x), x ∈ [a, b],

y(a) = y(b) = 0,

where [a, b] is a finite interval. To the equation in (4) considered on the semi-infinite
interval [0,∞) or on the whole real axis (−∞,∞) there correspond infinite Jacobi
matrices.

Quantities connected with the eigenvalues and eigenvectors of the matrix are
called the spectral chracteristics of the matrix. The general inverse spectral problem
is to reconstruct the matrix given some of its spectral characteristics (spectral data).
Many versions of the inverse spectral problem for finite and infinite Jacobi matrices
have been investigated in the literature and many procedures and algorithms for
their solution have been proposed (see [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14]). Some of
them form analogs of problems of inverse Sturm-Liouville theory [4, 16], in which
a coefficient-function or “potential” in a second order differentrial equation is to be
recovered, given either the spectral function, or alternatively given two sets of eigen-
values corresponding to two given boundary conditions at one end, the boundary
condition at the other end being fixed.

Note that, in general, one spectrum consisting of the eigenvalues of the Jacobi
matrix does not determine this matrix. It turns out that the eigenvalues together
with the normalizing numbers or the so-called ”two spectra” are enough to determine
the Jacobi matrix in essential uniquely.

The spectral data, consisting of eigenvalues and normalizing numbers of the
matrix J given by (1) and (2), is introduced as follows [6]. Let R(λ) = (J −
λI)−1 be the resolvent of the matrix J (by I we denote the identity matrix of
needed dimension) and e0 be the N -dimensional column vector with the components
1, 0, . . . , 0. The rational function

(5) w(λ) = −⟨R(λ)e0, e0⟩ =
⟨
(λI − J)−1e0, e0

⟩
,

introduced earlier in [14], we call the resolvent function of the matrix J, where ⟨·, ·⟩
denotes the standard inner product in CN . This function is known also as the Weyl-
Titchmarsh function of J. Denote by λ1, . . . , λp all the distinct eigenvalues of the
matrix J and by m1, . . . ,mp their multiplicities, respectively, as the zeros of the
characteristic polynomial det(J − λI), so 1 ≤ p ≤ N, m1 + . . .+mp = N, and

(6) det(λI − J) = (λ− λ1)
m1 · · · (λ− λp)

mp .

We can decompose the rational function w(λ) into partial fractions to get:

(7) w(λ) =

p∑
k=1

mk∑
j=1

βkj
(λ− λk)j

,
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where βkj are some complex numbers uniquely determined by the matrix J. For each
k ∈ {1, . . . , p} the (finite) sequence {βk1, . . . , βkmk

} is called the normalizing chain
(of the matrix J) associated with the eigenvalue λk.

The collection of the eigenvalues and normalizing numbers,

(8) {λk, βkj (j = 1, . . . ,mk; k = 1, . . . , p)},
of the matrix J of the form (1), (2) is called the spectral data of this matrix.

The inverse spectral problem is to reconstruct the matrix using the eigenvalues
and normalizing numbers (spectral data) of the matrix.

In this paper, we present solutions of the direct and inverse spectral problems
for complex finite Jacobi matrices in terms of eigenvalues and normalizing numbers.
These problems were elaborated by the author before in [6, 7] using the obtained
there solution of the direct and inverse problems with respect to the so-called general-
ized spectral function that is a linear functional on the linear space of all polynomials
with complex coefficients. In this paper we present a straightforward solution of the
direct and inverse problems for spectral data consisting of eigenvalues and normal-
izing numbers of the complex matrix, not using the solution of the inverse problem
for the generalized spectral function.

2. Spectral data

Given a Jacobi matrix J of the form (1) with the entries in (2), denote by
{Pn(λ)}Nn=−1 and {Qn(λ)}Nn=−1 the solutions of Eq. (3) satisfying the initial condi-
tions

(9) P−1(λ) = 0, P0(λ) = 1; Q−1(λ) = −1, Q0(λ) = 0.

For each n ≥ 0, Pn(λ) is a polynomial of degree n and is called a polynomial of the
first kind and Qn(λ) is a polynomial of degree n− 1 and is known as a polynomial
of the second kind. These polynomials can be found recurrently from Eq. (3) using
initial conditions (9).

Lemma 2.1. ([8, Lemma 1]) The equality

(10) det (J − λI) = (−1)Na0a1 · · · aN−2PN (λ)

holds so that the eigenvalues (counted according to their multiplicities) of the matrix
J coincide with the zeros (counted according to their multiplicities) of the polynomial
PN (λ).

Lemma 2.2. ([7, Lemma 3.1]) The entries Rnm(λ) of the matrix R(λ) = (J−λI)−1

(resolvent of J) are of the form

(11) Rnm(λ) =

{
Pn(λ)[Qm(λ) +M(λ)Pm(λ)], 0 ≤ n ≤ m ≤ N − 1,
Pm(λ)[Qn(λ) +M(λ)Pn(λ)], 0 ≤ m ≤ n ≤ N − 1,

where

(12) M(λ) = −QN (λ)

PN (λ)
.

According to (5), (11), (12) and using initial conditions (9), we get

(13) w(λ) = −R00(λ) = −M(λ) =
QN (λ)

PN (λ)
.
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By (10) and (6) we have PN (λ) = c(λ − λ1)
m1 · · · (λ − λp)

mp , where c is a
nonzero constant. Therefore from (13) we can get for the resolvent function w(λ)
the decomposition (7) with

βkj =
1

(mk − j)!
lim
λ→λk

dmk−j

dλmk−j

[
(λ− λk)

mk
QN (λ)

PN (λ)

]
(j = 1, . . . ,mk; k = 1, . . . , p)

called the normalizing numbers of the matrix J.
Determination of the spectral data (8) of a given Jacobi matrix is called the

direct spectral problem for this matrix.
The resolvent function w(λ) of the matrix J can be constructed by using Eq.

(13). Another convenient formula for computing the resolvent function is ([6, Section
5])

(14) w(λ) = −det(J1 − λI)

det(J − λI)
=

det(λI − J1)

det(λI − J)
,

where J1 is the truncated matrix obtained from J by deleting its first row and first
column.

It follows from (14) that λw(λ) tends to 1 as λ → ∞. Therefore multiplying
(7) by λ and passing then to the limit as λ → ∞, we find that

(15)

p∑
k=1

βk1 = 1.

3. The orthogonality relations

Lemma 3.1. ([7, Lemma 3.2]) Let Rnm(λ) (n,m = 0, 1, . . . , N − 1) be entries

of the matrix R(λ) = (J − λI)−1. For any vector f = {fn}N−1
n=0 ∈ CN and each

n ∈ {0, 1, . . . , N − 1}, the representation

(16)

N−1∑
n=0

Rnm(λ)fm = −fn
λ

+ rn(λ)

holds and there exist sufficiently large positive constants Λ and C such that

(17) |rn(λ)| ≤
C

|λ|2

for all n ∈ {0, 1, . . . , N − 1} and all λ ∈ C with |λ| ≥ Λ.

Let us define a linear functional Ω on the linear space of all polynomials in λ
with complex coefficients as follows: if G(λ) is a polynomial then the value ⟨Ω, G(λ)⟩
of the functional Ω on the element (polynomial) G is

(18) ⟨Ω, G(λ)⟩ =
p∑

k=1

mk∑
j=1

βkj
G(j−1)(λk)

(j − 1)!
,

where λk, βkj (j = 1, . . . ,mk; k = 1, . . . , p) are the spectral data of the matrix J,

G(n)(λ) denotes the n-th order derivative of G(λ) with respect to λ.
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Theorem 3.1. The “orthogonality” relations

(19) ⟨Ω, Pm(λ)Pn(λ)⟩ = δmn, m, n ∈ {0, 1, . . . , N − 1},
hold, where δmn is the Kronecker delta.

Proof. Let f be an arbitrary element (column vector) of CN , with the components
f0, f1, . . . , fN−1. Writing (16) for this vector f and then integrating both sides, we
obtain for each n ∈ {0, 1, . . . , N − 1},

(20) fn = − 1

2πi

∮
Γr

{
N−1∑
m=0

Rnm(λ)fm

}
dλ+

1

2πi

∮
Γr

rn(λ)dλ,

where r is a sufficiently large positive number, Γr is the circle in the λ-plane, of
radius r centered at the origin which encloses all the eigenvalues λ1, . . . , λp of J. By
(11), (12), (13), and the fact that the integral of a regular function over Γr is zero,
we have

(21) − 1

2πi

∮
Γr

{
N−1∑
m=0

Rnm(λ)fm

}
dλ =

1

2πi

∮
Γr

w(λ)F (λ)Pn(λ)dλ,

where

(22) F (λ) =
N−1∑
m=0

fmPm(λ).

Next, applying the residue theorem and using the Leibnitz formula

[u(λ)v(λ)](n) =
N∑
j=0

(
n

j

)
u(n−j)(λ)v(j)(λ),

we find, taking into account (7),

1

2πi

∮
Γr

w(λ)F (λ)Pn(λ)dλ =

p∑
k=1

Resλ=λk
[w(λ)F (λ)Pn(λ)]

=

p∑
k=1

1

(mk − 1)!
lim
λ→λk

dmk−1

dλmk−1
[(λ− λk)

mkw(λ)F (λ)Pn(λ)]

=

p∑
k=1

1

(mk − 1)!
lim
λ→λk

mk−1∑
j=0

(
mk − 1

j

)[
dmk−1−j

dλmk−1−j
(λ− λk)

mkw(λ)

]

(23) × dj

dλj
[F (λ)Pn(λ)] =

p∑
k=1

mk∑
j=1

βkj
(j − 1)!

{
dj−1

dλj−1
[F (λ)Pn(λ)]

}
λ=λk

.

Substituting (23) in (21) and then (21) in (20), passing then to the limit as
r → ∞, and taking into account that the second integral in the right side of (20)
tends to zero by (17), we get

(24) fn =

p∑
k=1

mk∑
j=1

βkj
(j − 1)!

{
dj−1

dλj−1
[F (λ)Pn(λ)]

}
λ=λk

, n ∈ {0, 1, . . . , N − 1},
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where F (λ) is defined by (22). Now by using (18), formula (24) can be written in
the form fn = ⟨Ω, F (λ)Pn(λ)⟩ , n ∈ {0, 1, . . . , N −1}. Substituting here (22), we can
write

(25) fn =

N−1∑
m=0

fm ⟨Ω, Pm(λ)Pn(λ)⟩ , n ∈ {0, 1, . . . , N − 1}.

Since the numbers f0, f1, . . . , fN−1 in (25) are arbitrary, it follows that the “orthog-
onality” relations (19) hold. �

4. The fundamental equation of inverse problem

As the Pn(λ) is a polynomial of degree n, we can write the representation

(26) Pn(λ) = αn

(
λn +

n−1∑
k=0

χnkλ
k

)
, n ∈ {0, 1, . . . , N},

where αn, χnk are some complex numbers. Substituting (26) in (3), we find that the
coefficients an, bn of system (3) and the quantities αn, χnk of decomposition (26),
are interconnected by the equations

(27) an =
αn

αn+1
(0 ≤ n ≤ N − 2), α0 = 1, αN = αN−1,

(28) bn = χn,n−1 − χn+1,n (0 ≤ n ≤ N − 1), χ0,−1 = 0.

Let us set

(29) sl =
⟨
Ω, λl

⟩
=

p∑
k=1

mk∑
j=1

(
l

j − 1

)
βkjλ

l−j+1
k , l = 0, 1, 2, . . . ,

where
(

l
j−1

)
is a binomial coefficient and we put

(
l

j−1

)
= 0 if j − 1 > l.

Using the decomposition λj =
∑j

i=0 cjiPi(λ), j ∈ {0, 1, . . . , N} it is easy to
see that the relations (19) are equivalent to the relations

(30) ⟨Ω, λmPn(λ)⟩ =
δmn

αn
, m, n ∈ {0, 1, . . . , N − 1}.

Replacing Pn(λ) in (30) by its expansion given in (26), we obtain

(31) sn+m +
n−1∑
k=0

χnksk+m = 0, m = 0, 1, . . . , n− 1, n ∈ {1, 2, . . . , N − 1},

(32) s2n +
n−1∑
k=0

χnksk+n =
1

α2
n

, n ∈ {0, 1, . . . , N − 1}.

Note also that since PN (λk) = P ′
N (λk) = . . . = P

(mk−1)
N (λk) = 0, k = 1, . . . , N, we

have, according to (18), ⟨Ω, λmPN (λ)⟩ = 0, m = 0, 1, 2, . . . . This gives

sN+m +
N−1∑
k=0

χNksk+m = 0, m = 0, 1, 2, . . . .
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Therefore Eq. (31) holds also for n = N and we can write

(33) sn+m +
n−1∑
k=0

χnksk+m = 0, m = 0, 1, . . . , n− 1, n ∈ {1, 2, . . . , N}.

Eq. (33) is the fundamental equation (a discrete version of the Gelfand-Levitan
equation [4]) of the inverse problem, in the sense that it enables the problem to
be formally solved. For, if we are given the spectral data (8), we can find the
quantities sl from (29) and then we consider the inhomogeneous system of linear
algebraic equations (33) with unknowns χn0, χn1, . . . , χn,n−1, for every fixed n ∈
{1, 2, . . . , N}. If this system is uniquely solvable, and s2n +

∑n−1
k=0 χnksk+n ̸= 0 for

n ∈ {1, 2, . . . , N − 1}, then the entries an, bn of the required matrix J can be found
from (27) and (28), respectively, αn being found from (32). Below in Theorem 5.1
of Section 5 we give the conditions under which the indicated procedure of solving
the inverse problem is rigorously justificated.

Given a collection (8), define the numbers sl (l = 0, 1, 2, . . . ) by (29) and using
these numbers introduce the determinants

(34) Dn =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn
s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣ , n = 0, 1, 2, . . . .

Lemma 4.1. ([10, Lemma 2]) Given any collection (8), for the determinants Dn

defined by (34) and (29) we have Dn = 0 for n ≥ N, where N = m1 + . . .+mp.

Lemma 4.2. ([10, Lemma 3]) If collection (8) is the spectral data of a matrix J of
the form (1) with entries belonging to the class (2), then for the determinants Dn

defined by (34) and (29) we have Dn ̸= 0 for n ∈ {0, 1, . . . , N − 1}.

5. Solution of the inverse problem

The following theorem gives a complete solution of the inverse spectral prob-
lem.

Theorem 5.1. Let an arbitrary collection (8) of numbers be given, where 1 ≤ p ≤ N,
m1, . . . ,mp are positive integers with m1 + . . . + mp = N, λ1, . . . , λp are distinct
complex numbers. In order for this collection to be the spectral data for a Jacobi
matrix J of the form (1) with entries belonging to the class (2), it is necessary and
sufficient that the following two conditions are satisfied:

(i):
∑p

k=1 βk1 = 1;
(ii): Dn ̸= 0, for n ∈ {1, 2, . . . , N − 1}, where Dn is the determinant defined

by (34), (29).

Under the conditions (i) and (ii) the entries an and bn of the matrix J for
which the collection (8) is spectral data, are recovered by the formulae

(35) an =
±
√
Dn−1Dn+1

Dn
, n ∈ {0, 1, . . . , N − 2}, D−1 = 1,

(36) bn =
∆n

Dn
− ∆n−1

Dn−1
, n ∈ {0, 1, . . . , N − 1}, ∆−1 = 0, ∆0 = s1,
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where Dn is defined by (34), (29), and ∆n is the determinant obtained from the de-
terminant Dn by replacing in Dn the last column by the column with the components
sn+1, sn+2, . . . , s2n+1.

Proof. The necessity of the conditions of Theorem 5.1 follows from (15) and Lemma
4.2. The proof of the sufficiency we shall give in several stages.

(a) Given a collection (8) satisfying the conditions (i) and (ii) of Theorem
5.1, consider Eq. (33) for fixed n ∈ {1, 2, . . . , N} with the unknowns χnk, k =
0, 1, . . . , n−1, in which sl are found with the aid of the collection (8) from expression
(29). The determinant of system (33) coincides with the Dn−1 and is different from
zero by the condition (ii) of the theorem. Therefore system (33) is uniquely solvable.
The solution can be found by making use of Cramer’s rule. For this purpose, denote

by D
(k)
n−1 (k = 0, 1, . . . , n− 1) the determinat that is obtained from the determinant

Dn−1 by replacing inDn−1 the (k+1)-th column by the column with the components
sn, sn+1, . . . , s2n−1. Then we have

(37) χnk = −
D

(k)
n−1

Dn−1
, k = 0, 1, . . . , n− 1.

Using this expression for χnk we have

s2n +
n−1∑
k=0

χnksk+n = s2n −
n−1∑
k=0

D
(k)
n−1

Dn−1
sk+n

(38) =
1

Dn−1

(
Dn−1s2n −

n−1∑
k=0

D
(k)
n−1sk+n

)
=

Dn

Dn−1
̸= 0.

Given the solution (χnk)
n−1
k=0 of the fundamental equaton (33), we find αn from

(32) which gives, by (38),

(39)
1

α2
n

=
Dn

Dn−1
, n ∈ {0, 1, . . . , N − 1}, D−1 = 1,

with α0 = 1 and set αN = αN−1. Then we construct polynomials Pn(λ) by

(40) Pn(λ) = αn

(
λn +

n−1∑
k=0

χnkλ
k

)
, n ∈ {0, 1, . . . , N}.

Given collection (8) let us set

(41) ⟨Ω, G(λ)⟩ =
p∑

k=1

mk∑
j=1

βkj
G(j−1)(λk)

(j − 1)!
,

where G(λ) is any polynomial. We can show that for the constructed polynomials
Pn(λ) the orthogonality relations in (19) hold with this functional Ω. In fact, it is
enough to show that (30) holds. But it is straightforward to get (30) from (33) and
(32).

(b) We can show as in [6, pp.9–10] that the polynomials Pn(λ), n = 0, 1, . . . , N,
constructed in accordance with (40) with the aid of the numbers χnk and αn obtained
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by (37) and (39), satisfy the equations

b0P0(λ) + a0P1(λ) = λP0(λ),(42)

an−1Pn−1(λ) + bnPn(λ) + anPn+1(λ) = λPn(λ),

n ∈ {1, 2, . . . , N − 1}, aN−1 = 1,

where the coefficients an, bn are given by the expressions

(43) an =
αn

αn+1
(0 ≤ n ≤ N − 2), α0 = 1, αN = αN−1,

(44) bn = χn,n−1 − χn+1,n (0 ≤ n ≤ N − 1), χ0,−1 = 0.

Now letting ∆n be the determinant obtained from the determinant Dn by
replacing in Dn the last column by the column with the components sn+1, sn+2,
. . . , s2n+1, we get from (43), (44), by virtue of (37), (39), the formulae (35), (36).

(c) We show that PN (λ) = c(λ − λ1)
m1 · · · (λ − λp)

mp , where c is a nonzero
constant. This will mean, in particular, that λ1, . . . , λp are eigenvalues of the con-
structed matrix J with the entries an, bn, of multiplicities m1, . . . ,mp, respectively.
Set

(45) H(λ) = (λ− λ1)
m1 · · · (λ− λp)

mp .

Let us show that there exists a constant c such that

(46) aN−2PN−2(λ) + bN−1PN−1(λ) + cH(λ) = λPN−1(λ)

for all λ. If we prove this, then from (42) with n = N − 1 we get that PN (λ) =
cH(λ). Since degPn(λ) = n (0 ≤ n ≤ N − 1), degH(λ) = N, the polynomials
P0(λ), . . . , PN−1(λ),H(λ) form a basis of the linear space of all polynomials of degree
≤ N with complex coefficients. Therefore we have the decomposition

(47) λPN−1(λ) = cH(λ) +

N−1∑
n=0

cnPn(λ),

where c, c0, c1, . . . , cN−1 are some complex constants. By (45) and (41) it follows that
⟨Ω, H(λ)Pn(λ)⟩ = 0, n ∈ {0, 1, . . . , N}. Hence taking into account the relations (19)
and an = ⟨Ω, λPn(λ)Pn+1(λ)⟩ , (0 ≤ n ≤ N−2); bn =

⟨
Ω, λP 2

n(λ)
⟩
, (0 ≤ n ≤ N−1),

which follow from (42), we find from (47) that cn = 0 (0 ≤ n ≤ N−3), cN−2 = aN−2,
cN−1 = bN−1. So (46) is shown.

It remains to show that for each k ∈ {1, . . . , p} the sequence {βk1, . . . , βkmk
} is

the normalizing chain of the constructed matrix J, associated with the eigenvalue λk.
Since we have already shown that λk is an eigenvalue of the matrix J of multiplicity
mk, the normalizing chain of J associated with the eigenvalue λk has the form

{β̃k1, . . . , β̃kmk
}. We have to show that β̃kj = βkj (j = 1, . . . ,mk, k = 1, . . . , p). Let

us set ⟨
Ω̃, G(λ)

⟩
=

p∑
k=1

mk∑
j=1

β̃kj
G(j−1)(λk)

(j − 1)!
,

where G(λ) is any polynomial. By the direct spectral problem we have

(48)
⟨
Ω̃, Pm(λ)Pn(λ)

⟩
= δmn, m, n ∈ {0, 1, . . . , N − 1}.
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From (48) and (19) we get
⟨
Ω̃, Pm(λ)Pn(λ)

⟩
= ⟨Ω, Pm(λ)Pn(λ)⟩ , m, n ∈ {0, 1, . . . , N−

1}. Since the 2N − 1 polynomials Pn(λ) = P0(λ)Pn(λ) (n = 0, 1, . . . , N − 1),
Pm(λ)PN−1(λ) (m = 1, 2, . . . , N − 1) of degree ≤ 2N − 2 are linearly independent
(they have distinct degrees), any polynomial of degree ≤ 2N − 2 can be represented

as a linear combination of these polynomials. Consequently,
⟨
Ω̃, G(λ)

⟩
= ⟨Ω, G(λ)⟩

for all polynomials G(λ) of degree ≤ 2N − 2. Hence

p∑
k=1

mk∑
j=1

(β̃kj − βkj)
G(j−1)(λk)

(j − 1)!
= 0

for all polynomials G(λ) of degree ≤ 2N − 2. Note that 2N − 2 ≥ N for N ≥ 2.

Since the G(j−1)(λk) can be arbitrary numbers (by the Hermite general interpolation

theorem), it follows that β̃kj − βkj = 0 (j = 1, . . . ,mk, k = 1, . . . , p). Theorem 5.1 is
completely proved. �

It follows from the above solution of the inverse problem that the matrix (1)
is not uniquely restored from the spectral data. This is linked with the fact that
the an are determined from (35) uniquely up to a sign. Thus, we can say that the
inverse problem with respect to the spectral data is solved uniquely up to signs of
the off-diagonal elements of the recovered Jacobi matrix.

6. Examples and discussion of Theorem 5.1

Note that in the case of arbitrary real distinct numbers λ1, . . . , λN and positive
numbers β1, . . . , βN the condition (ii) of Theorem 5.1 is satisfied automatically and
in this case we have Dn > 0, for n ∈ {1, 2, . . . , N − 1}, (see [8, Lemma 7]). However,
in the case of complex valued spectral data the condition (ii) of Theorem 5.1 may
not be satisfied automatically.

1. Let N = 2 and take as collection (8) the data{λ1, λ2, β1, β2}, where λ1,
λ2, β1, and β2 are arbitrary complex numbers such that λ1 ̸= λ2, β1 ̸= 0, β2 ̸= 0,
β1 + β2 = 1. Since in this case D−1 = 1, D0 = s0 = 1, D1 = β1β2(λ1 − λ2)

2 ̸= 0, we
see that all the conditions of Theorem 5.1 are satisfied.

2. Let again N = 2 and take as collection (8) the data {λ1, β11 = 1, β12},
where λ1 and β12 are arbitrary complex numbers (hence we get N = 2, p = 1,
m1 = 2) . We have D−1 = 1, D0 = s0 = 1, D1 = −β2

12. We see that the condition
D1 ̸= 0 of Theorem 5.1 is equivalent to the condition that β12 ̸= 0.

3. Let now N = 3 and as the collection (8) we take {λ1, λ2, λ3, β1, β2, β3},
where λ1, λ2, λ3, β1, β2, β3 are arbitrary complex numbers such that λ1 ̸= λ2,
λ1 ̸= λ3, λ2 ̸= λ3, β1 ̸= 0, β2 ̸= 0, β3 ̸= 0, β1 + β2 + β3 = 1. We have

D1 = β1β2(λ1 − λ2)
2 + β1β3(λ1 − λ3)

2 + β2β3(λ2 − λ3)
2,

D2 = β1β2β3(λ1 − λ2)
2(λ1 − λ3)

2(λ2 − λ3)
2,

We see that the condition D1 ̸= 0 is not satisfied automatically and therefore one
must require D1 ̸= 0 as a condition. For example, if β1 = β2 = β3 = 1/3, λ1 =
(1± i

√
3)/2, λ2 = 1, λ3 = 0 then D1 = 0.
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7. Conclusions

In this work, a thorough spectral analysis of the finite order complex Jacobi
matrices has been carried out. In particular, the concept of spectral data for such
matrices has been introduced. The spectral data consist of the complex-valued
eigenvalues and associated normalizing numbers derived by decomposing the resol-
vent function of the Jacobi matrix into partial fractions using the eigenvalues. The
crucial point is derivation of the orthogonality relations (Theorem 3.1 in Section
3). Then the inverse problem has been studied and discussed how to reconstruct
the complex Jacobi matrices from the spectral data. The uniqueness and existence
results for solution of the inverse problem have been established and an explicit
procedure of reconstruction of the matrix from the spectral data has been given.

A distinguishing feature of the Jacobi matrices from other matrices is that
they are related to certain three-term recursion relations (second order linear differ-
ence equations). This allows, using techniques from the theory of linear difference
equations, to develop more detailed analysis of the eigenvalue problem for Jacobi
matrices. Spectral and inverse spectral problems for Jacobi matrices play a fun-
damental role in the investigation of completely integrable nonlinear lattices, in
particular, in the investigation of the Toda lattices.
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