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A DEEP LEARNING APPROACH TO AUTONOMOUS 

DRIVING IN URBAN ENVIRONMENT 

Paul DIACONESCU1, Victor-Emil NEAGOE2 

This paper is dedicated to road object detection in urban environment 

using Deep Learning Neural Networks (DLNN). We have chosen the advanced 

architecture YOLOv5 trained on COCO 2017 dataset (containing 80 classes of 

objects in 1.5 million images) and we have specialized YOLOv5 to recognize objects 

from BDD100K dataset (Berkeley Diverse Driving Video Database, including 

100,000 images). We have kept eight classes from BDD100K: car, truck, person, 

traffic sign, traffic light, bus, rider and bike. 

The object detection performance (average precision) obtained in this 

paper for BDD100K dataset is the highest, compared with previous published 

approaches for the same dataset, and the highest for the mapping of YOLOv5 and 

BDD100K dataset. 

The research results prove that one can apply state of the art cutting edge 

deep learning technologies to open new perspectives for automotive industry. 
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1. Introduction 

 

The automotive industry has a high bar in terms of quality and reliability 

for the components it uses. While reducing the huge associated costs and time to 

market, the automakers have to adopt innovative techniques that allow them to 

differentiate. Published research [1][2] tracked the automated car concept back in 

1920, and significantly evolving after 1980 with Carnegie Mellon University 

(CMU) Navlab and ALV projects. CMU had produced the first automated car in 

1989, called ALVINN, a car that used a neural network to drive. These days, 

advanced systems are able to perform automated driving in diverse and complex 

conditions [3][4]. 

The automotive industry has defined six levels of autonomy for cars, 

starting from Level 0 (no autonomy) to Level 5 (full autonomy). At this moment, 

the most advanced systems released in production can be matched to an area 

around Level 3 (Conditional Automation) where we can talk about autonomous 
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vehicles that drive themselves while still requiring a human driver behind the 

wheel for the most important decisions. At this level and above, the vehicles need 

to be able to “read” and adapt to the environment. Part of the understanding of the 

environment is the detection of relevant traffic objects: cars, people, traffic lights, 

motorcycles, traffic signs.  

One set of machine learning techniques with excellent results in all 

computer vision domains is Deep Learning. Diverse efforts [5][6][7] had been 

already made to use its power in automotive field.  

As previously presented in [8], Deep Learning approaches for autonomous 

driving has been split into: mediated perception (uses the driving markers in the 

image to create a world representation surrounding the car, for example items 

such as traffic signs and obstacles in the road are classified to determine a driving 

action) and behavior reflex (directly maps the input data to a driving action).  

Building on previous research directed to machine learning for pedestrian 

detection [9][10] and neural networks for autonomous navigation [11][12], in this 

paper we are adding an additional contribution to the automotive field 

developments by introducing a novel technique of mapping object detection 

technologies to an automotive environment. 

2. Transfer learning 

Humans can use learnings from past experiences in new ways. They don’t 

need to restart learning from scratch. Depending on the similarity of the 

experiences, they can reuse more or less from their past learnings. For example, 

for a person acknowledged with driving a car, driving a truck is relatively easy, 

while for driving a plane, the initial car driving knowledge has a very low 

relevance. 

Sometimes, previous learnings can help in new endeavors as for example 

learning a programming language can benefit from knowing more than one 

programming language previously. 

Machine learning methods have been created for very specialized 

domains, for example hyperspectral pixels classification or financial credit score 

estimation. Even if these specializations are very different, the machine learning 

methods used for different tasks in these domains have similar components that 

can be transferred [13] or modified to accommodate reusability in the other 

domain.  

Specific to Deep Learning, Transfer Learning can take into consideration 

reusing a state-of-the-art neural network architecture, adopting components as the 

same method of using dynamic learning rate or even reusing entire trained 

network layers in a new network. 
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The components that are transferred can be used as they are, “frozen”, or 

they can be modified or allowed to be modified during a specialized learning.   

For learning transfer of a Deep Learning Neural Network, the reuse of 

layers should be first considered. Typically, initial layers are capturing simpler 

and more generic features while the last layers are capturing more structural or 

specific features. As an example, for using a DLNN trained for detecting dogs in a 

task of detecting cats, the entire architecture must be kept, while first two layers 

could be frozen and during a specialized training with cats images, the last four 

layers can be left to be dynamically changed by the DLNN training mechanism as 

presented in Fig. 1. In a special case that time is not a hard constraint and cat 

images are widely available, all layers could be retrained for a higher DLNN 

performance to be achieved. 

 

 
 

Fig. 1. Learning transfer example 

 

This paper addresses the learning transfer from a state-of-the-art DLNN 

for object detection trained to detect 80 objects from COCO dataset to a DLNN 

specialized to detect 8 objects from an automotive related dataset. 

3. YOLOv5 Deep Learning Neural Network 

The most known DLNNs used for transfer learning in computer vision are 

Alexnet, GoogleNet, Inception [14], ResNet and VGG. 

However, one of the most advanced DLNN architectures in terms of object 

detection accuracy, fast response and reduced network size is YOLOv5 [15]. 

These characteristics make the network YOLOv5 great for automotive 

applications and in general applications where low latency of response is a must. 

Having a solid method to transfer learning from world top performance 

DLNN to similar applications with different datasets would be a way to ensure 

high performance DLNNs are immediately used in production without the energy 

and time typically spent to train a new network from scratch. 
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In this paper, we have used the smallest YOLOv5 architectures, called 

YOLOv5s and YOLOv5s6 due to the reduced time for training compared with the 

other YOLOv5 architecture types. However, even the smallest YOLOv5 has a 

high complexity given by 191 layers and 7.5M gradients. 

A previous research [16] used YOLOv3 DLNN for automated annotation 

of objects related to urban driving environments. The result has been that the 

detector was able to detect 50 pedestrians from 114, that were manually annotated 

by the user in the test set.  

4. Proposed method 

A. Transfer Learning Method 

For an efficient use of YOLOv5 with a different dataset than default trained, 

we have tried the following techniques: 

1. Training of a clean DLNN (YOLOv5 structure) without changes with 

the new dataset 

2. Training of the already trained DLNN, with the training elements of the 

new dataset 

3. Training of the already trained DLNN, with the training elements of the 

new dataset while keeping most of the layers frozen 

4. Training of the already trained DLNN, with resized (at super/increased 

resolution) training elements of the new dataset  

5. Training of the already trained DLNN, with resized (down sampling the 

images to be able to run faster and run more epochs) training elements 

of the new dataset  

6. Training of the already trained DLNN, with the training elements of 

new dataset and changing the default optimization algorithm (Stochastic 

Gradient Descent) with Adaptive Moment Estimation (ADAM) 

7. Alteration of the original DLNN fitness function to optimize the 

hyperparameters of the DLNN for training the DLNN with the training 

elements of the new dataset 
 

B. Evaluation Criteria  

The object detection mechanism is based on two components: object 

identification for a given image and prediction of its coordinates. They can be 

measured using the indices of Recall (how well you find all the positives) and 

Precision (how accurate are your coordinates predictions). 

For the purpose of measuring the DLNN performance of object detection, 

we have used the mean Average Precision (mAP@0.5) as a main criterion as this 

includes the components of both Recall and Precision. The index mAP@0.5 is the 
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mean Average Precision (calculated as the area under the Precision vs Recall 

curve) at IoU > 0.50, where IoU is Intersection over Union (calculated as the 

intersection between the ground-truth bounding box of an object and the 

corresponding predicted bounding box). A value for IoU higher than 0.5 is agreed 

to correspond to a good detection of an object. However, the index mAP@0.5 is 

calculated for all objects and this is a measure of the DLNN capabilities, not a 

measure of how well each object has been detected. 

 

C. Evolving parameters with a Genetic Algorithm 

 

YOLOv5 includes a file for setting all hyperparameters as learning rate, 

momentum, weight_decay, warmup_epochs, warmup_momentum and others. 

While these values have been found as being the optimum values for the COCO 

Dataset, there is a small chance to be the optimum combination of 

hyperparameters also for other datasets. 

In the search for the proper hyperparameters values for BDD100K dataset 

[17], we have used a default mechanism included in YOLOv5 release, called 

“Hyperparameter evolution” and we have done customizations over this 

mechanism. 

Hyperparameters evolution is using Genetic Algorithms as crossover and 

mutation to update the hyperparameters in order to obtain better results for a 

defined objective. The hyperparameters crossover uses the crossover genetic 

operation model to combine the genetic information of two parents in order to 

obtain a new offspring. In this case the parents are chosen as the best two past 

results. The hyperparameters mutation uses the mutation genetic model to alter the 

genetic information of a parent in order to obtain a new offspring. In this 

implementation, the operation is used on the best past result.  

60 simulations of 6 epochs have been done to find the hyperparameters 

combinations that produce the best index mAP@0.5, then the winners have been 

used for longer simulations (50 epochs or more). In 6 epochs the index mAP@0.5 

has been obtained as belonging in the interval between 0.20 and 0.30. 

 

YOLOv5 DLNN has been created with a good flexibility for specific 

network objectives and before training it can be adjusted to the researcher 

objective through a fitness function that initially is chosen as: [0.0, 0.0, 0.1, 0.9], 

the values representing the percent of which each of the [Precision, Recall, 

mAP@0.5, mAP@0.5:0.95] should be prioritized for optimization. 

Hyperparametric evolution lets the researcher to define a number of tries 

and a number of epochs per try. Then, after each training iteration of the defined 

number of epochs, the Genetic Algorithm updates the hyperparameters and 

another run is started until the defined number of tries is reached. 
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The genetic algorithm is trying to optimize hyperparameters for the 

objectives indicated by the fitness function and is using the results obtained after 

each training iteration for the next genetic operations. There are a few subtleties 

related to the process, for example if the best mAP@0.5 can be obtained after a 

number of around 100 epochs, theoretically is not enough to run the 

hyperparameters optimization with iterations of less epochs because the DLNN 

will be optimized only for fast initial growth of mAP@0.5 instead of finding the 

global maximum mAP@0.5.  

 

D. Software architecture 

 YOLOv5s and YOLOv5s6 (the smallest variants, release 5 [18]) DLNNs are 
written in Python and run with Pytorch framework. We have done our simulations 
under Ubuntu Linux 20.04, using Python 3.9 (beta) compiler and NVIDIA CUDA 
11.2.  

5. Experiments and Results 

A. The Datasets 

Common Objects in Context (COCO) 2017 is the default dataset used for 

the development of YOLOv5 DLNN. The dataset includes 80 types of objects in 

1.5 million object instances. 

We have used transfer learning to recognize objects from BDD100K 

dataset. This is a Large-scale Diverse Driving Video Database from Berkeley, 

including 100,000 images with good context diversity including multiple cities, 

multiple weathers, multiple times of day (including low light, low visibility) 

multiple scenes types (including overlapped objects). 

 

 
(A)                                                          (B) 

Fig. 2. Examples of pictures from BDD100K dataset 

 

We have kept eight classes as car, truck, person, traffic sign, traffic light, 

bus, rider and bike having the distribution shown in Fig. 3.  
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Fig. 3. The object class distribution  

 

The dataset has an imbalanced class distribution which implies the DLNN 

will be better on recognizing different classes of objects that are better 

represented. While marginal better recognition of the most represented classes is 

expected, we have been aware the main risk resulted from imbalanced datasets is 

that DLNN will become biased toward the majority class(es) and will fail to learn 

what makes other classes different, predicting the majority class(es) more often, 

as this will not affect too much the loss function due to low representation of the 

other classes. The main potential issue resulting from this risk is the overfitting of 

the majority class, which we have verified and didn’t find as significant or 

systemic impact after 100 epochs simulations.  

We have also used a technique that has images with a high content of low-

mAP@0.5 objects being selected with higher likelihood during training. Even if 

the technique had a (limited) positive impact on recognition of the sub-

represented classes, the total mAP@0.5 result has been under our best result.  

 

B. Transformation of annotations 

When referring to an element of a dataset we refer to the image including a 

number of objects and to the annotation of that image, a data structure including 

the type of the objects and object coordinates. In special cases, additional 

information can be added to establish the context of each image and this 

information can be: date, time of day, position of the photo camera, type of the 

photo camera. Other information is intrinsic as the image resolution or can be 

further deducted from the image as in case of number of colors.  

One of the issues for matching good datasets and state of the art DLNNs is 

the incompatibility given by the customized way the DLNNs are reading and 

using information from the dataset elements. Most of the times, a DLNN is 

developed with a single dataset and as an effect is able to read only a type of 

elements specific to that dataset.  
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To address the issue, a series of technical transformations can be made to 

add the annotation to the expected format by the DLNN.  

The original BDD100K dataset included annotations in JSON format, 

which cannot be recognized by YOLOv5 DLNN (or earlier YOLO 

implementations).  

A set of operations have been executed to transform the annotation to the 

required format: 

• The JSON file has been read, going through all of the structured data and for 

each image name 

• The size of all .JPG files has been determined, which is needed for YOLOv5 

coordinates, because these coordinates are transformed in percent/ratio relative 

to total image resolution 

• A new .txt file has been created for each .JPG file   

• In each text file associated to an image, for each object the type has been 

added and the coordinates have been transformed from .JSON (in this case 

COCO/YOLOv3 annotation: top-left and bottom right of the box are given) to 

YOLOv5: Xcenter, Ycenter, weight, height of the object 

The code used to automate the annotation transformation for 100,000 

elements (training and validation) has been uploaded on GitHub platform and can 

be used as Open-Source code at: https://github.com/Delphi89/JSON2YOLOv5. 

 

C. Experimental Results 

After trying a set of techniques for the most efficient transfer learning, the 

proper technique for our case has been the following: 

As the objective has been having a high mAP@0.5, we have tried to 

modify the YOLOv5 fitness function with different values. Against intuition, the 

best results haven’t been achieved when having mAP@0.5 very high and the other 

objectives very low, instead the best results have been obtained when finding an 

equilibrium between them. 

[Precision, Recall, mAP@0.5, mAP@0.5:0.95] = [0.2, 0.2, 0.4, 0.4] 

 

A trained (trained with COCO) version of YOLOv5 DLNN has been used 

for a large number of training iterations (training with BDD100K) with the only 

scope of finding the optimum hyperparameters for training the network. This has 

been achieved by selecting the hyperparameters that allowed the fastest 

progression of mAP@0.5 after 6 epochs, then using the winner set of 

hyperparameters for more evolving in simulations with 50 epochs. After finding 

the most efficient hyperparameters in the 50 epochs contest, we have run a 

training iteration with enough epochs to obtain a high mAP@0.5. 

Examples of images with detected objects marked, are presented in Fig. 4.  
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(A)                                                         (B) 

Fig. 4. Object detection for the pictures from Fig. 3 

 

The difference between an annotated image and a tested image is shown in 

Fig 5. The objects from the tested image have been well detected, in practice this 

being interpreted using a threshold dependent on the application (a higher 

threshold is needed in automotive field, a lower threshold for the consumer area). 

 

 
(A)                                                              (B) 

Fig. 5. (A) Image with original labels. (B) Image with predicted labels 

 

The results of our most relevant simulations are presented in Table 1.  
Table 1 

Results 

Evaluation Indicator mAP@0.5 

Training 

time 

Average 

detection 

time per 

image 

Reference:  

Original YOLOv5s, trained with COCO, image size 640 /  

Original YOLOv5s6, tested with COCO, image size 1280 

55.4 / 61.9 N/A 
0.010s / 

0.024s 

YOLOv5s6 trained with BDD100K for 100 epochs, image 

size 1280, tested with BDD100K 
62.6 65.5 hours 0.024s 

YOLOv5s trained with BDD100K for 100 epochs, image 

size 640, tested with BDD100K 
59.6 18.1 hours 0.010s 

YOLOv5s trained with BDD100K for 100 epochs, image 

size 1280, tested with BDD100K 
68.7 65.2 hours 0.024s 

YOLOv5s trained with BDD100K for 100 epochs with 24 

layers frozen, image size 640, tested with BDD100K 
19.6 17.3 hours 0.010s 

YOLOv5s trained with BDD100K for 100 epochs, using 

ADAM instead of SGD optimization algorithm, image size 

640, tested with BDD100K 

30.2 17.5 hours 0.010s 

Results from other papers [19] for object detection on 

BDD100K dataset 
45.7 N/A N/A 
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Results from other papers [20] for object detection with 

YOLO (from scratch, without transfer learning) on 

BDD100K dataset  

18.6 N/A N/A 

 

We have obtained better object detection results for BDD100K dataset 

compared with the best results obtained by YOLOv5 with COCO dataset. The 

most probable explanation is that the number of object classes is lower in case of 

BDD100K dataset than in case of COCO. However, for a specialized application 

as autonomous driving in this case, the results can be considered as very good. 

The latest release of YOLOv5 adds the option to use the network with live 

recorded videos or YouTube videos. We have used the trained network with 

driving videos and the real time DLNN response is excellent, one static example 

being presented in Fig 6. 

 

Fig. 6. Real time prediction on driving video from YouTube  

 

6. Conclusions   

The research has successfully demonstrated that the automotive industry 

can reuse state of the art Deep Learning technologies and adapt them for building 

autonomous vehicles. Reusing cutting edge technologies ensures a lower cost and 

a faster time to market while opening new perspectives for automotive methods.  

The presented mapping of YOLOv5 and BDD100K have obtained the best 

score published so far for this pair due to the learning transfer technique. This 

score is also the highest score obtained for object detection performance with the 

Berkeley Diverse Driving Video Database. 

The code for automated transformation of image annotations is Open- 

Source and can be reused [21], reducing the cost of a similar approach. 

We have shown that modifying the fitness function and using the genetic 

algorithms, the results can be optimized for different and specific objectives. 
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7. Limitations and next steps 

When working with a large number of elements (images in this case) is 

very hard to understand all the details of the DLNN performance. We will further 

improve the DLNN training capabilities, adding more complex object detection 

performance metrics and adding automated capabilities for identifying object 

detection errors.  
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