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A STOPPING CONDITION TO EMPIRICAL MODE
DECOMPOSITION BASED ON THE GOERTZEL
ALGORITHM FOR DETECTING FREQUENCY-BASED
FAULTS

Daniel CORDONEANU!, Constantin NITU 2

Fault diagnosis has received a lot of attention from the research community
recently. Empirical mode decomposition is one of the signal processing methods
used in fault diagnosis that is self-adaptive and can be used in nonstationary and
nonlinear signals without having to know anything about the signal before
decomposing it. This method decomposes a signal into a given maximum number of
signals. One of these signals can give information on whether a certain fault is
present, rendering the rest of the decomposition useless. This paper proposes a new
end condition for the decomposition process for monitoring frequency-based faults.
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1. Introduction

Fault diagnosis domain is getting a lot of attention nowadays as the
computing power available in embedded systems is increasing. Fault diagnosis is
mainly composed of fault detection and fault identification. Detecting an early
fault can be very useful and it can save a lot of money, preventing system
collapse, downtime, and time-consuming maintenance, thus being economically
efficient for a business.

Mechanical systems can be easily monitored using vibration signals
acquired from accelerometers mounted on different components. This data needs
to be interpreted and certain characteristics must be extracted so that faults can be
detected and isolated.

In [1] the author presents signal processing techniques in different
domains like time domain, frequency domain or time-frequency domain. In
frequency domain the Fourier transform is a method that uses an orthogonal basis
to decompose a signal into a linear combination of that basis. However, the time
information is lost in this transform. Also, the Fourier transform does not behave
so well in nonstationary or nonlinear signals.
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To accommodate the loss of information from time/frequency only
methods, there are other methods available that offer the needed data in the time-
frequency domain. Some of these methods are Short Time Fourier Transform (it’s
the Fourier transform applied on the signal split into chunks using a windowing
method), wavelet transform (a suitable basis needs to be chosen a priori in order
to extract the most meaningful characteristics of the signal), Wigner-Ville
distribution or the Hilbert-Huang Transform (HHT), presented in [2].

HHT is composed of two parts: the empirical mode decomposition (EMD)
and the applying of the Hilbert transform to each of the obtained signals called
intrinsic mode functions (IMFs). The EMD decomposes the signal until certain
end conditions are fulfilled:

e The maximum number of IMFs has been reached
e The residue obtained from the current signal has at most one
extremum

In [3], there are given specific insights on how the EMD has certain
pitfalls and why derived algorithms should always be used to accommodate
certain limitations. The iterative filtering (which is a method derived from the
EMD)[4] is also compared to the EMD under different scenarios. However, all
these methods are derived from the EMD. The main problem of the EMD is
represented by the boundary issues that may appear in IMFs and there are many
approaches on how to solve these problems presented in literature [5], [6], [7].
Given that the vibrations coming from a rotational machine are well defined in the
way that they have an oscillatory mathematical representation, the EMD-derived
methods are suitable for decomposing this kind of signals.

In this paper an additional condition is proposed for stopping the overall
decomposing process of the EMD using the Goertzel algorithm for extracting the
discrete Fourier transform coefficients only for a specific monitored frequency.
This condition can be used in any of the EMD derived methods.

2. Empirical mode decomposition

For completeness, a short description of the EMD will be given as well as
how the IMFs are obtained.
Huang et al. give a definition for the IMF in [2]: An intrinsic mode
function can be described as a function that satisfies two conditions:
1. The number of extrema and the number of zero crossings must be
equal or differ at most by one
2. At any point, the mean value of the envelope defined by the local
minima and maxima is zero
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From the signal point of view, an IMF is an oscillation, the decomposed
signal representing a superposition of these modes of oscillation. The IMFs are
obtained through a process called sifting. The sifting process stops when both the
above-mentioned conditions are fulfilled, when the standard deviation size of two
consecutive sifting results is out of a certain interval or when a predefined number
of siftings have been made.

The sifting steps are the following:

1. The local extrema are found, and the signal’s upper and lower
envelopes are created by connecting the extrema points by means of a
cubic spline

2. The mean signal between the two envelopes is derived

3. Let x(?) be the initial signal and m; the envelope mean, then the first
signal obtained by sifting is /4;. For repeatable steps let 79 be x(2):

hy =r, —m, (1)

4. After the first signal h; was obtained, it is checked if the stopping
conditions had been met. If not, /; is considered the new signal and the
sifting process continues up to the number of maximum siftings (k) or
until the new signal is an IMF:

h, = hl(k—l) —my (2)

At the end of the process, the first IMF ¢; = Ay 1s found
6. The IMF is extracted from the signal ro:

K= —c, 3)

e

7. The steps from 3 to 6 are repeated, increasing the indices of the signals
until either the IMF signal ¢, or the residue 7, becomes too small to be
significant or the residue because a monotonic function from which
there is no IMF to be extracted

For a fault diagnosis system that monitors a specific mechanism, it is

useful that once a fault has been found, an alarm is logged, displayed and/or the
entire system is stopped. The EMD algorithm can take some time and if the fault
is detectable in the first IMF, then the inference system must wait until all the
IMFs are extracted to assess the presence of the fault. In step 7, a new condition
will be added related to the monitored fault frequencies.

2. The Goertzel algorithm

Standard Goertzel algorithm

Sysel & Rajmic show in [8] that the original algorithm described by
Goertzel in [9] that computes the Discrete Fourier Transform (DFT) term of the
signal x/n] with length N is equivalent to a discrete linear convolution between
the analyzed signal and a signal Ai/n]. Let hi/n] be:
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ot
hill=e  Yull] “4)
Where u/l] is the unit function. If yy is the result of the convolution, then:
N-1 j2;zkm7”
vilml= xlnle N ulm—n] Q)
n=0

The authors further show in their paper [8] that equation (5) means that the
N-th sample of the convolution is the desired DFT term. This means that the
required value can be computed as the output sample in time N of an Infinite
Impulse Response (IIR) linear system with the impulse response /i/n/. By using
the impulse response of a linear system, any response can be computed
afterwards. Using the z-transform and a mathematical trick, the transfer function
of the IIR system is brought to a second order IIR system. Using differences, the
equation of the system becomes:

s[n] = x[n]+ 2cos(%)s[n —1]—s[n-2] (6)
With output of the system being:
yilnl=stnl=e  s[n—1] (7)

As the creator of the original algorithm mentioned, only N multiplications
and 2N additions are needed which makes this algorithm computational fast.

Goertzel algorithm compared to the DFT

The Goertzel algorithm has some advantages over the DFT under certain
conditions. If K < 4N/7 [8], where K is the number of frequencies for which the
coefficients are to be extracted, then the Goertzel algorithm is superior in
computation speed to the DFT.

Another advantage of the Goertzel algorithm is that one can inspect a
signal of length N without bothering that N is a power of 2 (case in which DFT is
computationally fast by applying the Fast Fourier Transform).

Also, while inspecting the spectrum, based on the sampling frequency and
the number of samples the DFT is prone to spectral leakage (e.g. if a signal has a
sampling frequency of 12 kHz and the DFT has 1024 number of points, the
frequency per bin of the DFT would be 12kHz / 1024 = 11.71 Hz per bin so that if
the magnitude of the sinusoid with a period of 115 Hz, this would be leaked to the
neighboring frequency bins of 117.1 Hz and 105.39Hz).

Generalized Goertzel algorithm

With a small computation expense, in [8] a generalized Goertzel algorithm
is proposed that can use the extracted frequency which may be a real number, not
only an integer. This is helpful in frequency-based fault diagnosis, because the
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frequencies computed will most probably be real numbers since formulas to
compute these frequencies involve sine and cosine functions.

3. The proposed algorithm

For the EMD process to stop when a fault has been detected, the fault must
be characterized by some features. Since the extracted information from each IMF
is represented by the DFT coefficients for each of the monitored frequency, the
features of these DFT coefficients will be represented by statistical information.

To have a comparison dataset, the proposed algorithm will have two main
stages:

1. The training stage — done on data extracted for the system with no

faults

2. The diagnosis stage — the algorithm will run continuously and compare

the extracted features for new data with the stored features extracted
during the training stage

In the training stage, statistical information will be extracted based on the
distributions given by the DFT coefficients for each monitored frequency. The
extracted statistical information will be represented by the mean, variance, and
range for each of the distribution.

The mean of a dataset X=x; ... x, can be mathematically represented by:

X = le ; (8)
nja

The variance of the dataset can be computed using the following equation:

1 n
ot == (x, - %)’ ©)

n Jj=1

The range of the dataset is:

Xnge = Max(X) —min(X) (10)

These 3 features are enough to characterize a distribution for the purpose
of checking how a new sample affects the recorded distribution for each of the
monitored frequencies.

The algorithm can be split into the following steps:

1. Create a list of monitored frequencies

2. Start the EMD algorithm on a training signal for a functional system

3. Once all the IMFs have been computed, let 4 be a matrix with m by n

(m 1s the number of monitored frequencies and »n is the number of
IMFs) filled with the absolute values of the DFT coefficients extracted
using the generalized Goertzel algorithm for the fault frequencies for
each IMF signal
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4. Each row in 4 represents a dataset for which the measures presented in
equations (8), (9), (10) must be extracted and stored; besides these
features, also the A matrix is stored

5. During the diagnosis stage, once every IMF is extracted, the DFT
coefficients are computed for the monitored frequencies and their
absolute values are added as a new column to the 4 matrix, forming a
new B matrix

6. The statistical features are extracted from the B matrix and compared
to the ones stored at point 4. If each of the feature values have changed
with more than an a priori chosen coefficient, the fault has been
detected and the IMF decomposition can stop

4. Results

For testing the algorithm proposed above, a set of recorded data was used.
The data is provided by the Case Western Reserve University and it’s available on
[10]. The acceleration data was extracted from the bearings that support a two hp
Reliance Electric (figure 1 left side) shaft.

Fig. 1. Test stand from which the data for bearings was samp1e1d [10]

Faults were made to the bearings using electro-discharge machining
(EDM). Fault diameter on which the algorithm was tested is 0.017 mm and the
data was sampled at a frequency of 12 kHz for the bearing being in a healthy
condition and having faults on different components. The data was collected using
accelerometers, which were mounted to the housing with magnetic bases. The
accelerometers were placed on the top position at both the drive end and fan end
of the motor housing. For the results, the data from the drive end was used.

Bearings are mechanical components for which fault frequencies can be
easily computed if the rotation frequency of the rotating shaft is known and if the
geometrical characteristics of the bearing are known. The used bearings in the
experiment are deep groove ball bearings (6205-2RS JEM SKF) at a shaft speed
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of 1797 rotations per minute (rpm). The following components can be damaged in
a bearing:
Outer ring
Inner ring
Bearing balls
Bearing cage

A localized bearing fault would normally produce periodic impacts, the
size and the period being determined by the rotation speed of the shaft, the type of
fault and the bearing’s geometry. The successive impacts would produce a series
of impulse responses, which may be modulated in amplitude given that the
between the point of the impact and the vibration measurement point there are
additional components which may modulate the frequency to their own resonance
frequency. The spectrum of the measured vibration signal would be formed of
harmonic series of frequency components that are spaced at the bearing defect
frequency, having the highest amplitude around the resonance frequency. To
detect the peaks at the fault frequencies, the instantaneous energy (or
instantaneous envelope) of the signal is used because the impact components
would increase the amplitude at the resonance frequency components [11]. The
instantaneous energy can be easily computed as it is part of the Hilbert-Huang
transform, using the Hilbert transform [2] which allows computing the envelope
of a real signal.

The correspondent fault frequencies can be computed using the following
equations [12]:

P =0 1-21 C;f(ﬁ )J (1)
Fio =2 1422 ";’ds(ﬂ )j (12)
Fo = lgo_a 2 zs(ﬂ ) (14)

Where:
e 1 is the number of bearing balls
Bais the ball diameter
[ is the contact angle
fis the rotation frequency of the shaft in rpm
P is the pitch diameter computed as:
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L 1 + L 2
5 (15)
Where D; is the diameter of the inner raceway and D: is the diameter of

the outer ring raceway.
For the bearings used in the testing, the fault frequencies computed using

the equations (11), (12), (13) and (14) are available in table 1.

F,

Table 1
Fault frequencies for the analyzed bearing
Component Outer ring Inner ring Bearing ball Cage
Fault frequency [Hz] 107.36 162.18 141.16 11.92
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Fig.2. The spectrum of the vibration signal coming from a functional bearing
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Fig.3. The spectrum of the vibration signal for a bearing with an inner ring fault
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The spectrum of the vibration signals coming from a functional bearing
and from a bearing with a fault present on the inner ring are presented in figure 2
and 3. The faulty bearing spectrum is clearly different than the functional’s
bearing spectrum. However, the fault frequency of the inner ring is not visible on
the figure 3 chart and that’s why signal processing is important when extracting
features for a mechanical fault that are used by a condition monitoring system.
Using the Hilbert-Huang transform allows extracting signal features in the form of
IMFs and at the same time computes the envelope of each IMF and the
instantaneous envelope for each extracted function and, as stated in [12], envelope
spectrum is a good method to analyze and assert bearings condition.

Distributions for different data were extracted during the training stage. In
figure 4 there can be observed the distribution of the DFT coefficients for the
signal obtained for a functional bearing and the distribution for a bearing that has
an inner ring fault. The distributions are specific to the inner fault frequency.

It is obvious from the figure that the distribution for the signal extracted
from the faulty bearing has different statistical characteristics and that the features
extracted by the algorithm are different, thus the EMD stopping from the first
extracted IMF.

The coefficient mentioned at point 6 of the algorithm presented in section
3 was set to 0.7 during the training phase using an incremental approach. The
coefficient represents the maximum offset allowed for any of the characteristics
(in this case 70%). The method of finding it consists of first splitting the data for
the functional bearing into two sets: training data and validation data. On the
training data, the characteristics would be extracted using steps 1-4 of section 3.
Afterwards, starting with a coefficient of 0.1, this was increased with a step of 0.1
until the algorithm would not detect a fault anymore for the validation data set
(which is part of the functional data). This way, the coefficient can be chosen
based on the functional data only, specific to each monitored system.
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Fig. 4. Distributions of the DFT coefficients magnitude for a healthy bearing and for a faulty
bearing at the inner fault frequency
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Timings have been measured for applying the EMD on three signals for
which the bearings have different faults: inner ring fault, outer ring fault and ball
fault. The results are presented in table 2 and 3:

Table 2
Time for EMD completion on a 10s signal
Faulty Time for EMD to finish without the Time for EMD to finish with the
component algorithm implemented [s] algorithm implemented [s]
Inner ring 64.1 5.2
Bearing ball 12.9 1.1
Outer ring 81.1 31.6
Table 3
Time for EMD completion on a 1s signal
Faulty Time for EMD to finish without the Time for EMD to finish with the
component algorithm implemented [s] algorithm implemented [s]
Inner ring 0.7 0.1
Bearing ball 0.2 0.07
Outer ring 2.9 2.7

The algorithm improves greatly the finish timings, and it can also be used
for diagnosis. Given that the Goertzel algorithm is dependent on the number of
samples of the analyzed signal, it is important to have this number reasonable to
avoid rounding errors.
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Fig. 5. The envelope spectrum of the IMF for which the EMD has stopped zoomed in the 100-199
Hz bandwidth

In figure 5 it is presented the envelope spectrum of the IMF for which the
algorithm has stopped for a signal extracted from a bearing with an inner ring
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fault. The peak is around the fault frequency characteristic to this component, 162
Hz.

5. Conclusions

The results presented in the 4™ section show that the algorithm can be
successfully used for stopping the EMD at a preliminary stage if a fault has been
detected. Obviously, the algorithm needs to be tested extensively on other data
sets as well before being used, but it shows a computational optimization and if
the fault diagnosis is run on a time-sensitive system, then any saved time is useful.

Besides finishing times, this algorithm can be also used to extract valuable
information on what frequency component is dominant in a certain IMF. This can
be helpful in a more complex fault diagnosis system which may detect and
classify a fault, but it is important to check on which IMF index that fault is
visible. These insights may help the signal to offer a probability on where an
unknown fault can be coming from or to be able to differentiate an unknown fault
from a known fault based on statistical data.

The tests were done in a custom application written in Python which can
be used for signal analysis and diagnosis for research purposes. The EMD was run
using the PyEMD library [13].
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