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NEW RESULTS ON TOPOLOGICAL INDICES FOR BENES AND

BUTTERFLY NETWORKS

Muhammad Numan1, Nafeesa Naz2, Fahim Uddin3

Networks play vital role in the advanced technology era. From simple to com-

plex networks are constructed for efficient and accurate information exchange. Before

using different networks their topological properties are important to keep in view, thats

why various kind of topological indices were investigated and researcher studying topo-

logical indices for new networks. The topological indices are main tool in the study of

Quantitative structure activity (QSAR) and structured property relationships (QSPR)

to examine the architecture of networks. Topological index is obtained by converting a

graphical network structure into a numerical value. In the present paper, we study basic

butterfly and benes networks. We derive analytical result for general Randic connectiv-

ity index (Rα), second Zegreb (Mα) index, general sum-connectivity (χα) index, fourth

atom-bond connectivity index ABC4, and fifth geometric-arithematic index GA5, multi-

ple Zegreb indices and Zegrab polynomial indices of the butterfly and benes networks.
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1. Introduction and preliminaries

Graphs are used to design interconnected networks in a very natural way, in which the

processors or components represent vertices and edges represent the communication links

e.g. fiber optic cables. The way in which all these components work will be carried out by

incidence functions. Graphs show the topological properties of the networks, therefore the

graph and networks are basically same in a sense that when we are considering a networks,

components and links we actually speak of graph, vertices and edges.

In interconnection networks, the processing nodes are the multiprocessor used to build

a network of homogeneously same processor memory pairs. Programs are compiled and exe-

cuted through message sending. Considerable importance to the architecture and utilization

of multiprocessor interconnection network is due to low cost , more efficient microproces-

sors and chips [1]. Interconnection networks resembled the communication pattern of the

natural scenario, which make it more valuable and important. Most of the networks are

interconnected and dependent on each other which need to be reviewed for the future work.

In particularly, the cooperation which dependent on such a networks face many failure need

to be study for better solution to their problems and improvements [2, 3].

In the present paper all graphs are simple, undirected and finite. Formally we repre-

sent a graph by H(V,E) with the set V as vertices and set E as edges. An array of different
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vertices and edges in which vertices are connected by edges and no vertex or edge repeat

such that the initial and final vertices are different is called a path. A connected graph are

those graphs in which there is a path between any two vertices. A network is basically a

connected graph in which vertices represents processors and edges represents links.

The notions used in the present paper are taken from the book [5, 7] and [8]. The

two vertices connected by an edge are called adjacent vertices. The number of all adjacent

vertices to a vertex x is called degree of x denoted by dx, where the vertices adjacent to x

are called neighbors of x [6]. The set of all neighbors of x denoted by N(x) which is called

neighborhood of x i.e N(x) = {y ∈ V (H) : xy ∈ E(H)}. The sum of vertices degree from

the set N(x) is denoted by Sx i.e Sx =
∑
y∈N(x) dy.

The notion of topological index [4] were introduced by Herold Wiener in 1947. After

Herold Wiener in 1975 Milan Randic extend the study of topological index and nowadays

different researchers are working on different indices. In the present paper we extend the

results discussed in the paper [6] by M. Imran et al. To derived our results we defined some

degree based topological indices.

Definition 1.1. [9]

In 1998, the Randic index discovery leads to a General Randic index given by Bollobás and

Erdös [9] denoted by Rα(H) given as:

Rα(H) =
∑

xy∈E(H)

(dxdy)α. (1)

For α ∈ R. The Randic index is a particular case of general Randic index when α = − 1
2 .

Definition 1.2. [10]

Trinajstic and Zhou change the idea of Randic index and modified it into general sum con-

nectivity index χα as follows

χα(H) =
∑

xy∈E(G)

(dx + dy)α (2)

where α ∈ R.

Definition 1.3. [11] In [11] Shirdel et al. introduced a new degree based Zegreb index named

as ” hyper-Zegreb index ” which is defined as:

Mα(H) =
∑

xy∈E(H)

(dx)α. (3)

Definition 1.4. [13] Ghorbani and Hosseinzadeh [13] give idea of the fourth version of ABC

index define as:

ABC4(H) =
∑

xy∈E(H)

√
Sx + Sy − 2

SxSy
. (4)

Where idea for the fifth version of GA given by Graovac et al. [14] and defined as:

GA5(H) =
∑

xy∈E(H)

2
√
SxSy

Sx + Sy
. (5)

Definition 1.5. [15]

The first multiple Zagreb index PM1(G) and second multiple Zagreb index PM2 defined by

Ghorbani and Azimi [15] as:

PM1(H) =
∏

xy∈E(H)

(dx + dy) (6)
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Figure 1. 3-dimentional butterfly network

PM2(H) =
∏

xy∈E(H)

(dxdy). (7)

Definition 1.6. [16] In 2013, Hyper Zagreb index was proposed by Shirdel et al. [16]

HM(H) =
∑

xy∈E(H)

(dx + dy)2.

Definition 1.7. [15] The first Zagreb polynomial M1(H, t) and second Zagreb polynomial

M2(H, t) are defined as:

M1(H, t) =
∑

xy∈E(H)

t(dx+dy) (8)

M2(H, t) =
∑

xy∈E(H)

t(dxdy). (9)

Some results on degree base topological indices can be found in [17, 18, 19].

2. Main Results

In this paper, we constructed butterfly and benes networks and then study the topo-

logical indices and formulated general result for second and hyper zegreb index, ABC4, GA5,

first and second multiple zegreb PM1(G) , PM2(G) and polynomial Zegreb index M1(G, t)

and M2(G, t)

Results for Butterfly Network BF(r): The most important and commonly used

degree based network is the butterfly network. It is made up of a butterfly patterns. The

set V of vertices of an r-dimensional butterfly give pairs (i, j) where j is the level or stages

of nodes (0 ≤ j ≤ r) and i is an r-bit binary number that denotes the row of the node.

Two node are connected by an edge using walk cycle such as node(i, j) is connected to

node(i, j + 1) and node(m, j + 1) where m is obtained by flipping jth bit which represent

a butterfly. The networks has undirected edges. An r-dimensional butterfly network is

denoted by BF (r), the number of vertices in BF (r) are (r + 1)2r and number of edges are

r2r+1 . In the Figure 1 a 3-dimentional butterfly network BF (3) can be seen.

Table 1. Degree based vertex partition of BF (r).
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Vertex degree Number of vertices

2 2r+1

4 2r(r − 1)

Table 2. End vertices degree based edge partition of graph (BF (r)).

(dx, dy),where xy∈ E(BF (r)) Number of edges

(2,4) 2r+2

(4,4) 2r+2(r − 2)

General result of Randic, First and second Zagreb, ABC and GA indecies for BF (r) are

calculated in [6]. We will calculate more degree base indices for BF (r).

Theorem 2.1. For the butterfly network BF (r), we have

(1) Mα(BF (r)) =2r+1+α + 2r+2α(r − 1);

(2) Rα(BF (r)) =2r+2+3α + 2r+1+4α(r − 2);

(3) χα(BF (r)) =2r+2(6)α + 2r+1+3α(r − 2);

where α is a real number.

Proof. For the graph BF (r) we have,

Mα(BF (r)) =
∑

x∈V (BF (r))

(dx)α.

Since we have two types vertices in BF (r) under degree base shown in Table 1. Using Table

1 and above definition of Mα(BF (r)) we get,

Mα(BF (r)) = V2(2)α + V4(4)α = (2)r+1+α + (2)r+2α.

The general Randic index for the graph BF (r) define as:

R(BF (r)) =
∑

xy∈E(BF (r))

(dxdy)α.

Using Table 2 and above mentioned definition we have,

Rα(BF (r)) = e2,4(2× 4)α + e4,4(4× 4)α = 2r+2+3α + 2r+1+4α(r − 2).

The formula of general sum-connectivity for BF (r) is:

χα(BF (r)) =
∑

xy∈E(BF (r))

(dx + dy)α.

Getting values from Table 3 and using above formula we get,

χα(BF (r)) = e2,4(2 + 4)α + e4,4(4 + 4)α = 2r+1+3α(r − 2) + 2r+2(6)α.

�

To calculate the fourth atom-bond connectivity index ABC4 and the fifth geometric-

arithmetic index GA5 for BF (r), we use degree based sum of neighbors vertices of each edge.

The partition of edges of BF (r) on the base of degree sum of neighbors vertices shown in

below tables.

Table 3(a). The edge partition of graph BF(3)

(Sx, Sy), wherexy ∈ E(BF (r)) Number of edges

(8,12) 32

(12,12) 16
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Table 3(b). The edge partition of graph BF(r) for r ≥ 4.

(Sx, Sy), wherexy ∈ E(BF (r)) Number of edges

(8,12) 2r+2

(12,16) 2r+2

(16,16) 2r+1(r − 4)

Theorem 2.2. The ABC4 and GA5 indices for the graph BF (r) are,

(1) ABC4(BF (r)) =
√

3(2r) + 1√
2
(2r) +

√
30(2r−3)(r − 4), for r ≥ 4;

(2) ABC4(BF (3)) = 8
√

3 + 4
√

22
3 ;

(3) GA5(BF (r)) =
√

6
5 (2r+3) +

√
6

5 (2r+4) + 2r−1(r − 4), for r ≥ 4;

(4) GA5(BF (3)) = 64
√

6
5 + 16.

Proof. For i = Sx and j = Sy we denotes the number of edges of butterfly network by mi,j .

The ABC4 is defined as:

ABC4(BF (r)) =
∑

xy∈E(BF (r))

√
Sx + Sy − 2

Sx × Sy
.

Using Table 3(a), Table 3(b) and above definition of ABC4 we have,

ABC4(BF (3)) = m8,12

√
8 + 12− 2

8× 12
+m12,12

√
12 + 12− 2

12× 12

= 8
√

3 +
4
√

22

3
and for r ≥ 4

ABC4(BF (r)) = m8,12

√
8 + 12− 2

8× 12
+m12,16

√
12 + 16− 2

12× 16
+m16,16

√
16 + 16− 2

16× 16

=
√

32r +
1√
2

2r +
√

302r−3(r − 4).

The GA5 defines as:

GA5(BF (r)) =
∑

xy∈E(BF (r))

2
√
Sx × Sy

Sx + Sy
.

Using Table 3(a), Table 3(b) and GA5 definition we get,

GA5(BF (3)) = m8,12(2

√
8× 12

8 + 12
) +m12,12(2

√
12× 12

12 + 12
) =

64
√

6

5
+ 16.

For r ≥ 4 we have,

GA5(BF (r)) = m8,12(2

√
8× 12

8 + 12
) +m12,16(2

√
12× 16

12 + 16
) +m16,16(2

√
16× 16

16 + 16
)

=

√
6

5
2r+3 +

√
6

5
2r+4 + 2r−1(r − 4).

�

Theorem 2.3. Let BF (r) be a butterfly network, then

(1) HM(BF (r)) = (9)2r+4 + 2r+7(r − 2);

(2) PM1(BF (r)) = 22r+1(3r−4) × 32r+2

;

(3) PM2(BF (r)) = 22r+2(2r−1);

(4) M1(BF (r), t) = 2r+2t6 + 2r+1(r − 2)t8;
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Figure 2. 3-dimentional Benes network

(5) M2(BF (r), t) = 2r+2t8 + 2r+1(r − 2)t16.

Proof. For the graph BF (r), the HM(BF (r)), PM1(BF (r)), PM2(BF (r)), M1(BF (r), t)

and M2(BF (r), t) are define as follows:

HM(BF (r)) =
∑

xy∈E(BF (r))

(dx + dy)2.

PM1(BF (r)) =
∏

xy∈E(BF (r))

(dx + dy)

PM2(BF (r)) =
∏

xy∈E(BF (r))

(dx × dy)

M1(BF (r), t) =
∑

xy∈E(G)

t(dx+dy)

M2(BF (r), t) =
∑

xy∈E(BF (r))

t(dx×dy).

By using Table 2 and above definitions we get,

HM(BF (r))) = e2,4(2 + 4)2 + e4,4(4 + 4)2 = (9)2r+4 + 2r+7(r − 2),

PM1(BF (r)) = (2 + 4)e2,4 × (4 + 4)e4,4 = 22r+1(3r−4) × 32r+2

,

PM2(BF (r)) = (2× 4)e2,4 × (4× 4)e4,4 = 22r+2(2r−1),

M1(BF (r), x) = e2,4x
2+4 + e4,4x

4+4 = 2r+2x6 + 2r+1(r − 2)x8,

M2(BF (r), x) = e2,4x
2×4 + e4,4x

4×4 = 2r+2x8 + 2r+1(r − 2)x16.

�

Results for Benes Network B(r): Benes is the most important and commonly

used network. A butterfly network gives the Benes Network i-e first and last stages are

same, second and second last stages are same and also refer as back to back butterflies. All

the nodes (processors) are connected in the form of butterfly in the whole Benes network.

Butterflies in the middle stage are shared in the Benes network[5]. B(r) represents a Benes

network with dimension r. In the Figure 2 a 3-dimentional Benes network B(3) can be seen.

Table 1.The vertex partition of graph B(r) based on degree of vertices

Degree of vertex Number of vertices

2 2r+1

4 2r(2r − 1)

Table 2. The edge partition of graph B(r) based on degree of end vertices of each

edge.

(dx, dy),where xy∈ E(G) Number of edges

(2,4) 2r+2

(4,4) 2r+2(r − 1)
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General result of Randic,First Zagreb, ABC and GA indecies for B(r) are calculated in [6].

We will calculate some further indices for B(r).

Theorem 2.4. Consider the benes network B(r), then

(1) M2(B(r)) =2r+5 + 2r+6(r − 1);

(2) Mα(B(r)) = 2r+1+α + 2r+2α(2r − 1);

(3) Rα(B(r)) = 2r+2+3α + 2r+2+4α(r − 1);

(4) χα(B(r)) = 2r+2+α × 3α + 2r+2+3α(r − 1);

(5) HM(B(r)) = 2r+2[64r − 28];

where α is a real number.

Proof. Since the formula for M2(B(r)) is given as:

M2(B(r)) =
∑

xy∈E(B(r))

(dx × dy).

Using vales from Table 4, we get

M2(B(r)) = e2,4(2× 4) + e4,4(4× 4) = 2r+5 + 2r+6(r − 1).

The general formula for Mα(B(r)) define as:

Mα(B(r)) =
∑

x∈V (B(r))

(dx)α.

Using Table 4 and Table 5 we have,

Mα(B(r)) = V2(2)α + V4(4)α = 2r+1+α + 2r+2α(2r − 1).

For the graph B(r) general Randic index is:

Rα(B(r)) =
∑

xy∈E(B(r))

(dx × dy)α.

This implies that

Rα(B(r)) = e2,4(2× 4)α + e4,4(4× 4)α = 2r+2+3α + 2r+2+4α(r − 1).

The formula of general sum-connectivity is:

χα(B(r)) =
∑

xy∈E(B(r))

(dx + dy)α.

χα(B(r)) = e2,4(2 + 4)α + e4,4(4 + 4)α = 2r+2+α × 3α + 2r+2+3α(r − 1).

Hyper Zagreb index is given as:

HM(B(r)) =
∑

xy∈E(B(r))

(dx + dy)2.

HM(B(r)) = e2,4(2 + 4)2 + e4,4(4 + 4)2 = 2r+2[64r − 28].

�

For calculation of fourth atom-bond connectivity index ABC4 and the fifth geometric-

arithmetic index GA5 for B(r), we use edges partation on the bases of degree sum of neigh-

bors vertices of each edge in the benes network shown in below table.
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Table 6. Edge partition of graph B(r) for r ≥ 3.

(Sx, Sy), wherexy ∈ E(BF (r)) Number of edges

(8,12) 2r+2

(12,16) 2r+2

(16,16) 2r+2(r − 2)

Theorem 2.5. The ABC4 and GA5 of B(r) are given by

(1) ABC4(B(r)) = 2r[
√

3 +
√

13
6 + (r − 2)

√
30
4 ];

(2) GA5(B(r)) = 2r+2[ 2
√

6
5 + 4

√
3

7 + (r − 2)].

Proof. From the symbol mi,j we denotes the number of edges of B(r) with i = Sx and

j = Sy. The ABC4 for B(r) is defined as:

ABC4(B(r)) =
∑

xy∈E(G)

√
Sx + Sy − 2

Sx × Sy
.

By using Table 6 and definition of ABC4 we have,

ABC4(B(r)) = m8,12

√
8 + 12− 2

8× 12
+m12,16

√
12 + 16− 2

12× 16
+m16,16

√
16 + 16− 2

16× 16

= 2r[
√

3 +

√
13

6
+ (r − 2)

√
30

4
].

The fifth geometric -arithmetic index GA5 is defined as:

GA5(B(r)) =
∑

xy∈E(B(r))

2
√
Sx × Sy

Sx + Sy
.

This implies that

GA5(B(r)) = m8,12(2

√
8× 12

8 + 12
) +m12,16(2

√
12× 16

12 + 16
) +m16,16(2

√
16× 16

16 + 16
)

= 2r+2[
2
√

6

5
+

4
√

3

7
+ (r − 2)].

�

Theorem 2.6. Let B(r) be a benes network, then

(1) PM1(B(r)) = 3× 22r+8(r − 1);

(2) PM2(B(r)) = 22r+11(r − 1);

(3) M1(B(r), t) = 2r+2t6 + 2r+2(r − 1)t8;

(4) M2(B(r), t) = 2r+2t8 + 2r+2(r − 1)t16.

Proof. : For the benes network B(r), the number PM1(B(r)), PM2(B(r)), M1(B(r), t) and

M2(B(r), t) are define as:

PM1(B(r)) =
∏

xy∈E(B(r))

(dx + dy)

PM2(B(r)) =
∏

xy∈E(B(r))

(dx × dy)

M1(B(r), t) =
∑

xy∈E(B(r))

t(dx+dy)



New Results on Topological Indices for Benes and Butterfly Networks 41

M2(B(r), t) =
∑

xy∈E(B(r))

t(dx×dy).

Using these definitions and Table 5 and Table 6, we get:

PM1(B(r)) = (2 + 4)e2,4 × (4 + 4)e4,4 = 3× 22r+8(r − 1).

PM2(B(r)) = (2× 4)e2,4 × (4× 4)e4,4 = 22r+11(r − 1).

M1(B(r), t) = e2,4t
2+4 + e4,4t

4+4 = 2r+2t6 + 2r+2(r − 1)t8.

M2(B(r), t) = e2,4t
2×4 + e4,4t

4×4 = 2r+2t8 + 2r+2(r − 1)t16.

Which completes the proof. �

3. Conclusion and general remarks

Designing new network structure always attract and open ways for the researchers in

the networking and other structural sciences . In this paper we study butterfly and benes

network and then generalized some of the degree based topological indices such as Randic

connectivity index (Rα), Zegreb (Mα) index, general sum-connectivity (χα) index, fourth

atom-bond connectivity ABC4 index, and fifth geometric-arithematic GA5 index, multiple

Zegreb indices and Zegrab polynomial indices for the above mentioned network. In future,

it will help to those who are interested in problems related to interconnected networks and

will be able to deal with the complex networks and their topological properties.
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