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UAV TARGET TRACKING BASED ON PARALLEL
TRACKING AND KEY FRAME DETECTION

Zhenhui WU?, Kunpeng GE?*

With the rapid application and development of unmanned aerial vehicles
(UAVs), UAV target tracking has become one of the hot research directions in the
field of target tracking. It is widely applied in areas such as pedestrian tracking,
vehicle tracking, and obstacle avoidance. The UAV target tracker, leveraging its
advantages of compact size, agile flight capabilities, and extensive coverage,
effectively mitigates the limitations of traditional target tracking methods in complex
environments. This paper proposes a novel multi-feature perception UAV target
tracker with parallel tracking and keyframe detection to address issues such as poor
robustness and low efficiency encountered by existing UAV trackers in practical
application scenarios. The paper proposes a novel tracking framework comprising
three main modules. The first module is a multi-feature-aware fusion tracker designed
for generating predictive tracking outputs. The second module is an integral sidelobe
ratio-based evaluator for parallel verification of stimulators. The third module is
responsible for assessing the quality of response maps, where the ISLR (Integral
Sidelobe Ratio) evaluator is employed to evaluate the response maps generated by the
three single-feature trackers. The third module is a twin neural network designed for
verifying detection predictions and correcting tracking results. Experiments
demonstrate that, across multiple challenging unmanned aerial vehicle (UAV) image
sequences, the proposed tracker featuring online two-stage evaluation with multi-cue
awareness, referred to as MCVT (Multiple Cues-aware Visual Tracker with Online
Two-Stage Evaluation), outperforms 20 other state-of-the-art trackers in terms of
tracking accuracy, success rate, and processing time. Additionally, this multi-cue-
aware tracker outperforms single-cue trackers, and the parallel tracking role played
by the Siamese neural network contributes significantly to improving tracking
performance.

Keywords: unmanned aerial vehicle, target tracking, parallel tracking, keyframe
detection
1. Introduction

The problem of target tracking can be traced back to the appearance of the
first tracking radar station SCR-28 in 1937. It wasn’t until the 1970s, when the
Kalman filtering theory was successfully applied in the field of target tracking, that
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the problem of target tracking gradually caught the attention of researchers and
aroused widespread interest. Target tracking algorithms are widely applied in
various fields such as military, agriculture, public safety, and urban development.
Unmanned aerial vehicles (UAVs), referred to as “drones” in this paper, have broad
applications in many areas, including pedestrian tracking [1], vehicle tracking [2],
traffic monitoring [3], terrain surveying [4], obstacle avoidance [5], aerial pick-up
and delivery operations [6], and aerial refueling [7]. As a type of vehicle that does
not require human piloting, moves swiftly, exhibits high flexibility, and adapts well
to various complex terrains, drones have become an excellent platform for
implementing target tracking algorithms. In the aforementioned drone applications,
visual target tracking plays a pivotal role. Fig. 1 illustrates some applications of
drones, including traffic monitoring, logistics distribution, power line inspection,
and terrain survey [8].

After extensive research, numerous visual trackers have been proposed in
the field of unmanned aerial vehicle (UAV) tracking. However, UAV target
tracking remains a challenging task primarily due to a multitude of constraining
factors, including target deformation, occlusion, rotation, motion blur, rapid
motion, and pose variations. Additionally, the vibration of the aircraft itself and the
limited computational capabilities of the equipment also pose numerous challenges
for UAV tracking, making it difficult to balance speed, robustness, and accuracy.
The challenging scenarios are illustrated, where (a) depicts pose variation, (b)
represents occlusion, (c) signifies deformation, and (d) indicates illumination
changes:

Since the development of self-tracking algorithms, it has evolved from
classical algorithms such as Meanshift [9], Particle filters [10], Kalman filtering, to
later algorithms based on Correlation filtering. In recent years, artificial intelligence
has garnered increasing attention, with a proliferation of deep learning-related
algorithms based on various neural networks. Alongside the development of
tracking algorithms, related datasets have also become rich and improved, such as
0TB2015, VOT2016, UAV123, among others. These datasets provide ample basis
for testing and comparing tracking algorithms.

This article aims to enhance the representational capacity of images by
extracting multiple features. By employing multiple features within this tracking
framework, the robustness of the tracker will be improved, enabling better
adaptation to more challenging drone tracking scenarios.

2. The design of the MCVT holistic tracking framework

The overall framework of the MCVT tracker is illustrated in Fig. 1 From
this figure, it can be observed that upon receiving a frame of image, the patch
centered at the predicted position from the previous frame will first be extracted.
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Subsequently, the MCVT tracker will extract various representative features of this
patch to generate different response maps. In this project, the tracker selects to
extract fHOG, CN, and grayscale features to establish three independent response
maps. After obtaining these response maps, the integral sideband ratios of each map
will be calculated as inputs to the integral sideband ratio evaluator. Additionally,
these response maps will be normalized and fused into a fused response map. By
locating the maximum value positions of fused response maps, the predicted
positions can be obtained. If the integral sidelobe ratio indicates that the tracking
result is reliable, then the predicted position will be output as the final result;
otherwise, a region of interest centered around the predicted position will be
extracted, triggering further parallel verification. The input region of interest will
be validated through a Siamese neural network to determine whether it needs
correction. If the input region of interest doesn’t require correction or if the
correction results are unreliable, then the tracker will still use the predicted position
as the output. Otherwise, the tracking result will be corrected.

In Fig. 1, the green box represents the image patch used for feature
extraction, with the position of the target in the (k-1)™" frame as its center. The blue
dashed box represents the predicted position. The blue solid line box represents the
position validated by the parallel Siamese neural networks. The red dashed box
represents the potential region generated in the correction stage. The red solid line
box represents the corrected output position.

Each of the three individual base trackers is trained and updated using
patches extracted from the previous frame image. The integral sidelobe ratio (ISLR)
evaluator only requires three independent response maps. Additionally, there is a
normalized preprocessing step prior to fusion. As shown in Fig. 1, the three
response maps required by the ISLR evaluator also meet the requirements of the
evaluator. The output of the tracker can be categorized into three scenarios: (1) Blue
dotted line: The response map has passed through the ISLR evaluator, where the
predicted position becomes the output; (2) Blue solid line: The response map didn’t
pass through the ISLR evaluator, but the image patch extracted through the
predicted position passed the validation of the Siamese neural network. The output
remains the predicted position; (3) Red solid line: The response map didn’t pass
through the integral side lobe ratio evaluator, and the image patch extracted
simultaneously also didn’t pass the validation of the Siamese neural network. This
will activate the correction part in the parallel network, resulting in the output being
the corrected result.
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Fig. 1. MCVT tracker summary composition

The pseudocode for the MCVT tracker is depicted as shown in Table 1:

Table 1
Pseudocode for MCVT Tracker

MCVT Tracker Pseudocode

Input: Target Position in Frame k-1
3 Independent Trackers
Output: The estimated position at frame k.
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for

end

k=2 to end do
Extracting the search region centered around the target position from frame k-1 at

frame k
Using different features, namely fHOG, grayscale, and CN, to characterize the
extracted image patches

for Each tracker do
Use formula ( 3.44 ) to calculate the response map
Use formula ( 3.51) to calculates the response map sidelobe ratio
Use formula ( 3.48 ) to normalize each response map

end

Use formula ( 3.49) to fuse the independent response maps.
In the k-th frame, predicting the target position (iobj, jobj) by locating the position
of the maximum value in the fused response map
According to Fig.1, assessing the quality of the response map using the Integral
Side lobe Ratio (ISLR)
The Integral Side lobe Ratio (ISLR) evaluator assesses the response map
if  through ISLR evaluation then

Using the predicted position (iobj, jobj) as the output
else
Call the Siamese neural network to verify the tracking results
if ~ Validate scores higher than the threshold 11 then
Use predicted position as output
else
‘ Use formula (3.52) to amend the tracking results
end

end
Use formula (3.43) to update individual tracking modules

3. Design of Multi-Feature Perception Tracker

The Multi-Feature Perception Tracker (MCVT) is a fused tracker designed
to meet the requirements of real-time tracking, swiftly locating the target position
in each frame. This fused tracker is composed of three fundamental independent
trackers merged together. In this project, fDSST is utilized as the foundational
tracker [11]. The distinctions among the three basic trackers depend on the different
features extracted. During the process of integrating three independent response
maps, the approach employed by the MCVT tracker involves utilizing the softmax
formula for normalization as a preprocessing step.
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3.1 Multi-feature extraction

In this multi-feature perception tracker, in order to execute the base tracker
fDSST, features from different cues will be extracted, including its texture,
grayscale values, and color. The features corresponding to these three cues are
respectively fHOG, grayscale, and CN, denoted as #, g, ¢ in this paper.

(1) For the HOG [12] feature, which stands for Histogram of Oriented
Gradients, it is formed by computing and aggregating histograms of gradient
directions over local regions of the image to form features. Because the HOG
feature is extracted over local cells of the image, it exhibits invariance to local
geometric and photometric transformations, as these transformations only occur at
larger scales.

In this study, the tracker employs a type of HOG feature with lower
dimensionality, namely fHOG. By adopting fHOG instead of HOG, the
dimensionality of features decreased from 36 dimensions to 31 dimensions without
significant loss of representational clues. Additionally,J*x is used to denote the
tracker integrated with fHOG features and the fDSST framework in the k™ frame.
Due to the fact that fHOG features consist of 31 dimensions, the first dimension is
chosen here to construct the visualization of fHOG features.

(2) For grayscale features, this involves converting the RGB values of each
pixel into grayscale values. The grayscale feature possesses advantages in
robustness to motion blur and computational efficiency. The computation of
grayscale features for each pixel is as follows:

Gk (i,)) = ag - Redy (i, )) + ag - Green, (i, j) + ag - Bluey (i, ) 1)

Here, G, (i, j) represents the grayscale value at position(i,j) in the k™ frame.
Redy(i,j), Greeny(i,j), Bluek(i,j)respectively denote the values of the RGB
channels at position(i, j).

It is worth noting that the formula employs the well-known psychophysical
weights, hence in formula (1) the three weights a g, a, a gare set to 0.299,
0.587, 0.114 respectively. Moreover, J9 is used to represent the tracker integrated
with the grayscale features at the k-th frame and the fDSST framework.

(3) For the CN feature, which stands for Color Names, this feature
demonstrates excellent performance in image retrieval tasks. The advantage of CN
features lies in their ability to effectively handle image deformations and varying
shapes. Based on the RGB values of each pixel in the target, the MCVT tracker
selects its color names from a predefined set of 11 basic colors. The mapping
method for extracting CN features originates from [13], wherein RGB values are
mapped onto an 11-dimensional color name space. The CN features are presented
in the form of histograms, where the histogram reflects the number of pixels
belonging to each color name.
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3.2 Normalized softmax function

Softmax function, also known as the normalized exponential function, is a
generalization of the logistic function in mathematics, especially in probability
theory and related fields [14]. The softmax function compresses a vector of arbitrary
real numbers into another vector of the same dimension, ensuring that each element
falls within the range (0, 1) and the sum of all elements equals 1.

The typical expression for this function is as follows:
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K
1

When the softmax function is used for neural network training, here V;
represents the output of the preceding layer’s neuron. i denotes the category index,
The total number of categories is C.r; represents the ratio of the index of the current
element to the sum of all element indices.

To integrate the three response maps of fHOG, grayscale, and CN features, the
first step is to normalize these three response maps [15]. Without this preprocessing
step, the different ranges of the response maps would affect the result of the fusion.
Furthermore, at the same position(i, j), if one response map exhibits a relatively
high value, whereas another response map shows a significantly lower value, even
approaching zero. In that case, the high value will be severely attenuated. During
utilization, the softmax formula is employed for normalization as follows:
eh(ip)
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Here, h(i,j) represents the pixel value of the response map at position(i, j)before
normalization, &(i,j) is the pixel value at that position after normalization, and the
sum of all pixel values after normalization equals 1.Through this approach, three
separate response maps can be normalized, subsequently to be multiplied together
to form a fused response map. After fusion, the resulting response map will serve
as the basis for identifying the maximum response value. The fusion formula for
the three individual response maps is as follows:

Q) = Rk © R« © R« @)

Here, Q, represents the fused response map.ﬂ%%k,%gk,%ekrespectively represents
three response maps computed by Equation (4). The symbol (© denotes element-
wise multiplication.

Fig. 2 illustrates the difference between independent response maps and
fused response maps with and without normalization operations. This demonstrates
that normalization through softmax can improve the quality of response maps,
thereby enhancing the accuracy of tracking results.
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From a holistic perspective, employing softmax normalization can enhance
the precision of tracking [16]. Additionally, softmax normalization can suppress the
negative impact brought about by negative signal values. Moreover, as mentioned
earlier, normalization can eliminate differences in ranges between different
response maps.

4. Design of Integral Side Lobes Ratio Evaluators

In the field of signal processing, there are numerous metrics employed to
evaluate signal quality, such as Impulse Response Width (IRW), also referred to as
resolution, which denotes the width of the main lobe at the 3dB drop from its peak
[17]. Furthermore, Peak Sidelobe Ratio (PSLR) refers to the ratio of the maximum
sidelobe to the peak height of the main lobe.

In this design, the Integrated Sidelobe Ratio (ISLR) is chosen as the
evaluation metric for the response graph and serves as the triggering criterion for
parallel tracking. The calculation formula for the Integrated Sidelobe Ratio is as
follows:
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: Pmain

islr = 10log, {—Ptotal_Pmain} 5)
Here, P.,tq refers to the total energy of the response graph, and Py, denotes the
energy of the main lobe.In the field of signal processing, the energy of the response
graph is directly proportional to the square of its amplitude, expressed as P «
h(i,j)?, P denotes energy and h denotes the amplitude of the signal.

In typical scenarios, the further a signal is from its peak value, the smaller
its magnitude, indicating weaker energy [18]. Therefore, in the computation
process, it is unnecessary to calculate the total energy by computing the entire
response graph. Instead, the value of the integral sidelobe ratio can be calculated
through a simplified method. Since the response graph is a two-dimensional signal,
its integral sidelobe ratio can be calculated as follows:

r Pr ..
I f_pﬁz(l,l)dxdy
Conr [0 #Gpdsdy - [ ' #G axdy
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Here,fi%z(i,j)represents the energy of the response graph at position (i,j), o, is
referred to as the radius of the main lobe, which is half the width of the main lobe
at the 3dB drop-off point.To simplify, the radius of a circular region with the peak
position as the center and a radius of 10 p . is considered as the total energy, making
the calculation of sidelobe energy more straightforward.
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Fig. 3. Framework of the Integral Paravalve Ratio Evaluator
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In Fig. 3, islr', islr9x, islrCkrespectively represent the integral sidelobe
ratio values computed from the response maps generated by trackers based on
fHOG, grayscale, and CN features. The framework of this evaluator is structured
into three steps for robustness considerations, as relying solely on a single integral
sidelobe ratio value as a criterion, or solely on all integral sidelobe ratio values,
would not be sufficiently rigorous. In the experiment, the parameter settings of the
evaluator need to ensure the conditionI"; < I', < I' 5. If the ratio of all three
sidelobes meets the condition “all sidelobe ratios are less than I';”, then the
evaluation result of the sidelobe ratio evaluator will be deemed as a failure;
otherwise, these three sidelobe ratios will undergo further assessment. If the ratios
of all three sidelobes do not satisfy the three criteria outlined in Fig. 3, then the
evaluation result will be deemed as a pass, meaning the quality of the three response
plots is deemed acceptable.

As shown in Fig. 4, the dashed blue box represents the output of the MCVT
tracker in the absence of the integration sidelobe ratio evaluator; he dashed red box
represents the output of the MCVT tracker when the integration sidelobe ratio
evaluator is present, but the integration sidelobe ratio of the response plots passes
evaluation. In other words, the MCVT tracker’ s output indicates that the
integration sidelobe ratio evaluator believes that the tracking result does not require
further validation or correction. The solid red box represents the output of the
MCVT tracker when the integration sidelobe ratio evaluator is present, and the
integration sidelobe ratio of the response plots fails the evaluation. In other words,
the MCVT tracker’ s output indicates that the integration sidelobe ratio evaluator
believes that the tracking result requires validation and correction using parallel
Siamese neural networks. When the integration sidelobe ratio evaluator is adopted,
inaccurate tracking results will be promptly detected, allowing them to be corrected
in a timely manner by parallel Siamese neural networks.

the (k-1)® frame

C; e

: Parallel partial exciter

: Parallel neural network

Fig. 4. Difference in tracking results with and without the integral paravalve ratio evaluator



UAV target tracking based on parallel tracking and key frame detection 199

5. Design of Siamese Neural Networks

When the response map does not pass through the side lobe ratio evaluator,
the MCVT tracker will run the parallel segment of the Siamese neural network,
which will be used for further validation and correction [19]. In this parallel
segment, the MCVT tracker employs Siamese neural networks to validate the
predicted positions generated by the fused response map [20]. If the validation
result is unsatisfactory, it will be further used for refining the tracking results. The
Siamese neural network is adopted here due to its characteristic of comprising two
branches of convolutional neural networks, which share weights between them.
Consequently, it can simultaneously process two inputs and is frequently employed
for comparing image similarities. The Siamese neural network serves the purpose
of measuring the similarity between two inputs by mapping them individually to a
new space and representing them in that space. Subsequently, it calculates the loss
function to further evaluate the similarity between the two inputs. In the semantic
analysis of vocabulary, question and answer matching in Q&A, face verification,
and handwriting recognition, Siamese neural networks are applied. In parallel
tracking with the MCVT tracker, the first step involves inputting images from the
bounding box centered around the predicted position into the Siamese neural
network. These images are then compared for similarity with the images from the
first frame’s ground truth. If the comparison result passes (i.e., the validation score
exceeds the threshold t; ), then the predicted position will be retained as the
output. Otherwise, the Siamese neural network will be invoked again for correcting
the tracking result. Here, {R;})\, is used to denote the candidate regions generated
through sliding windows, N represents the number of candidate regions. The
corrected result R is determined by the following equation:

R = argmax s(Topj, R;), i=1,2,-,N (7
Rj

Here, s(Top;, R;) returns the similarity between the tracking target T,p; and the
candidate region R;.

In this study, T,y; is extracted from the first frame of the tracked image,
implying that T,,; remains unchanged throughout the tracking process and hence is
not updated. Each correction involves finding the T,y; that is most similar to R;
within the bounding box of the first frame. As depicted in Fig. 5, the ISLR evaluator
determines that the predicted position (illustrated by the blue dashed box in Figure
5(a) is unreliable. The parallel Siamese neural networks evaluate and correct
positions within the surrounding local scope. The red dashed box in Fig. 5(b)
represents the potential region generated by the sliding window. The solid red box
in Fig. 5(c)represents the corrected result.
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Fig. 5. Twin neural network correction process

Once the correction result is obtained, this method will further decide
whether to use this result to adjust the tracking outcome. If the highest similarity
exceeds the threshold T ,, then the output is the correction result. Otherwise, the
predicted position calculated by fusing response maps is retained.

6. Experimental results

The present study compares the MCVT tracker with numerous other state-
of-the-art trackers, which are broadly categorized into two types for comparison:
(1) Methods based on correlation filters, including CSK, KCF, fDSST, DCF,
SAMF, BACF, SRDCF, MCCT, KCC, PTAV and STAPLE; (2) Other types of
representation-based trackers, including IV, TLD, ASLA, Struck, MUSTER, FCT,
MIL, WMIL and MEEM.

In the experiments of this study, the MCVT tracker selected for comparison
is the MCCT tracker, which employs the extraction of HOG features. This is
because when employing convolutional neural networks, extracting convolutional
features requires a significant amount of computation. Furthermore, since the
proposed MCVT tracker only utilizes handcrafted features, all other compared
correlation filter-based trackers also employ only handcrafted features.

Fig. 6 illustrates success plots of precision curves for various trackers, with
the testing data comprising 100 challenging UAV image sequences from
UAV123.1n terms of precision curves, where the threshold is set in & = 20pixels,
the scores for each tracker are as follows:0.641(MCVT), 0.605(STAPLE),
0.596(MEEM), 0.591(MCCT), 0.590(BACF), 0.582(SRDCF), 0.562(PTAV),
0.551(MUSTER), 0.545(fDSST), 0.543(KCC), 0.533(Struck), 0.495(DCF),
0.483(SAMF), 0.436(TLD), 0.428(KCF), 0.416(CSK), 0.385(FCT), 0.381(ASLA),
0.347(WMIL), 0.310(IVT), 0.248(MIL).It is evident that the MCVT tracker
achieved the highest score among all trackers.In terms of success rate curves, scores
for each tracker are calculated based on the area under the curve. The scores for
each tracker are as follows:0.449(MCVT), 0.431(MCCT), 0.426(STAPLE),
0.420(BACF), 0.418(SRDCF), 0.402(PTAV), 0.390(fDSST), 0.382(MEEM),
0.380(MUSTER), 0.380(KCC), 0.361(Struck), 0.335(SAMF), 0.318(DCF),
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0.296(TLD), 0.277(KCF), 0.276(CSK), 0.260(FCT), 0.257(ASLA), 0.254(WMIL),
0.227(1VT), 0.174(MIL)Similarly to the precision curve, looking at the success rate
curve, the proposed MCVT tracker still ranks first. Therefore, it is not difficult to
conclude that, whether in terms of precision or success rate, the MCVT tracker
outperforms the other 20 state-of-the-art trackers when compared.

Accuracy curve
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Fig. 6. Accuracy curves and success curves for all trackers on 100 challenging UAV image
sequences
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Besides the overall comparison in terms of precision and success rate, to
better evaluate and analyze the strengths and weaknesses of tracking methods, these
100 image sequences were categorized into 12 attributes based on their tracking
conditions and encountered difficulties. These 12 attributes are as follows:
[llumination Variation (IV), Scale Variation (SV), Full Occlusion (FOC), Partial
Occlusion (POC), Aspect Ratio Change (ARC), Similar Object (SOB), Viewpoint
Change (VC), Camera Motion (CM), Fast Motion (FM), Out-of-View (QV),
Background Clutter (BC), and Low Resolution (LR). By analyzing the performance
of each tracker on different attributes, namely by comparing their accuracy and
success rate curves across various attributes, a comprehensive analysis of the
trackers can be conducted, rendering the experiments more persuasive. The ranking
of scores under different attributes can also aid in determining the tracking
scenarios that trackers are suited or unsuited for, thereby facilitating the analysis of
their strengths and weaknesses. Table 2 and Table 3 provide detailed accuracy and
success rate curves scores of each tracker across the 12 attributes. In terms of
accuracy, the MCVT tracker performs the best on attributes such as 1V, SV, POC,
ARC, SOB, VC, CM, FM, and OV.From Table 3, it can be observed that the MCVT
tracker achieved the highest scores in terms of success rate across attributes such as
IV, SV, POC, ARC, SOB, VC, CM, QV, and LR. Therefore, it can be concluded
that the proposed MCVT tracker in this paper demonstrates the most satisfactory
performance when compared with the comprehensive evaluation of the other 20
trackers.

Table 2

Accuracy curve scores (threshold & = 20 pixels, top three places are marked in red, blue and

green, respectively)

IV | SV |FOC |POC|ARC |SOB|VC | CM |FM |OV | BC | LR
MCVT 523583 | 446 | 56.1 | 546 | 70.6 | 57.8| 614 |48.2|54.7]48.1|50.0
MCCT 42.8 1529|423 | 52.9 | 474 | 62.8 |45.4| 53.8 [ 32.850.748.1|455

STAPLE |48.3|54.1|411 | 516 | 496 | 635 |51.1| 552 |36.1|46.9]|49.4]54.1
SRDCF 44.3152.7| 408 | 48.9 | 485 | 60.7 |47.8| 54.2 |454151.0|37.3 417
BACF 39.4 533|342 | 471 | 47.7 | 616 47.7 | 53.2 |41.9]|43.8|42.7]445
SAME 36 |455]| 379|436 | 41.7 | 56.6 | 38.3| 38.8 [33.8|42.6|29.2|29.2
fDSST 42.4149.2 | 376 | 475 | 453 | 604 |43.4| 453 |356|48.3|33.3]433

DCF 3231432 | 316 | 38.6 | 36.3 | 53.1 | 39.7 | 39.20 | 23.6 | 34.0 | 32.4 | 38.6

KCF 28 [39.0] 28.7 | 365 | 33.2 [ 526 |345| 319 |21.7|33.7]23.6]335
KCC 3721479 360 | 463 | 440 | 574 |44.2| 471 |33.8|40.8|37.2]|415
CSK 27 |385]29.4 337|312 478 |314] 322 |255|335]221]33.1

PTAV 48 512|417 | 49.6 | 48.2 | 60.0 | 43.8| 48.0 [37.3]485|371|433
TLD 2121408 29.1 | 354 | 369 | 56.1 |34.7]| 36.9 [22.6|29.4|26.8|455
MUSTER [39.7[51.0| 46.7 | 47.0 | 475 | 625 |455| 50.1 |30.7|43.3|38.6|48.8
Struck 428 1474|394 | 462 | 421 | 594 |445| 46.7 | 225]40.8|52.8 505
MEEM 44.2 1532 | 429 | 51.5 | 50.7 | 63.1 | 531 | 53.6 |31.1]49.6|51.0]50.2
ASLA 2173711295341 ] 317 | 515]28.7] 231 |15.7]28.0]23.0]35.6
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IVT 1751298238 | 27.0| 243 | 39.7 |248| 181 [14.0|24.4|16.1|265
FCT 1751342283302 | 29.8 | 385 |30.4| 30.9 [19.7]31.2|1249]35.3
MIL 99 (243|245 [ 240 20.2 | 345|214 | 249 |15.9|29.4]|20.2 258
WMIL 16.0130.8 | 26.3 | 28.3 | 27.3 | 386 |28.0| 304 |19.6|29.0|27.4 358
Table 3
Success Rate Curve Scores (based on AUC, top three are marked in red, blue, and green,
respectively)

IV | SV |FOC|POC|ARC |SOB|VC |[CM | FM | OV | BC | LR
MCVT 35.240.3| 23.6 | 36.7 | 36.1 | 45.6 | 37.8|41.7 |31.7|35.7|30.9| 276
MCCT 32.1|38.3| 236 | 36.1 | 34.1 | 436 |33.,5|39.1|25.0|34.3|31L7]|265
STAPLE |34.4 376|223 | 348 | 342 | 41.8 |36.039.0|25.1|32.4|33.7]|25.1
SRDCF 321|375| 221 | 334 | 33.7 | 404 | 33.7|38.8|32.1|34.2|26.1]|23.3
BACF 29.2 |37.2| 17.6 | 32.2 | 32.7 | 41.4 |33.1 |38.6|28.9|30.4|285]26.0
SAME 248 (311|198 | 284 | 285 | 36.6 | 26.9 | 26.6 | 23.3|28.0|17.4|18.6
fDSST 29.9 (348 196 | 32.0 | 31.2 | 39.9 | 30.7 322|244 314223251
DCF 21.9(265| 163 | 24.7 | 23.0 | 30.9 | 25.2 | 25.7|15.9|22.2|20.8|19.9
KCF 18.6 24.4| 140 | 322 | 216 | 30.2 |22.1]21.1|15.6|23.1]|135]|16.6
KCC 27.6(326|19.2| 284 | 299 | 382 | 31.1[325|219|26.7|25.0)| 227
CSK 175]248| 154 | 32.0 | 21.0 | 28.7 | 20.2 |21.3|15.0|23.9]|135]16.3
PTAV 33.6[36.2| 225 | 247 | 33.1 | 39.6 | 30.734.3|26.0[315|251|252
TLD 1491274 | 136 | 23.2 | 247 | 332 | 242 ]25.0|145|18.7]16.1|25.1
MUSTER |28.2|34.6| 244 | 30.1 | 31.0 | 39.7 | 30.9[33.3|21.0|27.8|236|254
Struck 29.3|31.2| 204 | 305 | 283 | 36.4 | 29.5|31.4|16.8|28.6|33.6]|26.0
MEEM 30.2332] 219|327 | 315|391 |334|350|219|315|322|253
ASLA 17.0[242| 219 | 211 | 204 | 344 (199|148 94 | 154|148 20.0
IvT 151]215|219 | 171|172 | 277 |184]119| 90 |142] 9.8 | 148
FCT 16.0229| 219|190 | 203 | 23.0 |21.4|215|14.0|222]|13.2|156
MIL 115]16.3| 219|137 | 144 | 183 |16.9]15.0|104 173105 9.7
WMIL 115]219| 219|180 | 196 | 228 |21.2|21.6|15.1|20.2]|16.1]|154

Fig. 7 provides examples of three image sequences out of a total of 100,
where this paper selects certain frames to visually illustrate the differences in
tracking performance between the proposed MCVT tracker and the other 20 state-

of-the-art trackers.

From Fig. 7, it is evident that the proposed MCVT tracker exhibits
remarkable tracking performance when compared with other trackers. Even in
scenarios where many other trackers fail to maintain tracking, i.e., lose the target,
the MCVT tracker sustains its tracking status.
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# 000030 : # 000030

# 000080

# 000185

—MCVT =——MCCT ~—STAPLE —SRDCF —BACF —SAMF  — fDSST
~——DCF = KCF —KCC — CSK = =PTAV - -TLD - = MUSTER
= =Struck ==MEEM = =ALSA - - IVT - = FCT - -MIL -~ - WMLL

Fig. 7. Comparison of tracking results for example image sequences (from left to right image
sequences are boat4, personl, building5)

Additionally, the MCVT tracker is suitable for various types of targets, such
as boats, people, and buildings as shown in the above image, and it also performs
well in challenging scenarios like lighting changes and fast motion.

7. Conclusion

This article proposes a novel online two-step evaluation based multi cue
perceptual visual tracker, MCVT tracker, to address the problem of inefficient and
low robustness tracking algorithms in many tracking applications in the field of
unmanned aerial vehicles. Among them, although the ISLR evaluator increases the
parameter quantity of appearance features and the computational complexity of the
algorithm, it effectively utilizes the parallel computing capability of modern GPUs
and does not reduce the tracking speed of the algorithm. The parallel tracking
structure can improve the performance of the algorithm without requiring too much
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additional training, and the evaluation module based on parallel twin neural
networks can maximize the performance of the algorithm. The experimental results
show that the proposed method exhibits high performance on multiple standard
datasets, proving its effectiveness. In future work, this algorithm can be applied to
more fields that require object tracking.
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