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THE EXPRESSIVE POWER OF THE TEMPORAL QUERY LANGUAGE Lg

Matei Popovici'2, Lorina NEGREANU?

The paper investigates the expressive power of the temporal query language
Lg¢. We show that First-Order Logic is unable to formulate queries such as temporal con-
nectivity, which can be naturally expressed by Lsc. The paper describes in detail our ap-
plication of the Ehrenfeucht-Fraissé method, which is used to examine limitations in the
expressive power of First-Order Logic.
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1. Introduction

Temporal knowledge representation and reasoning methods require expressive power
— which ensures usefulness in non-trivial applications as well as reasonable complexity,
which guarantees efficient implementation. The temporal language Lg¢ [7, 4, 8, 5] is an
attempt to find a balance between expressive power and complexity. Lg; serves as a means
for expressing temporal constraints over the properties of a domain, such as:’x is a device
which has been operating during the same time device y was operating*.

In this paper, we show that Lg¢ is expressive enough to allow defining temporal con-
nectivity queries, which in turn cannot be defined in First-Order Logic (FOL). The method-
ology which we use relies on Ehrenfeucht-Fraissé-games. This formal result is of practical
interest, because it shows that Ly cannot be embedded in a relational database schema
relying on FOL.

The rest of the paper is structured as follows: in Section 2 we introduce temporal
graphs and in Section 3 — the language Ljc. In Section 4 we examine the expressive
power of Lg¢. To this end, we show that Lg¢ is expressive enough to capture connectivity
constraints. In contrast, in Section 5 we show FOL is unable to express such constraints.
Finally, in Section 6, we conclude.
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2. Temporal graphs
2.1. Introduction

The language Lg¢ and it’s models — temporal graphs, have been extensively de-
scribed in previous work [4, 8, 5, 7]. In what follows, we present them in brief. Temporal
graphs are structures encoding the evolution of a domain. They encode temporal moments
(formally denoted hypernodes), system actions (action nodes) and time-dependent proper-
ties (or qualify edges).

2.2. Formal definition

A temporal graph (short t-graph) is a triple H = (V, E, H) where (V, E) is a directed
graph: (i) a € V are action nodes and (ii) (a,b) € E are quality edges; H is a partition
over the set V. The elements & € H are called hypernodes. We say two action nodes a, b
are simultaneous iff a,b € h. We occasionally write h € H,a € H, (a,b) € H instead of
heH,aeV,(ab)€eE.

A trace in a t-graph is a finite sequence a1, . .., a, of action nodes, such that, for each
two consecutive action nodes a; a;41, exactly one of the following cases holds: (i) a; € h and
aiy1 € h, for some hypernode & (i.e. a; and a;41 occur at the same time); (ii) (a;, a;+1) € E
(there exists a quality edge from a; to @;;1). A trace is said to be compact iff, for no sequence
aiair1aiyn, we have a;, a;y1,air» € h. The length of a trace ¢, denoted |¢[, is the number of
action nodes containing it. If 7 and ¢’ are two traces, we denote their concatenation by ¢'.
We write [a, b] to refer to the trace starting in a and ending b. In Figure la, ajazag and
ajaxasae are compact traces in a temporal graph.

A labelled temporal graph is a temporal graph together with a labelling £, which
assigns for each action node a, and each quality edge (a, b) the label £(a) and L(a, b),
respectively. A label (for both action nodes and quality edges) is a relation instance of the
form Q(iy,...,i,), where Q is a relation of arity n and iy, ..., i, are individuals. Figure la
illustrates a labelled temporal graph, encoding the evolution of a time-dependent domain
consisting of devices a and b, a sensor-equipped window win, and the outside environment,
encoded by e.
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Ficure 1. The labelled temporal graph 3,
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3. The language Ly

Definition 3.1 (Precedence). Let H be a temporal graph, h, h’ be hypernodes from H and
a € h,a’ €l be action nodes:

e i immediately precedes i’ iff there exists a quality edge (a,b) such that a € h and
b € I'. Informally, the condition expresses that there is a property that starts in h and
ends in .

e hprecedes i’ (denoted h > ') iff (i) h immediately precedes h' or (ii) there exists h”
such that h immediately precedes '’ and I’ precedes h’'.

e a (immediately) precedes a’ iff h (immediately) precedes I’ .

Definition 3.2 (Ly; syntax). Let Vars designate a set of variables, x € Vars and R — a
relation of arity n. Terms — denoted ty, . . .,t,, are either variables or constants. The syntax
of Lg¢ is recursively defined as follows:

pu=R(t,. .. t) | Rt ... ) < @' [ =" [ @ A"

where o designates any temporal precedence relation from Allen’s Interval Alge-
bra [1). A formula of the form R(t,...,t,) is called atomic. In this paper, we assume,
without loss of generality, that <€ { b, a , m }, where b stands for before, a stands for
after and m stands for meets.The operator precedence order is: —, o, A.

Definition 3.3 (Lg¢ semantics). Let ¢ € Lg; be an atomic formula, Y, € Ly be formulae
and 3 be a labelled temporal graph. We denote by |\, the set of quality edges which
satisfy ¥ in H.

IR, ... t)lly, = {(a,b) € H | L(a,b) = R(t1, ..., 1)}

lle b Yl = {(a,b) € llglly | Ac,d) € Ylly, such that b precedes c}
llp a ¥, = {(a,D) € llglly | Ac,d) € Wy, such that d precedes a}
=l {(a,b) € H | (a,b) & |Wll4}

A 91l = Wl O 1l

4. The expressive power of L

In this section, we introduce the standard concept of query definability [6] and show
that the connectivity query is definable in Lg.

A vocabulary is a set o of symbols R;, each having assigned a natural number #;,
called arity. A (o-) structure, denoted R, contains a set U, and an assignment which maps:
(i) each symbol ¢ in o of arity O to an element of U, (ii) each symbol R of arity n > 0, to
a relation R® of arity n. We also refer to R as relational database. Given two relational
databases R; and R, over the same vocabulary, an isomorphism between R; and R, is a
function f : U; — U, such that: (i) f is bijective and (ii) if (u1,...,u,) € R?', then
(f(uy), ..., f(uy)) € R;Rz, for all relation symbols R;. A class C is a set of databases which
is closed under isomorphisms, i.e. for any R € C, if R’ is isomorphic to R, then R" € C. A
boolean query is a function F : C — {0, 1} that is preserved under isomorphisms, i.e. if R
and R’ are isomorphic, then F(R) = F(N').
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If L is a logical language, then the boolean query F on C is L-definable iff there is a
sentence ¢ in L such that, for every R € C, we have:

FR)=1 < RELo

Let CON be the boolean query which verifies the existence of t-graph connectivity
(mentioned above), more precisely, CON(H) = 1 iff, from each action node a, there exists
a trace to any other action node b from K.

Proposition 4.1 (Lg; definability). CON is Lg-definable.

Proof. We prove the complement of CON, denoted =CON, to be Lg¢-definable. First, we in-
troduce the entailment relation k=7, with respect to || -||., as follows: H k=1, ¢ iff [lglls # 0.
Without the loss of generality, we assume each quality edge (a, b) in I is also labelled
QO(gen), where gen is some arbitrary individual. This enables us to formulate a nicer for-
mula, which does not require a disjunction over all distinct quality labels. Then, it is clear
that ~CON(H) = 1 iff H |, — (A(gen) before A(gen) N A(gen) after A(gen)), by the fol-
lowing argument. The (sub-)formula y =(A(gen) before A(gen) N A(gen) after A(gen)) is
satisfied by a quality edge which is both before and after another some quality edge. Thus,
||=¢|| is non-empty iff there exists some quality edge which is neither before nor after an-
other. Thus, =CON is definable in Lg¢ by —i. O

5. FOL undefinability of CON

In this section, we show that CON cannot be defined in First-Order Logic (FOL).

First, we introduce a relational representation of a temporal graph. For convenience,
use the term labelling domain to refer to o-structures.

Let o = (04, 0) designate the vocabulary of the represented domain, where o is
the vocabulary for qualities and o4, that for actions. Let Q be an arbitrary symbol from o,
of arity n. We denote by aug(Q), the augmentation of Q. aug(Q) is the same symbol Q but
with arity n + 2. Similarly, the augmentation aug(A) of the symbol A € o4 of arity n is the
symbol A with arity n + 1. We denote by aug(o) the vocabulary obtained from o where
all quality and action symbols have been augmented. Let © = (/, QE, e n@,Alb, ... ,A,?)
designate a labelling domain over o. A temporal graph I, labelled with relation instances
from D is a structure over vocabulary aug(o) U {Rg}, and having the universe VU I U H:

Ho = (IUVUH,Ry,aug(Q)),...,aug(Qy), aug(AY), . .., aug(AY))

where: each subset /1 of A from H is seen as an atomic symbol; if a € & in J(, then (a, h) €
R};; for each quality edge (a,b) € E having the label L(a,b) = QO(jy,...,i,), we have
(a,b,iy,...,0,) € aug(Q)D; for each action node a € A having the label £(a) = A(iy, ..., iy),
we have (a,ii,...,i,) € aug(A)@. We write a € Hy iff a is part of the universe of Hy.

Hrp can be interpreted as a relational database where the universe contains individ-
uals, hypernodes and action nodes, Rll; is a table where each entry (a, h) assigns to each
action node a the hypernode & when a occurs, each entry (a, b, iy,...,i,) from any table
0® where Q € aug(o o) indicates that individuals 7y, . .., i, have been enrolled in a domain
relationship designated Q, and this relationship was initiated by action node a and ceased



The expressive power of the temporal query language Lg¢ 89

by action node b. Finally, each entry (a, iy,...,i,) from any table A® where A € aug(c4)
indicates that individuals iy, . .., i, are involved by an action designated A, and represented
as a in the temporal graph.

In what follows, we prove that CON (and equally =CON) are not definable in First-
Order Logic. This means that, there is no FOL-formula which is able to distinguish t-graphs
in the class € = {H{ | CON(H) = 1} from any other t-graph outside C. The methodology we
use is due Ehrenfeucht-Fraissé [2, 3]. Essentially, the method is comprised of the following
steps: (i) fix a natural number k; (ii) build two temporal graphs, such that one is connected,
while the other is not; (iii) show that no sentence from FO[k] (First-Order Logic with only
k nested quantifiers) can distinguish the structures: i.e. be true in one temporal graph and
false in the other. If this result holds for an arbitrarily chosen k, then it naturally extends to
FOL. Consider the sentence ¢ € FO[k] for some k € N, and assume it is given in prenex
normal form:

©=01x102x2... Qnxpf(x1,. .., Xk)

where each Q; is either ¥ or 4. Checking if ¢ is true in some relational database,
in particular, in some t-graph, can be seen as a game, played between two opponents: the
Falsifier and the Duplicator. The game consists of k choices of elements from the universe
of the database. The objective of the Falsifier is to make ¢ false, while that of the Duplicator
is to make ¢ true, with each choice. Each existential quantifier (dx;) amounts to a a choice
of the Duplicator of an element from the universe. Each universal quantifier (¥.x;) amounts
for a similar choice of the Falsifier. If the Duplicator wins no matter how the Falsifier plays,
then ¢ is true. This is the standard FOL model-checking procedure [6].

Now, consider a different game, this time played on two t-graphs instead of just one,
where the objective of the Falsifier is: HA | ¢ and H? £ ¢ i.e. make ¢ distinguish the
t-graphs, while that of the Duplicator is: 34 £ ¢ and H? k= ¢ i.e. make the t-graphs the
same. Again, the game consists of k choices (or rounds). In each round, the Falsifier plays
first. He must: (i) first choose between H, and Hp, and (ii) choose an element from it’s
universe. Next, the Duplicator must reply, by choosing another element from the opposite
t-graph. Unlike the former game, here both players each make k individual choices. Each
choice corresponds to a quantifier, and is irrelevant of it’s type. Thus, given dx(x;), the
Falsifier must chose some a; from the universe, if possible, such that y(g;) is true in 7 and
no matter how the Duplicator replies with some b;, the formula (b;) is false in HB. This
means that Ax;(x;) is also false in H(B. The same observation holds for Vx;y(x;). On the
other hand, if no matter how the Falsifier plays, the Duplicator can respond, in each of the k&
rounds, such that the formula is true in both t-graphs, then the t-graphs are indistinguishable.

More formally, given a relational database (in particular, a t-graph) R, a sub-database
of R=(U,Q1...,0,)isR" =(U’,Q},..., Q) where U’ C U and each Q! = {(a,D) | a,b €
U’,(a,b) € Q;}. A partial isomorphism from R to R, is an isomorphism between a sub-
database of Ry to one of R,.

A Ehrenfeucht-Fraissé-game is characterized by two relational databases, from which
the two players choose elements. We shall consider these databases to be t-graphs, namely:
Ha and Hp. A strategy in a Ehrenfeucht-Fraissé-game is a sequence S = Iy, [,...,I;
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of non-empty sets of partial isomorphisms from 34 to Hp. A winning strategy for the
Duplicator is a strategy S such that: S has the forth property: for every i < k, every partial
isomorphism f € I; and every element @ € Hjy, there is a partial isomorphism g € I;;; such
that @ € dom(g) and f C g; and S has the back property: for every i < k, every partial
isomorphism f € I; and every element 8 € J(p, there is a partial isomorphism g € [;;; such
that 8 € rng(g) and f C g.

Each partial isomorphism /; describes a possible evolution of the first i moves from
the game. The forth property ensures the Duplicator can respond validly to any possible
play I; of i moves which are at most k, and to any choice @ which the Falsifier may make in
the current round, provided that @ is chosen from H4. Similarly, the back property ensures
the existence of a valid response to any possible play, when the Falsifier plays an element
from Hp. The Duplicator wins the k-round Ehrenfeucht-Fraissé-game iff he has a winning
strategy in every round k of the game. We build two t-graphs J{4 and Jp, and show that the
Duplicator wins the k-round Ehrenfeucht-Fraissé-game on these two structures. Without
loss of generality, we assume the Duplicator and the Falsifier choose action nodes only. The
following line of reasoning will still hold in the general case. The construction is as follows:
let k > 0 be a natural number and let n = 2 * 2%, We build U{E\k) and ng{) as follows:

UA={hl,....hi} Y Ulay,...,a0) UB=1{hB, ... nBYyula,... a0)
R% = Ui<icnl(@ziz1, h), (a2i )y RE = Uj<icnl(@iz1, hi), (azi, hi)}

et = | ) (@ @) U i@, an)

1<i<n—1
EF= | ) l@wmawtu | 1@ @)} Ulan ar), (@ an))
1<i<n-1/2 n/2<i<n—1

cycle of length 2+2¥

Ficure 2. The temporal graphs .’J—CX‘) and ngo fork =3

Proposition 5.1. Az any round 1 < i < k from a k-round Ehrenfeucht-Fraissé-game played
on H'k)s and H'k)p, there exists a trace [x;, x,], both in H or Hp, such that: (i) |[x;, x,]| >
251 and (ii) [x;, x,] does not contain other previously-chosen elements.

Proof. The proof is done by induction on i.
Basis: Without the loss of generality, assume xg is chosen in H4 and yg in Hp. The
case when xg is chosen in Hp is symmetric. Assume the Spoiler plays x; in 4. No matter
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how the choice is done, we have :|[x1, xo]| + |[x0, x1]| = 2 * 2%, thus one of [x;, xo], [x0, x1],
must be of length at least 2¢~1.

Induction step: Assume [x, x,] is the trace guaranteed to exist by the induction hy-
pothesis. Let x;;1 be an element chosen in current round. If x;;; does not belong in the trace
[x, x,1, then the property trivially holds, since |[x;, x,]| > 2577 > 25=G+D _1f x;, 1 is in [x, x,],
then we have |[x, Xi+ 11| + |[Xixc1, X1 = 2571 = 2 % 2k=G*D Thus, at least one of the intervals
has a length larger than 2K-(+D, O

Proposition 5.2. Let xq, ..., x; be the elements chosen in J{E\k), andyy, . ..,y; be the elements
chosen in }Cg{) , in the first i > 1 rounds of a k-round Ehrenfeucht-Fraissé game. Then, for
any 0 < j, 1 < i, the following holds:

o if Iy yill < 27 then |[xj, x| = [y, yill;
o iflly;, yill = 257 then |[x;, x| > 2%7;

Proof. The induction is done on i. Assume the Falsifier chooses from C}{g‘). The case when
the choice is done in J{E‘k) is symmetric.

Basis. The initial choice pair is xg, yg. y1 is the choice of the Falsifier. If |[yg, y1]| <
21 (. yo and y; are in the same “’ring* in %g)), the Duplicator can chose x in U{S) such
that |[xo, x1]] = |[vo, ¥1]|, since the unique ring* in fHS) is big enough.

If |[yo, y11l = 2%=1 then either the nodes are adjacent (|[yo,y1]| = 1), situation which
falls in the above category, or yy and y; are in different rings. If this is so, we can simply
chose x; such that |[xo, x]| = 2K"1 +1. Since the number of action nodes in fJ-(S) is 2%2k and
no other nodes were previously selected, x; can be indeed chosen. Moreover, |[x], xo]| =
252k okl 4 > okl

Induction step. We distinguish three cases, depending on how y;.; is positioned in
Hp, w.r.t. the previous choices.

a) yi+1 is the first selected node from a ring of i}Cg(). Thus, for all previous choices y;
such that 0 > j > i, [[yi+1,y;]l = co. By Proposition 5.1, there exist x, and x, in U{E‘k), such
that [x,, x,] has size greater or equal than 2k=i and there are no previously-chosen elements
in the trace. Then, we can select x;, in the trace [x,, x,] such that |[x,, x;+1]| = 2K-@*+D and
i1, 2] = 2676070,

b) viy1 is the second selected node from a ring of J{g{). Let y; designate the first
such node. We have that, for all 0 </ < i, and [ # j, |[y;,y/ll > 2% thus, by induction
hypothesis, |[x;, x;]| > 2% and also |[x, x il > 2k~ Thus, we have enough space to choose
Xi+1, such that the required condition holds.

¢) yir1 falls between some y; and y;, in i}CgC). Then:

@ Iy, yll < 2k, By the induction hypothesis, |[x;, x;]| = |[y;, y/]|. We can simply chose
Xi+1 such that [[x;, xir 11| = |y}, yi+ 1]l and |[xie1, X001 = (i1, yill-

i) if [[yj,yirrll < 26=(+D “then [[yie1, v/l = 25@*D. Thus, we can chose xi.; such
that |[x}, xis1]l = [[xir, ]l = 2570700 The case [y, vl < 280D s similar.
If |y, yis1ll = 256D and |[yis1, w1l = 25D simply choose xi,; at the middle
of |[xj,x/]|. The induction hypothesis guarantees there is enough space to ensure
ILxj, i1 1 > 250D and [[x41, x/]] > 286D,
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Theorem 5.1. The Duplicator wins the k-round game, played in J{X{) and J{g{).

Proof. Suppose all k rounds have been played and the choices were xg, . . ., x, and yg, . . ., Y,
and that J,, and H, are the subgraphs of fHX‘) and ﬂ{g‘), containing only xo, ..., X, and
Y0, - - - » Yn, TESpectively. Assume some y; and y; are adjacent. By Proposition 5.2, it follows
that x; and x; are also adjacent. Thus, H, and };, are isomorphic. Assume y; and y; are at
a distance larger than 1. Then x; and x; are also at a distance larger than 1. Again, H, and
Hy, are isomorphic. O

Theorem 5.2 (Ehrenfeucht-Fraissé [2, 3]). The following statements are equivalent:

o forany ¢ € FOLk], o E R4 iff o E Rp;s
o the Duplicator wins the k-round Ehrenfeucht-Fraissé-game, played on Ry and Rp.

Proposition 5.3 (Corrolary to 5.1,5.2). CON is not FOL-definable.

6. Conclusion

An immediate consequence of our result is that relational databases cannot be used
in order to perform temporal reasoning over temporal graphs.

We believe this result to be fundamental for the endeavours of [4, 8, 5, 7], since it
shows that the previously-mentioned approaches are not mere syntactic sugars for already
established (temporal) reasoning procedures.
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