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THE STRUCTURE OF (ϕ,ψ)-MODULE CONTRACTIBLE BANACH

ALGEBRAS

M. Valaei1, A. Zivari-Kazempour2, A. Bodaghi3

In the present article, we introduce and study the concepts of (ϕ,ψ)-module

contractibility and (ϕ,ψ)-module biprojectivity for Banach algebras. Moreover, some
known outcomes concerning the (module) contractibility of Banach algebras are gener-

alized. As a main example, for a semigroup S with the set of idempotents E, we study

these notions for l1(S) (as an l1(E)-module) for arbitrary module actions, and extend
the well-known results due to Selivanov and Helemskii.
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1. Introduction

The story of amenability and contractibility for Banach algebras was commenced by
B. E. Johnson in [17], where he linked the amenability of Banach algebras and groups.
One of the fundamental results was that the group algebra L1(G) is an amenable Banach
algebra if and only if G is an amenable locally compact group. Next, Selivanov showed
that the Banach algebra L1(G) is contractible if and only if G is finite [25]. Recall from
[17] that a Banach algebra A is called contractible (amenable) if H1(A, X) = {0} (resp.
H1(A, X∗) = {0}) for every Banach A-bimodule X, where the left hand side in the equality
is the first cohomology group of A with coefficient in X (resp. X∗). Johnson [18] showed
that a Banach algebra A is contractible if and only if it has a diagonal, that is, there is an
element m ∈ A⊗̂A such that ω(m) is an identity for A and a ·m = m · a, for each a ∈ A,
where ω : A⊗̂A −→ A; a⊗b 7→ ab is the canonical morphism (for emphasis, ωA). Obviously,
ω is an A-bimodule map (i.e. a bounded linear map which preserves the module operations)
with respect to the canonical bimodule structure on the projective tensor product A⊗̂A.

A Banach algebra A is called biprojective if ω has a bounded right inverse which is an
A-bimodule map. A Banach algebra A is said to be biflat if the adjoint ω∗ : A∗ −→ (A⊗̂A)∗

has a bounded left inverse which is an A-bimodule map. It is obvious that every biprojective
Banach algebra is biflat. Helemskii [14] studied the structure of Banach algebras through
the concepts of biprojectivity and biflatness. In the main result, he showed that a Banach
algebra A is contractible if and only if it is unital and biprojective (the basic properties of
biprojectivity and biflatness can be found in [14]). In particular, l1(G) is biprojective if and
only if G is finite [13, 14]. Biprojectivity is important notion in the category of commutative
Banach algebras. For instance, each commutative Banach algebra has a discrete character
space if it is biprojective, and the converse holds for all commutative C∗-algebras [24].
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M. Amini [1] and H. P. Aghababa [22] initiated the notion of module amenability
and contractibility for a class of Banach algebras, respectively, which could be considered as
some generalizations of the Johnson’s results when the C-module structure is replaced by a
Banach algebra module structure. They showed that for an inverse semigroup S with the set
of idempotents E, the semigroup algebra l1(S) is module amenable (resp. contractible), as
a Banach module over l1(E), if and only if S (resp. GS ∼= S/ ≈) is amenable (resp. finite),
where GS is an appropriate group homomorphic image of S. The structure of module
contractible Banach algebras and some hereditary properties of module contractibility are
investigated in [3] and [4]. In addition, Aghababa [22] studied the module contractible
Banach algebras using module diagonals and showed that under some mild conditions, a
Banach algebra is module contractible if and only if it has a module diagonal [22].

In [6], the third author and Amini introduced and studied a module biprojective
Banach algebra which is a Banach module over another Banach algebra with compatible
actions. For every inverse semigroup S with subsemigroup E of idempotents, they showed
that l1(S) is module biprojective, as an l1(E)-module, if and only if GS is finite under the
extra condition Dk of Duncan and Namioka [11] for some k on E. Recently, this condition is
removed in [8] and the authors showed that l1(S) is module biprojective as an l1(E)-module
with trivial left action if and only if GS if finite. Some module cohomological properties such
as module biprojectivity and module biflaness of the projective tensor products are studied
in [16].

In this paper, we study the notion of (ϕ,ψ)-module contractibility for a Banach alge-
bra A which extends the concepts of module contractibility, where ϕ and ψ are two A-module
homomorphisms on A. We also find sufficient conditions for (ϕ,ψ)-module contractibility
of A to be equivalent to (ϕ,ψ)-contractibility of A. Moreover, we introduce the notions of
(ϕ,ψ)-module biprojectivity and (ϕ,ψ)-module diagonal for Banach algebras and show that
under which conditions these notions are equivalent. In particular, we present and prove
some generalizations of the Johnson’s and Helemskii’s theorems. Furthermore, we improve
the main result of [20] for arbitrary commutative compatible actions without the pseudo-
unital condition. As a consequence of a semigroup S with the finite set of idempotents E,
we generalize results due to Selivanov and Helemskii for a discrete group G.

2. (ϕ,ψ)-module contractibility

Throughout this paper, A and A are Banach algebras such that A is a Banach A-
bimodule with the following compatible actions:

α · (ab) = (α · a)b, (ab) · α = a(b · α), (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with compatible actions,
that is

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a),

for all a ∈ A, α ∈ A, x ∈ X and similar for the right or two-sided actions. Then, we say that
X is a Banach A-A-module. Moreover, if α · x = x · α for all α ∈ A, x ∈ X, then X is called
a commutative A-A-module. Note that A is not an A-A-module in general because A does
not satisfy the compatibility condition a · (α · b) = (a · α) · b for α ∈ A, a, b ∈ A. But when
A is a commutative A-module and acts on itself by multiplication from both sides, then it
is also a Banach A-A-module.

Let A and B be A-bimodules. Then a A-module homomorphism from A to B is a
bounded map T : A −→ B with T (a ± b) = T (a) ± T (b), and is multiplicative, that is
T (ab) = T (a)T (b) for all a, b ∈ A, and

T (α · a) = α · T (a), T (a · α) = T (a) · α, (a,∈ A, α ∈ A).
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We denote by HomA(A,B), the space of all such homomorphisms and denote HomA(A,A)
by HomA(A). Note that when A = C, the set of complex numbers, then HomC(A,B) =
Hom(A,B) and HomC(A) = Hom(A).

Let A and A be as above and X be a Banach A-A-module. Suppose that ϕ and ψ
are in HomA(A). A bounded map D : A −→ X is called a module (ϕ,ψ)-derivation if

D(α · a) = α ·D(a), D(a · α) = D(a) · α, (a ∈ A, α ∈ A)

and

D(a± b) = D(a)±D(b), D(ab) = ϕ(a) ·D(b) +D(a) · ψ(b), (a, b ∈ A).

Recall that D : A −→ X is bounded if there exist M > 0 such that ||D(a)|| ≤ M ||a||,
(a ∈ A). Although D and the elements of HomA(A,B) are not necessarily linear, their
boundedness still implies their norm continuity. When X is a commutative A-A-module,

then each x ∈ X defines a module (ϕ,ψ)-derivation ad
(ϕ,ψ)
x = ϕ(a) ·x−x ·ψ(a) on A. These

are called (ϕ,ψ)-module inner derivations. Derivations of these forms are studied in [2] and
[5].

A Banach algebra A is called (ϕ,ψ)-module contractible (as an A-module) if for any
commutative Banach A-A-module X, each module (ϕ,ψ)-derivation D : A −→ X is (ϕ,ψ)-
inner. One should remember that if ϕ and ψ are identity maps on A, then every (idA, idA)-
module derivation is the same as module derivation, and therefore (idA, idA)-module con-
tractibility is the same as module contractibility. In addition, when A := C, everything
reduces to the classical case; see [7], [9], [12] and [21].

It is known that contractible Banach algebras and also every contractible commutative
Banach A-modules are unital [3]. In the beginning of this section, we generalize this property
as follows.

Proposition 2.1. Let A be a commutative Banach A-module. If A is (ϕ,ψ)-module con-
tractible, then A has an identity for ϕ(A) ∩ ψ(A). In particular A is unital, whenever both
ϕ and ψ have dense ranges or are injective.

Proof. Set X := A. Then, X is a commutative Banach A-A-module, with the same actions
of A and the following actions of A

a · x = ax, x · a = 0, (a ∈ A, x ∈ X).

Define the mapping D : A → X by D(a) = ϕ(a) (a ∈ A). Then, D is a (ϕ,ψ)-module
derivation and there is e1 ∈ X such that D = adϕe1 . Thus, e1 is a right identity for ϕ(A).
Similarly, X is a commutative Banach A-A-module, with the same actions of A and the
following actions of A

a · x = 0, x · a = xa, (a ∈ A, x ∈ X).

Again, D(a) := ψ(a) (a ∈ A) is a (ϕ,ψ)-module derivation and there exists an e2 ∈ X such
that D = adψe2 and therefore, e2 is a left identity for ψ(A). Consequently, A has an identity
for ϕ(A) ∩ ψ(A). �

Remark 2.1. Let B be a Banach algebra and σ, τ ∈ HomA(B). Consider A := C, then
B is automatically a commutative Banach C-module and σ, τ ∈Hom(A). Moreover, (σ, τ)-
derivations and (σ, τ)-module derivations coincide, and so (σ, τ)-module contractibility is
the same as (σ, τ)-contractibility for B. Thus, if a Banach algebra B is (σ, τ)-contractible,
then it has a right identity for σ(B) and a left identity for τ(B) by Proposition 2.1.

Definition 2.1. A Banach A-bimodule X is called (ϕ,ψ)-unital if

X = {ϕ(a) · x · ψ(b) : a, b ∈ A}.
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Lemma 2.1. Let A has an identity for ϕ(A)∪ψ(A). Suppose that either both ϕ and ψ are
idempotents or have dense ranges. Then, A is (ϕ,ψ)-module contractible if and only if each
(ϕ,ψ)-module derivation from A into any (ϕ,ψ)-unital commutative Banach A-A-module is
(ϕ,ψ)-inner.

Proof. Let e ∈ A be an identity for ϕ(A) and ψ(A). If both ϕ and ψ are idempotents, then
ϕ(e) and ψ(e) are the identities for ϕ(A) and ψ(A), respectively. In the case that both ϕ
and ψ have dense ranges, then ϕ(e) = ψ(e) = e. Assume that X is a commutative Banach
A-A-module and D : A −→ X is a (ϕ,ψ)-module derivation. Consider

X1 = ϕ(e) ·X · ψ(e), X2 = (1− ϕ(e)) ·X, X3 = X · (1− ψ(e)),

and X4 = (1− ϕ(e)) ·X · (1− ψ(e)), which are commutative Banach A-A-modules by

α ◦ x1 = x1 ◦ α := ϕ(e) · (α.x) · ψ(e), a ◦ x1 := ϕ(a) · x1, x1 ◦ a := x1 · ψ(a),

for each x1 = ϕ(e) · x · ψ(e) ∈ X1, α ∈ A, a ∈ A and similarly for Xi (2 ≤ i ≤ 4). Then
X = X1⊕X2⊕X3⊕X4 and Di := pi ◦D is a (ϕ,ψ)-module derivation, where pi : X −→ Xi

is the canonical projection (1 ≤ i ≤ 4). Since

Di(ϕ(e)a) = Di(aψ(e)) = Di(a), (1 ≤ i ≤ 4, a ∈ A),

we have D2 = ad
(ϕ,ψ)
−D2(ϕ(e))

, D3 = ad
(ϕ,ψ)
D3(ψ(e))

, and D4 = 0. Thus, D is (ϕ,ψ)-inner if and only

if D1 is (ϕ,ψ)-inner. �

Lemma 2.2. Let A has a left (or right) identity e and X be a commutative Banach A-A-
module such that ϕ(e) · x = x = x · ψ(e), for all x ∈ X. If D : A −→ X is a (ϕ,ψ)-module
derivation such that ϕ and ψ are C-linear, then D is C-linear.

Proof. It is clear that D(e) is zero. For all n ∈ N, additivity of D implies that

nD

(
1

n
e

)
= D(e) = 0.

Thus, D(re) = 0 (r ∈ Q). Hence by the continuity of D, D(re) = 0 (r ∈ R). Besides, for
the imaginary unit i, we have

0 = D(−e) = D
(
i2e
)

= ϕ(ie) ·D(ie) +D(ie) · ψ(ie) = 2iD(ie).

Hence, D(ie) = 0, and so D(λe) = 0 (λ ∈ C). Consequently, for all λ ∈ C and a ∈ A,

D(λa) = ϕ(λe) ·D(a) +D(λe) · ψ(a) = λD(a).

This complete the proof. �

Lemma 2.3. Let ϕ,ψ ∈ HomA(A) be idempotents and A has an identity e for ϕ(A) and
ψ(A). If D : A −→ X is a (ϕ,ψ)-module derivation and X is (ϕ,ψ)-unital, then

D(ae) = D(a) = D(ea), (a ∈ A).

Proof. Since X is (ϕ,ψ)-unital, ϕ(e) · x = x = x · ψ(e), for each x ∈ X. For all a ∈ A,

D(ϕ(a)) = ϕ2(a) ·D(e) +D(ϕ(a)) · ψ(e)

= ϕ(a) ·D(e) +D(ϕ(a)),

and

D(ψ(a)) = ϕ(e) ·D(ψ(a)) +D(e) · ψ2(a)

= D(ψ(a)) +D(e) · ψ(a).

Hence, ϕ(a) ·D(e) = D(e) · ψ(a) = 0. Therefore,

D(ea) = ϕ(e) ·D(a) +D(e) · ψ(a) = D(a),

for all a ∈ A. Similarly, D(a) = D(ae). �
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The following corollary generalize [20, Theorem 3.3] and [3, Proposition 2.2]. This is
done without extra assumption that A is essential or A has an bounded approximate identity
for A.

Corollary 2.1. Let A be a Banach A-module and ϕ,ψ ∈HomA(A) such that one of the
following is satisfied:

(i) ϕ and ψ are C-linear with dense ranges,
(ii) ϕ = ψ is idempotent.

Then, (ϕ,ψ)-module contractibility of A follows from its (ϕ,ψ)-contractibility.

Proof. From Remark 2.1 A has an identity e for ϕ(A) ∩ ψ(A). Let X be a commutative
Banach A-A-module and D : A → X be a (ϕ,ψ)-module derivation. If (i) holds, then e is
an identity for A and without loss of generality we may suppose that X is (ϕ,ψ)-unital, by
Lemma 2.1. Hence, ϕ(e) · x = x = x ·ψ(e), for all x ∈ X. By Lemma 2.2, D is C-linear and
consequently (ϕ,ψ)-contractibility of A implies that D is (ϕ,ψ)-inner.
If (ii) is true, then A has an identity e for ϕ(A) and we may suppose that X is (ϕ,ϕ)-unital.
By Lemma 2.3, for each a ∈ A, we have D(e) · ϕ(a) = 0 and D(ae) = D(a) = D(ea).
Therefore, as in the proof of Lemma 2.2, we get D(λe) · ϕ(a) = 0, (λ ∈ C, a ∈ A). Thus,

D(λa) = ϕ(λe) ·D(a) +D(λe) · ϕ(a) = λϕ(e) ·D(a) = λD(a), (λ ∈ C, a ∈ A).

This means that, D is C-linear. Consequently, (ϕ,ϕ)-contractibility of A implies that D is
(ϕ,ϕ)-inner. �

Theorem 2.1. Let A be a commutative Banach A-module and (ϕ,ψ)-module contractible.
Suppose that A is a (ϕ|K , ψ|K)-contractible for closed subalgebra K such that α · e ∈ K
(α ∈ A), and one of the following is satisfied:

(i) ϕ and ψ are C-linear with dense ranges and e ∈ A is an identity for A,
(ii) ϕ and ψ are idempotents and e ∈ A is an identity for ϕ(A) ∪ ψ(A).

Then (ϕ,ψ)-contractibility of A follows from its (ϕ,ψ)-module contractibility.

Proof. Suppose that (i) holds and D : A −→ X is a (ϕ,ψ)-derivation for some Banach
A-bimodule X. Then, there is x ∈ X such that

D(k) = ϕ(k) · x− x · ψ(k), (k ∈ K),

that is D = ad
(ϕ,ψ)
x on K. Let D̃ = D− ad(ϕ,ψ)x and Y be the A-submodule of X generated

by

D̃(A) + ϕ(A) · D̃(A) + D̃(A) · ψ(A) + ϕ(A) · D̃(A) · ψ(A).

Without loss of generality we may suppose that X is (ϕ,ψ)-unital. Then, D̃ : A −→ Y ⊆ X
is a (ϕ,ψ)-derivation such that the restriction of D̃ on K is zero. We now show that D̃ is
(ϕ,ψ)-inner. To see this, we define compatible actions of A on Y by

α ◦ y := ϕ(α · e) · y, y ◦ α := y · ψ(α · e), (α ∈ A, y ∈ Y ).

Since D̃|K = 0, we have

D̃(α · a) = D̃((α · e)a),

= ϕ(α · e) · D̃(a) + D̃(α · e) · ψ(a),

= ϕ(α · e) · D̃(a),
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for all α ∈ A and a ∈ A. Similarly, D̃(a ·α) = D̃(a) ·ψ(α ·e). Thus, for α ∈ A and a, b, c ∈ A,
from A-commutativity of A it follows that

ϕ(α · e) ·
[
ϕ(a) · D̃(b) · ψ(c)

]
= ϕ(a) ·

[
ϕ(α · e) · D̃(b) · ψ(c)

]
,

= ϕ(a) · D̃(α · b) · ψ(c),

= ϕ(a) · D̃(b · α) · ψ(c),

= ϕ(a) ·
[
D̃(b) · ψ(α · e)

]
· ψ(c),

=
[
ϕ(a) · D̃(b) · ψ(c)

]
· ψ(α.e).

Hence, ϕ(α · e) · y = y · ψ(α · e) for all α ∈ A and y ∈ Y . Therefore, Y is a commutative

Banach A-A-module. On the other hand, D̃(a · α) = D̃(α · a) = α ◦ D̃(a), for all α ∈ A and

a ∈ A. Thus, D̃ : A −→ Y is a (ϕ,ψ)-module derivation and there is y ∈ Y such that

D̃(a) = ϕ(a) · y − y · ψ(a), (a ∈ A).

Consequently, D = ad
(ϕ,ψ)
x+y .

Assume that (ii) is valid and X is a (ϕ,ψ)-unital Banach A-bimodule and D : A −→ X is
a (ϕ,ψ)-derivation. We turn X into another Banach A-bimodule via ϕ and ψ, i.e.,

a ◦ x := ϕ(a) · x, x ◦ a := x · ψ(a), (a ∈ A, x ∈ X). (1)

It is clear that D is again a (ϕ,ψ)-derivation. By Lemma 2.3, we know that

D(ae) = D(a) = D(ea),

for all a ∈ A. Now, as in the proof of (i), we obtain that D is (ϕ,ψ)-inner and therefore A

is (ϕ,ψ)-contractible. �

In Colorally 2.1, we found sufficient conditions that (ϕ,ψ)-contractibility of A implies
its (ϕ,ψ)-module contractibility. The next corollary may be considered as a converse of
Colorally 2.1. This is done without extra assumption that the left action between A and A

is trivial.

Corollary 2.2. Let A be a commutative Banach A-module where A is contractible. Let
ϕ,ψ ∈HomA(A) such that one of the following assertions hold.

(i) ϕ and ψ are C-linear with dense ranges,
(ii) ϕ = ψ is idempotent.

Then, (ϕ,ψ)-contractibility of A follows from its (ϕ,ψ)-module contractibility.

Proof. Suppose that e ∈ A is an identity for ϕ(A) ∩ ψ(A), which exists by Proposition 2.1.
Let K be the closed linear span of {α · ϕ(e) : α ∈ A}. If ϕ(e)2 = ϕ(e), then K is a closed
subalgebra of A under the following multiplication:

(α · ϕ(e)) · (β · ϕ(e)) = (αβ) · ϕ(e), (α, β ∈ A).

Consider θ : A −→ K be defined through θ(α) = α ·ϕ(e), for α ∈ A. Then, θ is a continuous
algebra homomorphism and θ(A) is dense in K. Hence K is contractible (see Exercise 4.1.4
(i) of [24]). Now, if (i) holds, then ϕ(e) = e = ψ(e) and by the definition of K, we have
ϕ|K , ψ|K ∈HomA(K) and contractibility of K implies its (ϕ|K , ψ|K)-contractibility. Now,
Theorem 2.1 (i) shows that A is (ϕ,ψ)-contractible.
If (ii) is true, then ϕ(e) is a identity for ϕ(A) and K is a closed subalgebra of A such that
ϕ|K ∈HomA(K). Therefore, K is (ϕ|K , ϕ|K)-contractible and satisfies the conditions of
Theorem 2.1 (ii). �

Recall that there exists a commutative Banach A-module A such that it is (idA, idA)-
module contractible, but is not (idA, idA)-contractible (see example in the end of [20]). This
shows that the condition contractibility of A in Corollary 2.2 is necessary.
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3. Characterization of (ϕ,ψ)-module diagonal and (ϕ,ψ)-biprojectivity

Let A⊗̂A be the projective tensor product of A by itself. Then A⊗̂A is a Banach
A-A-module with the canonical actions. Consider the closed ideal I of A⊗̂A generated by
elements of the form a · α ⊗ b − a ⊗ α · b (α ∈ A, a, b ∈ A). Let J be the closed ideal of A
generated by elements of the form (a · α)b − a(α · b) (α ∈ A, a, b ∈ A). It is clear that J
and I are both A-submodules and A-submodules of A and A⊗̂A, respectively. Hence, the
module projective tensor product A⊗̂AA ∼= (A⊗̂A)/I [23] and the quotient Banach algebra
A/J are both Banach A-modules and Banach A-modules. Now define ω̃ ∈ L(A⊗̂AA,A/J)
by ω̃(a ⊗ b + I) = ab + J , extended by linearity and continuity. Clearly, ω̃ is an A-module
morphism.

Suppose that ϕ ∈HomA(A), α ∈ A and a, b ∈ A. Then

ϕ((a · α)b− a(α · b)) = (ϕ(a) · α)ϕ(b)− ϕ(a)(α · ϕ(b)) ∈ J,

and so ϕ(J) ⊆ J . Thus, if we use ā to denote the coset of a ∈ A in A/J , then we may define

ϕ̃ : A/J −→ A/J by ϕ̃(ā) = ϕ(a).
The proof of the following lemma is the same as proof of Corollary 2.3 in [5], and so

omitted.

Lemma 3.1. Let A be a Banach A-modules and ϕ,ψ ∈HomA(A). If A is module con-
tractible, then it is (ϕ,ψ)-module contractible.

Lemma 3.2. Let A and B be Banach A-modules, ϕ,ψ ∈HomA(A) and σ, τ ∈HomA(B).
If θ ∈HomA(A,B) has dense range such that θϕ = σθ and θψ = τθ, then (σ, τ)-module
contractibility of B follows from (ϕ,ψ)-module contractibility of A.

Proof. Suppose that X is a commutative Banach B-A-module and D : B −→ X is a (σ, τ)-
module derivation. We turn X into a Banach A-A-bimodule via θ. It is immediate that
D ◦ θ : A −→ X is a (ϕ,ψ)-module derivation. Now, from (ϕ,ψ)-module contractibility of

A, there is x ∈ X that Dθ = ad
(ϕ,ψ)
x . Thus, by density of range θ we get D = ad

(σ,τ)
x . �

Lemma 3.3. A is (ϕ,ψ)-module contractible if and only if A/J is (ϕ̃, ψ̃)-module con-
tractible.

Proof. Let A/J be (ϕ̃, ψ̃)-module contractible. Suppose that X is a commutative Banach
A-A-module and D : A −→ X is a (ϕ,ψ)-module derivation. Clearly, J ·X = X · J = {0},
and thus X is a commutative Banach A/J-A-module by the same actions of A and

ā ◦ x = a · x, x ◦ ā = x · a, a ∈ A.

Since D vanishes on J , it induces a map D̃ from A/J to X which is (ϕ̃, ψ̃)-module derivation.

Hence, there is x ∈ X such that D̃ = ad
(ϕ̃,ψ̃)
x . It is routine to check that D = ad

(ϕ̃,ψ̃)
x . The

converse follows from Lemma 3.2 for the natural homomorphism π : A −→ A/J . �

Here, we give the concept of (ϕ,ψ)-module diagonal. It extends the notions of diagonal
and module diagonal for Banach algebras.

Definition 3.1. An element m ∈ A⊗̂AA is called a (ϕ,ψ)-module diagonal for A if

ϕ(a) ·m = m · ψ(a), ω̃(m).ϕ(a) = ϕ(a), ψ(a) · ω̃(m) = ψ(a), (a ∈ A).

We note that (idA, idA)-module diagonal is exactly a module diagonal [3, 20]. More-
over, when A := C, everything reduces to the classical case [24].

Proposition 3.1. Suppose that ϕ and ψ have dense renges such that ψ̃2 = ψ̃ϕ̃. If A has a
(ϕ,ψ)-module diagonal, then it is (ϕ,ψ)-module contractible.
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Proof. Assume that D : A/J −→ X is a (ϕ̃, ψ̃)-module derivation, where X is a commutative
Banach A/J-A-module. Define

P : A⊗̂AA −→ X, a⊗ b+ I 7→ D(ā) · ψ̃(b̄), (a, b ∈ A).

Let m be a (ϕ,ψ)-module diagonal for A. Then, m =
∑∞
n=1 an ⊗ bn + I where (an)n and

(bn)n are bounded sequences in A. Since ϕ(A) and ψ(A) are dense in A, ω̃(m) =
∑∞
n=1 anbn

is an identity for A/J and
∑∞
n=1 ϕ(a)an⊗ bn =

∑∞
n=1 an⊗ bnψ(a) for all a ∈ A. Therefore,

∞∑
n=1

D(ϕ̃(a)an) · ψ̃(bn) =

∞∑
n=1

D(an) · ψ̃(bn)ψ̃2(ā), (a ∈ A).

We also may assume that X is (ϕ̃, ψ̃)-unital. Thus, D(ω̃(m)) = D(
∑∞
n=1 anbn) = 0. Put

x =
∑∞
n=1 ϕ̃(an).D(bn). For each a ∈ A, let (ai)i be a sequence in A that ϕ(ai) converges

to a. Then

D(ā) = lim
i

∞∑
n=1

D(ϕ̃(ai)anbn),

= lim
i

∞∑
n=1

[
ϕ̃(ϕ(ai)an).D(bn) +D(ϕ(ai)an).ψ̃(bn)

]
,

= lim
i
ϕ̃2(āi) · x+ lim

i

∞∑
n=1

D(an) · ψ̃(bn)ψ̃2(āi),

= lim
i
ϕ̃2(āi) · x+ lim

i
D(

∞∑
n=1

anbn) · ψ̃2(āi)− lim
i
x · ψ̃2(āi),

= ϕ̃(lim
i
ϕ̃(āi)) · x− x · ψ̃(lim

i
ϕ̃(āi))

= ϕ̃(ā) · x− x · ψ̃(ā).

Hence, D = ad
(ϕ̃,ψ̃)
x . Therefore, A/J is (ϕ̃, ψ̃)-module contractible and (ϕ,ψ)-module con-

tractibility of A follows from Lemma 3.3. �

The upcoming outcome may be considered as a converse version of Proposition 3.1.

Proposition 3.2. Suppose that A/J and A⊗̂AA are commutative Banach A-modules, and
ϕ,ψ ∈HomA(A) such that one of the following is satisfied:

(i) ϕ and ψ have dense ranges, such that ϕ̃2 = ψ̃ϕ̃ or ψ̃2 = ϕ̃ψ̃.
(ii) ϕ = ψ.

Then, A has a (ϕ,ψ)-module diagonal, whenever it is (ϕ,ψ)-module contractible.

Proof. Assume that (i)is valid. It follows from Proposition 2.1 and Lemma 3.3 that there

exists e ∈ A such that ē is an identity for A/J . Consider D(a) := ad
(ϕ,ψ)
e⊗e+I : A −→ A⊗̂AA.

For all a ∈ A, we have

ω̃
(
D(ϕ(a))) = ω̃

(
ϕ(ϕ(a)) · e⊗ e+ I− e⊗ e · ψ(ϕ(a)) + I

)
= ϕ̃2(ā)− ψ̃(ϕ̃(ā)),

and

ω̃
(
D(ψ(a))) = ω̃

(
ϕ(ψ(a)) · e⊗ e+ I− e⊗ e · ψ(ψ(a)) + I

)
= ϕ̃(ψ̃(ā))− ψ̃2(ā).

By assumptions, ω̃
(
D(ϕ(a))) = 0 or ω̃

(
D(ψ(a))) = 0. Hence, ω̃

(
D(a)) = 0 for all a ∈ A.

Thus, ad
(ϕ,ψ)
e⊗e+I : A −→ A⊗̂AA is a (ϕ,ψ)-module derivation into kerω̃. Since A⊗̂AA is a

commutative Banach A-A-module, so is kerω̃. Therefore, there is n + I ∈ kerω̃ such that
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ad
(ϕ,ψ)
e⊗e+I = ad

(ϕ,ψ)
n+I . It is easy to verify that (e ⊗ e − n) + I is a (ϕ,ψ)-module diagonal for

A. Let (ii) holds and ē be an identity for ϕ̃(A/J). Then

ω̃
(
ϕ(a) · e⊗ e+ I− e⊗ e · ϕ(a) + I

)
= 0A/J (a ∈ A).

Similarly, (e⊗ e− n) + I is a (ϕ,ϕ)-module diagonal for A. �

The next example shows that the concept of (ϕ,ψ)-module contractibility for a Banach
algebra A is not equivalent to the existence of a (ϕ,ψ)-module diagonal for it, whenever ϕ
and ψ are arbitrary elements of HomA(A).

Example 3.1. Let A and A be the Banach algebras of complex 2× 2 matrices of the form

A =

{[
a 0
0 0

]
: a ∈ C

}
, A =

{[
a 0
0 b

]
: a, b ∈ C

}
.

Then, J = 0, A and A⊗̂AA are commutative Banach A-modules. A is unital and finite-
dimensional. Therefore, it is contractible and so is module contractible by Corollary 2.1.
Define ϕ,ψ ∈HomA(A) through

ϕ

([
a 0
0 d

])
=

[
a 0
0 0

]
, ψ

([
a 0
0 d

])
=

[
0 0
0 d

]
.

It is clear that ϕ and ψ are idempotents, but neither ϕ nor ψ have dense ranges. From
Lemma 3.1, A is (ϕ,ψ)-module contractible.

Now, if m =
∑n
i=1

[
xi 0
0 zi

]
⊗
[
ui 0
0 wi

]
+ I is a (ϕ,ψ)-module diagonal for A, then

e11 = ϕ(e11) = ω̃(m) · ϕ(e11). =

n∑
i=1

[
xiui 0

0 ziwi

]
.

[
1 0
0 0

]
=

n∑
i=1

[
xiui 0

0 0

]
.

and

e22 = ψ(e22) = ψ(e22) · ω̃(m) =

[
0 0
0 1

]
.

n∑
i=1

[
xiui 0

0 ziwi

]
=

n∑
i=1

[
0 0
0 ziwi

]
.

Thus,
∑n
i=1 xiui =

∑n
i=1 ziwi = 1 and hence ω̃(m) is the identity matrix. This implies that

e11 = ϕ(e11) · ω̃(m) = ω̃(ϕ(e11) ·m) = ω̃(m · ψ(e11)) = 0,

which is a contradiction. Therefore, there is no any (ϕ,ψ)-module diagonal for A.

Here, we give the notion of (ϕ,ψ)-module biprojectivity as a generalization of the
earlier notions of biprojectivity and module biprojectivity [6] for Banach algebras.

Definition 3.2. A Banach A-module A is called (ϕ,ψ)-module biprojective if there is an

A-module morphism ρ : A/J −→ A⊗̂AA such that ω̃ρ is the identity map on ψ̃(A/J) and
for all a, b ∈ A,

ϕ(a) · ρ(ϕ̃(b̄)) = ρ(ϕ̃(ab)) = ρ(ϕ̃(ā)) · ψ(b).

We note that if ϕ and ψ are the identity maps, then (idA, idA)-module biprojectivity
overlaps on module biprojectivity [6, 20]. Moreover, in the case where A := C, then idA-
module biprojectivity and biprojectivity coincide [10, 24].

Theorem 3.1. Let A⊗̂AA be a commutative Banach A-module. If there is e ∈ A such
that ē is an identity for ϕ̃(A/J) ∪ ψ̃(A/J) and ϕ̃(ē) = ē = ψ̃(ē), then A is (ϕ,ψ)-module
biprojective, if and only if A has a (ϕ,ψ)-module diagonal.
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Proof. Since A⊗̂AA is a commutative Banach A-module, as in the proof of Lemma 3.3,
A⊗̂AA is a commutative Banach A/J- A-module. Let m ∈ A⊗̂AA be a (ϕ,ψ)-module
diagonal for A. For all a, b, c ∈ A, we find

ω̃
(
ā ◦ (b⊗ c+ I)

)
= ω̃(ab⊗ c+ I) = abc = ā · ω̃(b⊗ c+ I).

Therefore, for all a ∈ ψ(A), we have ω̃
(
ā ◦m

)
= ā · ω̃(m). Define ρ : A/J −→ A⊗̂AA via

ρ(ā) = ā ◦m (a ∈ A). Then, ρ satisfies the conditions of Definition 3.2. Consequently, A is
(ϕ,ψ)-module biprojective.
Conversely, let A be (ϕ,ψ)-module biprojective and ρ be as in Definition 3.2. Then

ρ(ϕ̃(a)ϕ̃(e)) = ρ(ϕ̃(e)ϕ̃(a)).

This implies that
ϕ(a) · ρ(ϕ̃(e)) = ρ(ϕ̃(e)) · ψ(a), (a ∈ A).

Now, it is routinely checked that m := ρ(ē) is a (ϕ,ψ)-module diagonal for A. �

Corollary 3.1. Let A⊗̂AA be a commutative Banach A-module and ϕ,ψ ∈HomA(A). Sup-
pose that one of the following assumptions holds.

(i) ϕ and ψ have dense ranges.
(ii) ϕ = ψ is idempotent.

Then, A has a (ϕ,ψ)-module diagonal, if and only if A is (ϕ,ψ)-module biprojective and

A/J has an identity for ϕ̃(A/J) ∪ ψ̃(A/J).

4. Applications to Semigroup algebras

Let S be an arbitrary semigroup and E be the set idempotents of S which it is a
commutative subsemigroup of S (see [15]).Then, l1(E) could be regarded as a subalgebra
of l1(S) and thereby l1(S) is a Banach algebra and a Banach l1(E)-module with proper
compatible actions. It is possible to consider arbitrary actions of l1(E) on l1(S) and prove
certain module amenability results. In the results of this section we do not restrict ourselves
to any particular action.
This following example shows that the class of (ϕ,ψ)-module contractible Banach algebras
is large than the category of module contractible Banach algebras.

Example 4.1. Let S = (N,∧) be the inverse semigroup of positive integers with the mini-
mum operation, A = l1(S) and A = l1(E). Then, A is a commutative Banach algebra that
is not unital, and hence A not contractible. Assume that the sequence {δn}n∈N is a bounded
approximate identity for A. Consider A is a commutative Banach A-module under the ac-
tions defined by the algebra multiplication. Let ϕ(f) = δ1 ∗ f , for all f ∈ A. Clearly, ϕ ∈
HomA(A) is C-linear and idempotent, but has not dense range. Let X be a commutative
Banach A-A-module and D be a (ϕ,ϕ)-module derivation from A into X. Then

D(δn) = D(δn ∗ δn),

= ϕ(δn) ·D(δn) +D(δn) · ϕ(δn),

= δ1 ·D(δn) +D(δn) · δ1,
= D(δ1 ∗ δn) +D(δn ∗ δ1),

= 2D(δ1) (n ∈ N).

In particular, D(δ1) = 2D(δ1) and hence D(δ1) = 0. Thus, D(δn) = 0 for all n ∈ N. Since
A = A,

D(f) = lim
n
D(δn ∗ f) = lim

n
D(δn) · f = 0,

for all f ∈ A. It follows that D is zero. Consequently, A is (ϕ,ϕ)-module contractible. On
the other hand, A is not unital and so not module contractible [22].
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If l1(S) is a commutative Banach l1(E)-module, then so is l1(S)⊗̂l1(E)l
1(S) and more-

over J = 0. Therefore, by Corollary 3.1, Proposition 3.2, Proposition 3.1, Corollary 2.1 and
Corollary 2.2, we get the following result.

Theorem 4.1. Let l1(S) be a commutative Banach l1(E)-module. If ϕ,ψ ∈Homl1(E)(l
1(S))

have dense ranges, then the following statements are true.

(i) If l1(E) is contractible, then l1(S) is (ϕ,ψ)-contractible, if and only if it is (ϕ,ψ)-
module contractible.

(ii) If ϕ = ψ, then l1(S) is (ϕ,ψ)-module contractible, if and only if it has a (ϕ,ψ)-module
diagonal.

(iii) l1(S) has a (ϕ,ψ)-module diagonal, if and only if it is unital and (ϕ,ψ)-module bipro-
jective.

Note that L1(G) is semisimple, when G is a locally compact group (Corollary 2.7.9 of
[19]). Thus, the following corollary extends the previously known results duo to Selivanov
[25] and Helemskii [14] (see also Theorem 3.3.32 of [10]).

Corollary 4.1. Let S be a semigroup with finitely many idempotents. If ϕ ∈Homl1(E)(l
1(S))

has dense range and l1(S) is a commutative Banach l1(E)-module, then the following state-
ments are equivalent:

(i) l1(S) is semisimple and S is finite.
(ii) l1(S) is (ϕ,ϕ)-module contractible.
(iii) l1(S) has a (ϕ,ϕ)-module diagonal.
(iv) l1(S) is unital and (ϕ,ϕ)-module biprojective.

Proof. It is obvious that E is an inverse semigroup and finite semilattice. Thus, l1(E) is
finite-dimensional amenable Banach algebra by Theorem 8 of [11], and so it is contractible.
Hence (ii), (iii) and (iv) are equivalent by Theorem 4.1. Furthermore, l1(S) is (ϕ,ϕ)-module
contractible if and only if it is (ϕ,ϕ)-contractible. Since ϕ has dense range, l1(S) is (ϕ,ϕ)-
contractible if and only if it is contractible, and so (i) and (ii) are equivalent by Theorem
1.9.21 in [10]. �

This next example shows that condition of density of ϕ(A) is necessary in Corollary
4.1 and this corollary is not valid for arbitrary ϕ in HomA(A).

Example 4.2. Let S = (Z, .) be the semigroup of integers with the common multiplication.
Then, S is a commutative, infinite semigroup, with idempotents E = {0, 1}. Since E is a
commutative subsemigroup of S, A := l1(S) is a commutative Banach A := l1(E)-module
under the actions defined by the algebra multiplication. Let ϕ(f) = f ∗ δ0, for all f ∈ A.
Clearly, ϕ ∈HomA(A) is C-linear that has not dense range. If X is a commutative Banach
A-A-module and D is a (ϕ,ϕ)-module derivation from A into X, then

D(δn) = D(δ1 ∗ δn),

= ϕ(δ1) ·D(δn) +D(δ1) · ϕ(δn),

= δ0 ·D(δn) +D(δ1) · δ0,
= D(δ0 ∗ δn) +D(δ1 ∗ δ0),

= 2D(δ0),

for all n ∈ Z. In particular, D(δ0) = 2D(δ0), and thus D(δ0) = 0. Hence, for all f =∑
n αnδn in A we have

D(f) = D

(∑
n

αnδn

)
= D

(∑
n

αnδ1 ∗ δn

)
=
∑
n

αnδ1 ·D(δn) = 0.

This means that D is zero. Therefore, A is (ϕ,ϕ)-module contractible while S is not finite.



146 M. Valaei, A. Zivari-Kazempour, A. Bodaghi

R E F E R E N C E S

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254.

[2] A. Bodaghi, Generalized notion of weak module amenability, Hacettepe J. Math. Stat., 43 (1) (2014),

85–95.

[3] A. Bodaghi, Module contractibility for semigroup algebras, Math. Sci. Journal, 7 (2), (2012), 5–18.

[4] A. Bodaghi, The structure of module contractible Banach algebras, Int. J. Nonlinear Anal. Appl., 1 (1)

(2010), 6–11.

[5] A. Bodaghi, Module (ϕ,ψ)-amenability of Banach algebras, Arch. Math. (Brno), 46 (2010), 227–235.

[6] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algaebras, U.P.B. Sci. Bull.

Series A., 75 (2013), 25–36.

[7] A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak amenability of

Banach algebras, Banach J. Math. Anal., 3(1), (2009), 131–142.

[8] A. Bodaghi and S. Grailoo Tanha, Module approximate biprojectivity and module approximate, bifat-

ness of Banach algebras, Rend. del Cir. Mat. di Palermo Series 2, 70 (2021), 409–425.

[9] A. Bodaghi and B. Shojaee, A generalized notion of n-weak amenability, Math. Bohemica, 139, No. 1

(2014), 99–112.

[10] H. G. Dales, Banach algebras and automatic continuity, Oxford University Press, Oxford, 2000.

[11] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. R.

Soc. Edinb., A 86 (1988), 309–321.

[12] M. Eshaghi Gordji, A. Jabbari and A. Bodaghi, Generalization of the weak amenability on various

Banach algebras, Math. Bohemica, 144, No. 1 (2019), 1–11.

[13] A. Ya. Helemskii, Banach and locally convex algebras, The Clarendon Press, Oxford University Press,

New York, 1993.

[14] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer Academic Publishers,

Dordrecht, 1986.

[15] J. M. Howie, An Introduction to semigroup Theory, Academic Press, London, (1976).

[16] E. Ilka, M. Mahmoodi and A. Bodaghi, Some module cohomological properties of Banach algebras,

Math. Bohemica, 145, No. 2 (2020), 127–140.

[17] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, Providence, 1972.

[18] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer.

J. Math., 94 (1972), 685–698.

[19] E. Kaniuth, A course in commutative Banach algebras, Springer-Verlag, New York, 2009.

[20] M. Lashkarizadeh Bami, M. Valaei and M. Amini, Super module amenability of inverse semigroup

algebras, Semigroup Forum, 86 (2013), 279–288.

[21] M. Moslehian and A. Motlagh, Some notes on (σ, τ)-amenability of Banach algebras, Stud. Univ. Math,

3 (2008), 57–68.

[22] H. Pourmahmood-Aghababa, (Super) module amenability, module topological center and semigroup

algebras, Semigroup Forum, 81 (2010), 344–356.

[23] M. A. Rieffel, Induced Banach representations of Banach algebras and loccaly compact groups, J. Func.

Anal, 1 (1976), 443–491.

[24] V. Runde, Lectures on amenability, Lectures Notes in Mathematical 1774, Springer-Verlag, Berlin-

Heidelberg-New York, 2002.

[25] Yu. V. Selivanov, Banach algebras of small global dimension zero, Uspekhi Mat. Nauk, 31 (1976),

227–228.


