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THE STRUCTURE OF (¢,1)-MODULE CONTRACTIBLE BANACH
ALGEBRAS

M. Valaei!, A. Zivari-Kazempour?, A. Bodaghi®

In the present article, we introduce and study the concepts of (p,1))-module
contractibility and (p,)-module biprojectivity for Banach algebras. Moreover, some
known outcomes concerning the (module) contractibility of Banach algebras are gener-
alized. As a main example, for a semigroup S with the set of idempotents E, we study
these notions for I*(S) (as an I*(E)-module) for arbitrary module actions, and extend
the well-known results due to Selivanov and Helemskii.
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1. Introduction

The story of amenability and contractibility for Banach algebras was commenced by
B. E. Johnson in [17], where he linked the amenability of Banach algebras and groups.
One of the fundamental results was that the group algebra L!(G) is an amenable Banach
algebra if and only if G is an amenable locally compact group. Next, Selivanov showed
that the Banach algebra L'(G) is contractible if and only if G is finite [25]. Recall from
[17] that a Banach algebra A is called contractible (amenable) if H'(A, X) = {0} (resp.
H'(A, X*) = {0}) for every Banach A-bimodule X, where the left hand side in the equality
is the first cohomology group of A with coefficient in X (resp. X*). Johnson [18] showed
that a Banach algebra A is contractible if and only if it has a diagonal, that is, there is an
element m € A®A such that w(m) is an identity for A and @ - m = m - a, for each a € A,
where w : AQA — A; a®b +— ab is the canonical morphism (for emphasis, w4). Obviously,
w is an A-bimodule map (i.e. a bounded linear map which preserves the module operations)
with respect to the canonical bimodule structure on the projective tensor product A&.A.

A Banach algebra A is called biprojective if w has a bounded right inverse which is an
A-bimodule map. A Banach algebra A is said to be biflat if the adjoint w* : A* — (ARA)*
has a bounded left inverse which is an A-bimodule map. It is obvious that every biprojective
Banach algebra is biflat. Helemskii [14] studied the structure of Banach algebras through
the concepts of biprojectivity and biflatness. In the main result, he showed that a Banach
algebra A is contractible if and only if it is unital and biprojective (the basic properties of
biprojectivity and biflatness can be found in [14]). In particular, [*(G) is biprojective if and
only if G is finite [13, 14]. Biprojectivity is important notion in the category of commutative
Banach algebras. For instance, each commutative Banach algebra has a discrete character
space if it is biprojective, and the converse holds for all commutative C*-algebras [24].
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M. Amini [1] and H. P. Aghababa [22] initiated the notion of module amenability
and contractibility for a class of Banach algebras, respectively, which could be considered as
some generalizations of the Johnson’s results when the C-module structure is replaced by a
Banach algebra module structure. They showed that for an inverse semigroup S with the set
of idempotents E, the semigroup algebra I*(S) is module amenable (resp. contractible), as
a Banach module over [*(E), if and only if S (resp. Gs = S/ ) is amenable (resp. finite),
where Gg is an appropriate group homomorphic image of S. The structure of module
contractible Banach algebras and some hereditary properties of module contractibility are
investigated in [3] and [4]. In addition, Aghababa [22] studied the module contractible
Banach algebras using module diagonals and showed that under some mild conditions, a
Banach algebra is module contractible if and only if it has a module diagonal [22].

In [6], the third author and Amini introduced and studied a module biprojective
Banach algebra which is a Banach module over another Banach algebra with compatible
actions. For every inverse semigroup S with subsemigroup F of idempotents, they showed
that [1(S) is module biprojective, as an I*(E)-module, if and only if G is finite under the
extra condition Dy, of Duncan and Namioka [11] for some k on E. Recently, this condition is
removed in [8] and the authors showed that [1(S) is module biprojective as an [!(E)-module
with trivial left action if and only if G5 if finite. Some module cohomological properties such
as module biprojectivity and module biflaness of the projective tensor products are studied
in [16].

In this paper, we study the notion of (¢, 1)-module contractibility for a Banach alge-
bra A which extends the concepts of module contractibility, where ¢ and v are two 2-module
homomorphisms on A. We also find sufficient conditions for (¢, )-module contractibility
of A to be equivalent to (i, 1))-contractibility of A. Moreover, we introduce the notions of
(¢, ¥)-module biprojectivity and (¢, ¥)-module diagonal for Banach algebras and show that
under which conditions these notions are equivalent. In particular, we present and prove
some generalizations of the Johnson’s and Helemskii’s theorems. Furthermore, we improve
the main result of [20] for arbitrary commutative compatible actions without the pseudo-
unital condition. As a consequence of a semigroup S with the finite set of idempotents E,
we generalize results due to Selivanov and Helemskii for a discrete group G.

2. (¢,%)-module contractibility

Throughout this paper, A and %A are Banach algebras such that A is a Banach -
bimodule with the following compatible actions:

a-(ab) = (a-a)b, (ab)-a=alb-a), (a,beA,ac).

Let X be a Banach A-bimodule and a Banach 2-bimodule with compatible actions,
that is

a-(a-z)=(a-a) z,a (a-z)=(a-a) z (¢ x) - a=a-(z-a),

foralla € A,a € A, x € X and similar for the right or two-sided actions. Then, we say that
X is a Banach A-2-module. Moreover, if «-z =z -« for all a € A, x € X, then X is called
a commutative A-A-module. Note that A is not an A-2A-module in general because A does
not satisfy the compatibility condition a - (- b) = (a- ) - b for o € ™A, a,b € A. But when
A is a commutative 2-module and acts on itself by multiplication from both sides, then it
is also a Banach A-2(-module.

Let A and B be 2A-bimodules. Then a 2l-module homomorphism from A to B is a
bounded map T : A — B with T(a £ b) = T(a) £+ T(b), and is multiplicative, that is
T(ab) = T(a)T(b) for all a,b € A, and

T(a-a)=a-T(a), T(a-a)=T(a) o, (a,€A ac).
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We denote by Homg( (A, B), the space of all such homomorphisms and denote Homg( (A, A)
by Homg (A). Note that when 20 = C, the set of complex numbers, then Hom¢ (A, B) =
Hom(A, B) and Hom¢(A) = Hom(A).

Let A and 2 be as above and X be a Banach A-2-module. Suppose that ¢ and
are in Homg(A). A bounded map D : A — X is called a module (p,v)-derivation if

D(a-a)=a-D(a), D(a-a)=D(a) a,(ac A, ac)

and
D(a+b) = D(a) £ D(), D(ab) = p(a)- - D(b) + D(a)-¥(b), (a,beA).

Recall that D : A — X is bounded if there exist M > 0 such that ||D(a)|| < M]lall,
(a € A). Although D and the elements of Homgy (A, B) are not necessarily linear, their
boundedness still implies their norm continuity. When X is a commutative A-2-module,
then each z € X defines a module (¢, ¥)-derivation ad&‘“") =p(a)-z—x-1(a) on A. These
are called (g, ¢)-module inner derivations. Derivations of these forms are studied in [2] and
[5].

A Banach algebra A is called (¢, 1)-module contractible (as an A-module) if for any
commutative Banach A-2-module X, each module (¢, )-derivation D : A — X is (p,¢)-
inner. One should remember that if ¢ and ¢ are identity maps on A, then every (id4,id4)-
module derivation is the same as module derivation, and therefore (id4,id4)-module con-
tractibility is the same as module contractibility. In addition, when 20 := C, everything
reduces to the classical case; see [7], [9], [12] and [21].

It is known that contractible Banach algebras and also every contractible commutative
Banach 2-modules are unital [3]. In the beginning of this section, we generalize this property
as follows.

Proposition 2.1. Let A be a commutative Banach A-module. If A is (¢,1v)-module con-
tractible, then A has an identity for (A) N (A). In particular A is unital, whenever both
@ and Y have dense ranges or are injective.

Proof. Set X := A. Then, X is a commutative Banach A-2-module, with the same actions
of 2 and the following actions of A

a-x=azx, v-a=0, (a€A, ze€X).

Define the mapping D : A — X by D(a) = ¢(a) (a € A). Then, D is a (p,1)-module
derivation and there is e; € X such that D = adf . Thus, e; is a right identity for p(A).
Similarly, X is a commutative Banach A-2-module, with the same actions of 2 and the
following actions of A

a-z=0, z-a=za, (a€A, ze€X).

Again, D(a) := ¢(a) (a € A) is a (p,1)-module derivation and there exists an ez € X such
that D = adg’2 and therefore, e, is a left identity for ¢(A). Consequently, A has an identity
for p(A) NP (A). O

Remark 2.1. Let B be a Banach algebra and 0,7 € Homg (B). Consider 2 := C, then
B is automatically a commutative Banach C-module and o,7 €Hom(A). Moreover, (o, 7)-
derivations and (o, 7)-module derivations coincide, and so (o, 7)-module contractibility is
the same as (o, 7)-contractibility for B. Thus, if a Banach algebra B is (o, 7)-contractible,
then it has a right identity for o(B) and a left identity for 7(B) by Proposition 2.1.

Definition 2.1. A Banach A-bimodule X is called (¢, v)-unital if
X ={pla) -z -9(d): a,be A}.
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Lemma 2.1. Let A has an identity for o(A) U (A). Suppose that either both ¢ and ¢ are
idempotents or have dense ranges. Then, A is (¢,v)-module contractible if and only if each
(¢, ¥)-module derivation from A into any (p,1)-unital commutative Banach A-2A-module is

(¢, )-inner.

Proof. Let e € A be an identity for ¢(A) and ¥(A). If both ¢ and 1 are idempotents, then
p(e) and 9 (e) are the identities for ¢(A) and ¥ (A), respectively. In the case that both ¢
and 1 have dense ranges, then p(e) = ¥(e) = e. Assume that X is a commutative Banach
A-2-module and D : A — X is a (¢, 1)-module derivation. Consider

X1 =ple) X-9(e), Xo=(1—p(e) X, Xs=X-(1-1(c)),

and Xy = (1 —¢(e)) - X - (1 —1(e)), which are commutative Banach A-2-modules by
aoxy =x10a:=p(e)- (ax) P(e), aoxy :=p(a) x1, x10a:=x1 -P(a),

for each @1 = ¢(e) -z -¥(e) € X1, a € A, a € A and similarly for X; (2 < i < 4). Then

X=X10Xo®X3® X, and D; := p;oD is a (p, 1))-module derivation, where p; : X — X;
is the canonical projection (1 < ¢ < 4). Since

Di(p(e)a) = Di(ap(e)) = Di(a), (1<i<4, a€A),
we have Dy = ad' 1’;/;(@(6)), ad%’ ZQ(E)) and Dy = 0. Thus, D is (¢, ¢)-inner if and only
if Dy is (p,%)-inner. O

Lemma 2.2. Let A has a left (or right) identity e and X be a commutative Banach A-2-
module such that p(e) -x =z =x-(e), forallz € X. If D: A — X is a (p,v¢)-module
derivation such that ¢ and v are C-linear, then D is C-linear.

Proof. 1t is clear that D(e) is zero. For all n € N, additivity of D implies that

nD (:;) — D(e) = 0.

Thus, D(re) = 0 (r € Q). Hence by the continuity of D, D(re) = 0 (r € R). Besides, for
the imaginary unit ¢, we have

0= D(—e) = D (i*¢) = (ie) - D(ie) + D(ie) - 1 (ie) = 2iD(ie).
Hence, D(ie) = 0, and so D(Xe) =0 (A € C). Consequently, for all A € C and a € A,
D(Xa) = ¢(Xe) - D(a) + D(Xe) - (a) = AD(a).
This complete the proof. |

Lemma 2.3. Let ¢, € Homgy(A) be idempotents and A has an identity e for p(A) and
Y(A). If D: A — X is a (p,9)-module derivation and X is (p,)-unital, then

D(ae) = D(a) = D(ea), (a€A).
Proof. Since X is (p,%)-unital, ¢(e) - =z = x - ¢¥(e), for each € X. For all a € A,
D(p(a)) = ¢*(a)- D(e) + D(p(a)) - ¥(e)
= ¢(a)- D(e) + D(p(a)),
and
(e)-v*(a)
(a).

D(Y(a)) = wle)- D(¢d(a)) + D
= D(y(a)) + D(e) - ¢
(a) = 0. Therefore,
D(ea) = ¢(e) - D(a) + D(e) - ¥(a) = D(a),
for all a € A. Similarly, D(a) = D(ae). O

Hence, ¢(a) - D(e) = D(e) -
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The following corollary generalize [20, Theorem 3.3] and [3, Proposition 2.2]. This is
done without extra assumption that A is essential or 2 has an bounded approximate identity
for A.

Corollary 2.1. Let A be a Banach A-module and ¢,v €Homgy(A) such that one of the
following is satisfied:

(1) ¢ and v are C-linear with dense ranges,

(ii) @ = v is idempotent.
Then, (p,)-module contractibility of A follows from its (v, )-contractibility.

Proof. From Remark 2.1 A has an identity e for p(A) NyY(A). Let X be a commutative
Banach A-2l-module and D : A — X be a (p,)-module derivation. If (i) holds, then e is
an identity for A and without loss of generality we may suppose that X is (¢, ¥)-unital, by
Lemma 2.1. Hence, ¢(e)-x =x = x-¢)(e), for all x € X. By Lemma 2.2, D is C-linear and
consequently (¢, 1)-contractibility of A implies that D is (¢, 1)-inner.

If (ii) is true, then A has an identity e for p(A) and we may suppose that X is (i, ¢)-unital.
By Lemma 2.3, for each a € A, we have D(e) - ¢(a) = 0 and D(ae) = D(a) = D(ea).
Therefore, as in the proof of Lemma 2.2, we get D(Xe) - p(a) =0, (A € C,a € A). Thus,

D(Xa) = p(Xe) - D(a) + D(Xe) - p(a) = Ap(e) - D(a) = AD(a), (A€ C,a € A).

This means that, D is C-linear. Consequently, (¢, ¢)-contractibility of A implies that D is
(¢, )-inner. O

Theorem 2.1. Let A be a commutative Banach A-module and (p,)-module contractible.
Suppose that A is a (¢|k,V|K)-contractible for closed subalgebra K such that o -e € K
(a € ), and one of the following is satisfied:

(i) ¢ and ¢ are C-linear with dense ranges and e € A is an identity for A,
(ii) ¢ and ¥ are idempotents and e € A is an identity for (A) Up(A).

Then (@, ¥)-contractibility of A follows from its (p,1)-module contractibility.

Proof. Suppose that (i) holds and D : A — X is a (p,%)-derivation for some Banach
A-bimodule X. Then, there is z € X such that

D(k) = ¢(k) -z —x-(k), (ke K),

that is D = adgfp’w) on K. Let D=D — adgf’w) and Y be the A-submodule of X generated
by

D(A) + @(A) - D(A) + D(A) - (A) + ¢(A) - D(A) - ¥ (A).

Without loss of generality we may suppose that X is (¢,1))-unital. Then, D : A — Y cX
is a (i, 1)-derivation such that the restriction of D on K is zero. We now show that D is
(¢, 1)-inner. To see this, we define compatible actions of 2 on Y by

aoy:=p(a-e) -y, yoa:=y-Pla-e), (e, yeyY).
Since D|x = 0, we have

D(a-a) = D((a-e)a),
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for all & € A and a € A. Similarly, D(a-a) = D(a)-1(a-e). Thus, for o« € % and a,b, ¢ € A,
from 2A-commutativity of A it follows that

p(a-e)- [p(a)- D) - ()] = ¢la)- [pla-e)- D) ¢(c)],
= @(a)- D(a-b)-(c),
= ¢(a)-D(b-a)-¥(c),
= ¢(a) [D(®)-v(a-e)]-v(c),

= [p(a)-D(b) - ¥(c)] - Y(ae).
Hence, p(a-e) -y =y -(a-e) for all @ € A and y € Y. Therefore, Y is a commutative
Banach A-2-module. On the other hand, D(a-a) = D(a - a) = a o D(a), for all a € A and
a€A. Thus, D: A — Y is a (¢, 1)-module derivation and there is y € Y such that

D(a)=¢(a) -y —y-¥(a), (a€A).

Consequently, D = adg‘i’g).
Assume that (ii) is valid and X is a (¢, %)-unital Banach A-bimodule and D : A — X is
a (¢, 1)-derivation. We turn X into another Banach A-bimodule via ¢ and 9, i.e.,

aozx:=¢p(a) -z, voa:=x-YP(a), (acA,zecX). (1)
It is clear that D is again a (¢, )-derivation. By Lemma 2.3, we know that
D(ae) = D(a) = D(ea),

for all @ € A. Now, as in the proof of (i), we obtain that D is (¢, )-inner and therefore A
is (¢, 1))-contractible. O

In Colorally 2.1, we found sufficient conditions that (¢, t)-contractibility of A implies
its (p,1)-module contractibility. The next corollary may be considered as a converse of
Colorally 2.1. This is done without extra assumption that the left action between 20 and A
is trivial.

Corollary 2.2. Let A be a commutative Banach 2A-module where 2 is contractible. Let
©, 1 €Homgy (A) such that one of the following assertions hold.

(i) ¢ and ¢ are C-linear with dense ranges,
(ii) @ = is idempotent.
Then, (p,)-contractibility of A follows from its (p,1)-module contractibility.

Proof. Suppose that e € A is an identity for ¢(A) N (A), which exists by Proposition 2.1.
Let K be the closed linear span of {a-¢(e): a € 2A}. If p(e)? = p(e), then K is a closed
subalgebra of A under the following multiplication:

(a-p(e)) - (B-¢le)) = (aB) - ple), (a,f ).

Consider 6 : A — K be defined through (o) = a- p(e), for o € 2. Then, 6 is a continuous
algebra homomorphism and 6(2) is dense in K. Hence K is contractible (see Exercise 4.1.4
(7) of [24]). Now, if (i) holds, then ¢(e) = e = ¥(e) and by the definition of K, we have
©|K, Y|k €Homg(K) and contractibility of K implies its (¢|x, ¥|k)-contractibility. Now,
Theorem 2.1 (i) shows that A is (¢, )-contractible.

If (ii) is true, then ¢(e) is a identity for p(A) and K is a closed subalgebra of A such that
|k €Homg(K). Therefore, K is (¢|k, ¢|x)-contractible and satisfies the conditions of
Theorem 2.1 (ii). O

Recall that there exists a commutative Banach 2-module A such that it is (ida,id)-
module contractible, but is not (id 4, id 4 )-contractible (see example in the end of [20]). This
shows that the condition contractibility of 2 in Corollary 2.2 is necessary.



The structure of (¢, 1)-module contractible Banach algebras 141

3. Characterization of (p,)-module diagonal and (¢, v)-biprojectivity

Let A®A be the projective tensor product of A by itself. Then A®A is a Banach
A-2-module with the canonical actions. Consider the closed ideal J of A®A generated by
elements of the form a-a®b—a®a-b (a € A, a,b € A). Let J be the closed ideal of A
generated by elements of the form (a - a)b —a(a-b) (o € ™A, a,b € A). It is clear that J
and J are both 2-submodules and A-submodules of A and A®A, respectively. Hence, the
module projective tensor product A®gA = (A®A)/J [23] and the quotient Banach algebra
A/J are both Banach 2-modules and Banach A-modules. Now define @ € £(A®gA, A/ J)
by w(a ® b+ 7J) = ab+ J, extended by linearity and continuity. Clearly, @ is an 2-module
morphism.

Suppose that ¢ €eHomg(A), @ € A and a,b € A. Then

¢((a- )b —a(a-b)) = (p(a) - a)p(b) — p(a)(a- (b)) € J,
and so ¢(J) C J. Thus, if we use a to denote the coset of a € A in A/J, then we may define
p: A/ — AJJ by ¢(a) = ¢(a).
The proof of the following lemma is the same as proof of Corollary 2.3 in [5], and so
omitted.

Lemma 3.1. Let A be a Banach 2A-modules and ¢,v €Homg(A). If A is module con-
tractible, then it is (¢, 1)-module contractible.

Lemma 3.2. Let A and B be Banach A-modules, ¢, €Homgy(A) and o,7 €Homgy(B).
If 0 eHomgy (A, B) has dense range such that 0@ = o0 and 6 = 70, then (o, 7)-module
contractibility of B follows from (p,1)-module contractibility of A.

Proof. Suppose that X is a commutative Banach B-2-module and D : B — X is a (o, 7)-
module derivation. We turn X into a Banach A-2-bimodule via 6. It is immediate that
Dof: A — X is a (p,9)-module derivation. Now, from (¢, 1)-module contractibility of

A, there is x € X that D8 = ad(f’w). Thus, by density of range 6 we get D = adgf’T). |

Lemma 3.3. A is (p,v)-module contractible if and only if A/J is (@,1)-module con-
tractible.

Proof. Let A/J be (@,@/;)—module contractible. Suppose that X is a commutative Banach
A-A-module and D : A — X is a (g, ¢)-module derivation. Clearly, J- X = X - J = {0},
and thus X is a commutative Banach A/J-2-module by the same actions of 2 and

aoxr=a-x, zoa=x-a, a€cA.

Since D vanishes on J, it induces a map D from A/.J to X which is ((,))-module derivation.

Hence, there is £ € X such that D= adg'a’lzj). It is routine to check that D = adg(f’qz}). The
converse follows from Lemma 3.2 for the natural homomorphism 7 : A — A/J. O

Here, we give the concept of (¢, ¥)-module diagonal. It extends the notions of diagonal
and module diagonal for Banach algebras.

Definition 3.1. An element m € AQyA is called a (¢,v)-module diagonal for A if
pla) - m=m-P(a), @(m).pa)=yp(a), ¢(a) @(m)=1v(), (acA).

We note that (ida,id4)-module diagonal is exactly a module diagonal [3, 20]. More-
over, when 2 := C, everything reduces to the classical case [24].

Proposition 3.1. Suppose that ¢ and i have dense renges such that 2 = 1[)4,5. If A has a
(¢, ¥)-module diagonal, then it is (p,1)-module contractible.
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Proof. Assume that D : A/J — X is a (@, v)-module derivation, where X is a commutative
Banach A/J-2-module. Define

P:A®9A — X, a®b+I— D(@)-b), (a,becA).

Let m be a (¢, 1)-module diagonal for A. Then, m = 7, a, ® b, + J where (a,), and
(by)n are bounded sequences in A. Since p(A) and 1(A) are dense in A, ©(m) = Y07 anby,
is an identity for A/J and Y 7 p(a)a, @b, = > 0" a, @byip(a) for all a € A. Therefore,

> D(p(a)an) - Z D(@y) - %(bn)0%(@), (a€A).
n=1

We also may assume that X is (,4))-unital. Thus, D(&(m)) = D(>>° | apb,) = 0. Put

z =3 " 5(@,).D(b,). For each a € A, let (a;); be a sequence in A that ¢(a;) converges
to a. Then

D(@) = hmZD (@) anbn),

= hm Z az an)- (E) + D(m)&(a)]’

= 1lim&*(a;) -z +lim Z D(ay) - §(ba) 9 (@),

n=1

= lim @(a;) - + lim DY anby) -7 (a:) — limz - 03 (a;),
= @(lign ¢(a;)) & —x- Jf(hlm ¢(ai))
= @) -z ()

Hence, D = adgf’d;). Therefore, A/J is (¢, 1)-module contractible and (¢, )-module con-
tractibility of A follows from Lemma 3.3. ]

The upcoming outcome may be considered as a converse version of Proposition 3.1.
Proposition 3.2. Suppose that A/J and AQyA are commutative Banach A-modules, and
», ¥ €Homgy(A) such that one of the following is satisfied:

(i) ¢ and v have dense ranges, such that * = 1)@ or V2 = 3.
(i) o =1
Then, A has a (¢,¥)-module diagonal, whenever it is (p,¥)-module contractible.

Proof. Assume that (i)is valid. It follows from Proposition 2.1 and Lemma 3.3 that there
exists e € A such that € is an identity for A/J. Consider D(a) := ad®?) A — A®@gA.

e®e+J -
For all a € A, we have
&(D(p(a)) = @ (plp(a)) -e@e+T —e@e-P(p(a)) +9) = §*(a) - $(¢(a)),
and
&(D(W(a) =a(p(P(a) -e@e+I—e®e-p(d(a)) +9) = ¢(d(a)) — ¥ (a).
By assumptions, @(D(p(a))) = 0 or &(D(¢(a))) = 0. Hence, @(D(a)) = 0 for all a € A.

Thus, ad'%"), : A — AGgA is a (p,¥)-module derivation into ker@. Since AQgd is a

commutative Banach A-2-module, so is kerw. Therefore, there is n + J € kerw such that



The structure of (¢, 1)-module contractible Banach algebras 143

adggi)_j = adiﬁr’?). It is easy to verify that (e ® e —n) +J is a (p,1)-module diagonal for

A. Let (ii) holds and € be an identity for ¢(A/J). Then
w(pla) - e@e+I—e®e-pla)+I) =04,; (acA).

Similarly, (e ® e —n) +J is a (g, ¢)-module diagonal for A. O

The next example shows that the concept of (p, 10)-module contractibility for a Banach
algebra A is not equivalent to the existence of a (p,1)-module diagonal for it, whenever ¢
and v are arbitrary elements of Homgy (A).

Example 3.1. Let 2 and A be the Banach algebras of complex 2 x 2 matrices of the form

ac{[t 9] wcchoas{fs 9 woec)

Then, J = 0, A and A®gA are commutative Banach 2-modules. A is unital and finite-
dimensional. Therefore, it is contractible and so is module contractible by Corollary 2.1.
Define ¢, €Homgy (A) through

A )=l o (b )=l

It is clear that ¢ and ¥ are idempotents, but neither ¢ nor ¢ have dense ranges. From
Lemma 3.1, A is (p,1)-module contractible.

Now, if m = Y1 | ﬁ; ZO] ® [%Z u(ﬂ +Jis a (p,1)-module diagonal for A, then
~ - Ti;Uq 0 1 0 - TiUg 0
err = g(en) =@(m) - plen). = [ 0 Ziwi:| . {0 0] =2 { 0 0} '
i=1 i=1

and

n

e = vt =vten)-am = [0 3] 2[5 0] =200 L)

i=1 i
Thus, Y1, zu; = Y i ziw; = 1 and hence &(m) is the identity matrix. This implies that
)-m) = w(m-P(en)) = 0,

which is a contradiction. Therefore, there is no any (i, 1)-module diagonal for A.

e11 = p(enr) - w(m) = @(p(en

Here, we give the notion of (¢,%)-module biprojectivity as a generalization of the
earlier notions of biprojectivity and module biprojectivity [6] for Banach algebras.

Definition 3.2. A Banach A-module A is called (p,1))-module biprojective ithhere s an
2A-module morphism p : A/J — ARyA such that &p is the identity map on ¥(A/J) and
for all a,b € A,

p(a) - p(¢(b)) = p(¢(ab)) = p(&(a)) - H(b).

We note that if ¢ and v are the identity maps, then (id4, id 4 )-module biprojectivity
overlaps on module biprojectivity [6, 20]. Moreover, in the case where 2 := C, then id4-
module biprojectivity and biprojectivity coincide [10, 24].

Theorem 3.1. Let ARy A be a commutative Banach 2A-module. If there 1s e € A such
that € is an identity for ¢(A/J) UY(A/J) and ¢(€) = & = (€), then A is (v, ¥)-module
biprojective, if and only if A has a (¢, ¥)-module diagonal.
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Proof. Since A®gA is a commutative Banach 2-module, as in the proof of Lemma 3.3,
A®gA is a commutative Banach A/J- A-module. Let m € A®gA be a (p,1)-module
diagonal for A. For all a,b,c € A, we find

w(@o(b@c+7) =w(ab®c+I)=abc=a-0(b®c+]7).
Therefore, for all a € 1(A), we have ©(@om) = @ - @(m). Define p : A/J — ARgA via
p(@) =aom (a € A). Then, p satisfies the conditions of Definition 3.2. Consequently, A is

(¢, ¥)-module biprojective.
Conversely, let A be (¢, %)-module biprojective and p be as in Definition 3.2. Then

p(@(@)@(e)) = p(2(e)2(a))-
This implies that
p(a) - p(p(e)) = p(¢(€) - ¥(a), (a€A).
Now, it is routinely checked that m := p(é) is a (¢, )-module diagonal for A. O

Corollary 3.1. Let AQgA be a commutative Banach A-module and ¢, €¢Homgy (A). Sup-
pose that one of the following assumptions holds.

(i) ¢ and v have dense ranges.

(ii) ¢ = v is idempotent.
Then, A has a (p,)-module diagonal, if and only if A is (¢, )-module biprojective and
A/J has an identity for $(A/J) Up(A/T).

4. Applications to Semigroup algebras

Let S be an arbitrary semigroup and E be the set idempotents of S which it is a
commutative subsemigroup of S (see [15]).Then, I*(E) could be regarded as a subalgebra
of 11(S) and thereby [!(S) is a Banach algebra and a Banach ['(E)-module with proper
compatible actions. It is possible to consider arbitrary actions of I'(E) on [*(S) and prove
certain module amenability results. In the results of this section we do not restrict ourselves
to any particular action.

This following example shows that the class of (¢, )-module contractible Banach algebras
is large than the category of module contractible Banach algebras.

Example 4.1. Let S = (N, A) be the inverse semigroup of positive integers with the mini-
mum operation, A = [1(S) and 2 = ['(E). Then, A is a commutative Banach algebra that
is not unital, and hence A not contractible. Assume that the sequence {d, },,c is a bounded
approximate identity for A. Consider A is a commutative Banach 2-module under the ac-
tions defined by the algebra multiplication. Let ¢(f) = ;1 * f, for all f € A. Clearly, ¢ €
Homg (A) is C-linear and idempotent, but has not dense range. Let X be a commutative
Banach A-2-module and D be a (¢, ¢)-module derivation from A into X. Then
D(6,) = D(0p *6n),

= ¢@(0,) - D(6) + D(6n) - ¢(6n),

= 01 D(0yn) + D(6y) - 01,

= D(01 % 0p) + D(d,, * 1),

= 2D((51) (’I’LEN)
In particular, D(d;) = 2D(91) and hence D(d;) = 0. Thus, D(d,) = 0 for all n € N. Since
A=,

D(f) =limD(d, * f) =lUm D(6,) - f =0,

for all f € A. Tt follows that D is zero. Consequently, A is (¢, ¢)-module contractible. On
the other hand, A is not unital and so not module contractible [22].
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If 1'(S) is a commutative Banach I* (E)-module, then so is I*(S)&p gl* (S) and more-
over J = 0. Therefore, by Corollary 3.1, Proposition 3.2, Proposition 3.1, Corollary 2.1 and
Corollary 2.2, we get the following result.

Theorem 4.1. Let I'(S) be a commutative Banach I'(E)-module. If ¢, eHomy g (1*(S))
have dense ranges, then the following statements are true.
(i) If I*(E) is contractible, then I1(S) is (p,1)-contractible, if and only if it is (¢, 1)-
module contractible.
(i) If ¢ =1, then 1*(S) is (¢, )-module contractible, if and only if it has a (@, 1)-module
diagonal.
(iii) 11(S) has a (p,v)-module diagonal, if and only if it is unital and (@, )-module bipro-
jective.

Note that L!(G) is semisimple, when G is a locally compact group (Corollary 2.7.9 of
[19]). Thus, the following corollary extends the previously known results duo to Selivanov
[25] and Helemskii [14] (see also Theorem 3.3.32 of [10]).

Corollary 4.1. Let S be a semigroup with finitely many idempotents. If o €Homy (g (1*(S))
has dense range and I*(S) is a commutative Banach I*(E)-module, then the following state-

ments are equivalent:
() ( ) is semisimple and S is finite.
(S) is (o, p)-module contractible.
(111) ( ) has a (@, @)-module diagonal.
(iv) 11(S) is unital and (p,¢)-module biprojective.

Proof. It is obvious that F is an inverse semigroup and finite semilattice. Thus, I*(E) is
finite-dimensional amenable Banach algebra by Theorem 8 of [11], and so it is contractible.
Hence (ii), (iii) and (iv) are equivalent by Theorem 4.1. Furthermore, I1(S) is (¢, p)-module
contractible if and only if it is (¢, ¢)-contractible. Since ¢ has dense range, I*(S) is (¢, ¢)-
contractible if and only if it is contractible, and so (i) and (ii) are equivalent by Theorem
1.9.21 in [10]. O

This next example shows that condition of density of ¢(A) is necessary in Corollary
4.1 and this corollary is not valid for arbitrary ¢ in Homg (A).

Example 4.2. Let S = (Z,.) be the semigroup of integers with the common multiplication.
Then, S is a commutative, infinite semigroup, with idempotents E = {0,1}. Since F is a
commutative subsemigroup of S, A := [1(S) is a commutative Banach 2 := [1(E)-module
under the actions defined by the algebra multiplication. Let ¢(f) = f * dg, for all f € A.
Clearly, ¢ €Homgy(A) is C-linear that has not dense range. If X is a commutative Banach
A-2-module and D is a (¢, ¢)-module derivation from A into X, then

D(5,) = D(d1 *06n),
= ¢(61) - D(én) + D(61) - ¢(6n),
= o D(d,) + D(61) - do,
= D(dp * 6,) + D(61 * dp),
= 2D(do),

for all n € Z. In particular, D(dy) = 2D(dp), and thus D(dp) = 0. Hence, for all f =
>, @ndy in A we have

=D (Zan5n> =D (Zan51*5n> :Zanél -D(6

This means that D is zero. Therefore, A is (g, ¢)-module contractible while S is not finite.
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