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AN APPROXIMATION SCHEME FOR SOLVING QUASI-VARIATIONAL
INCLUSIONS AND QUASIMONOTONE VARIATIONAL INEQUALITIES

Youli Yu!, Kun Chen?, Li-Jun Zhu?

In this article, we discuss iterative schemes for solving quasi-variational inclu-
sions and quasimonotone variational inequalities in Hilbert spaces. An iterative scheme
is presented which consists of resolvent technique, extragradient-type algorithm and self-
adaptive linear search rule. Under several appropriate conditions, we prove the conver-
gence of the investigated scheme.
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1. Introduction

In this article, we are concerned with iterative schemes for the quasi-variational in-
clusion

Find a point s* € 27 such that 0 € U(s*) + G(s*), (1)
where D is a nonempty, convex and closed subset of a real Hilbert space H with inner
product (-,-) and norm || - || and U: D — H and G: H = 2% be two nonlinear operators.

The solution set of (1) is expressed by (U + G)~1(0).

A great variety of problems originating from natural science, engineering applica-
tions and management services can be converted to this kind of quasi-variational inclusion
problems, see, [18, 19]. Iterative algorithms for seeking s* € (U + G)~1(0) are studied in
([6, 19, 32, 54, 57]). These algorithms define a procedure through the following way

to € D, tni1 = ResC (t, — alU(t,)), n >0, (2)

where a > 0 is any constant and the operator Resg := (I + aU)~! is the resolvent of G.
This way is so-called the resolvent method.

Let F': D — H be a nonlinear operator. Now, we focus on the following variational
inequality

Find s* € D such that (F(s*),s —s*) >0, Vs € D, (3)

The prologue of variational inequality occurred in 1964 when Stampacchia ([24]) uti-
lized it as a technique for solving partial differential equations. As we know, variational
inequality theory has become a central concept in numerous problems such as optimization
([2, 7, 11, 14, 21, 30, 40, 42, 48, 56]), equilibrium problems ([33, 39, 54]), fixed point prob-
lems ([8, 20, 22, 2628, 31, 36, 38, 41]) and so on. Various numerical approaches have been
put forward for computing a solution of variational inequality. For some related valuable
methods and techniques, please refer to [1, 4, 17, 25, 34, 37, 43-46, 52, 53, 55].
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Now, we all know that finding a solution s* of (3) can be translated into solving a
fixed point problem, i.e.,

s* € VI(F,D) & s* = projp(s* — aF(s")), (4)

where VI(F, D) denotes the set of solution of (3), projp means the metric projection from
H onto D and « is a positive constant. Based on the equivalent relation (4), we can compute
a solution of (3) by utilizing the following projection algorithm ([16, 23, 35])

to € D,tpt1 = projo(t, — aF(t,)), ¥Yn > 0. (5)

In fact, if F is strongly monotone or inverse strongly monotone ([3]), we can guarantee that
projp (I — aF) is a contractive operator provided « € (0,1/v) with v being the Lipschitz
constant of F. In this sense, the projection algorithm (5) is a popular method that can be
easily implemented. In 1976, Korpelevich ([15]) designed an iterative algorithm below for
computing a solution of (3)

toeD,

Sp = projop (tn - aF(tn)>7 (6)
tnt1 = projop(t, — aF(s,)), n > 0.

This novel algorithm (6) named “extragradient algorithm” is remarkable because it can
be performed to compute a solution of pseudomonotone variational inequalities but the
projection algorithm (5) fails. As a matter of fact, the projection algorithm (5) may be
divergent if F' is pseudomonotone ([13, 29]). In this meaning, the extragradient algorithm
(6) is easier to perform and it has been extensively used and generalized, see, e.g., [5, 10,
12, 47, 50, 51, 58]. On the other hand, in order to ensure the convergence of the sequence
{tn}, an additional condition

VI(F,D) C DVI(F,D) (7)
was employed where DVI(F, D) is the solution set of the following variational inequality
Find s* € D such that (F(s),s —s*) >0, Vs € D. (8)

The variational inequality (8) is so-called the dual variational inequality of (3). From (8),
it is easy to see that DVI(F, D) is a closed convex set. It is known that if D is convex and
F is continuous, then DVI(F, D) C VI(F, D). Note that the assumption (7) holds when F
is pseudomonotone however it may not hold when F' is quasimonotone.

The aim of this article is to introduce an iterative procedure for solving the quasi-
variational inclusion problem (1) and the quasimonotone variational inequality (3) in Hilbert
spaces. Our procedure consists of resolvent technique, extragradient-type algorithm and self-
adaptive linear search rule. Under several appropriate conditions, we prove the convergence
of the investigated scheme.

2. Preliminaries

Let 3 be a real Hilbert space with inner product (-,-) and norm || - ||. In the sequel,
we use the symbols “ —” and “ — ” to indicate weak convergence and strong convergence,
respectively. Let G': 3 = 2% be a multi-valued operator with domain D(G) = {s* € 3 :
G(s*) # 0}. Set G71(0) := {s* € H : 0 € G(s*)}. G is said to be monotone if and only if
{(p—q,5s—1t) >0, V¥p,q € D(G) where s € G(p) and t € G(q). An operator G: I = 2% is
said to be maximal monotone ([19]) if and only if G is monotone and its graph is not strictly
contained in the graph of any other monotone operator.

For a maximal monotone operator G: H = 2% we can define its resolvent Resf :
H — D(G) by ResS := (I + aG)~! where a > 0 is any constant.

Next, we list several important conclusions on Resgz
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(c1): ResC is a single-valued operator.
(¢2): For any a > 0, G(0) = Fix(Res&) := {t € H : ResC (t) = t}.
(c3): ResC fulfils the following inequality, for all s,t € H,
[ResS (s) — ResS ()]|? < (ResS (s) — ResS (t),s — t).
(c4): For all a, 7 > 0, we have, for all s €
||Resg(s) — Resf(s)”2 < a-7 ; T <Resg(s) — Resf(s), Resg(s) —5).
Let D be a nonempty convex and closed subset of a real Hilbert space H. Let F': D — H
be a single-valued mapping. Recall that F' is said to be
(f1): M-inverse strongly monotone if (F(s) — F(t),s —t) > M| F(s) — F(t)|? for all s,t € D.
(f2): monotone if (F(s) — F(t),s —t) > 0 for all s,t € D.
(f3): pseudomonotone if (F'(s),t — s) > 0 implies that (F'(¢),t —s) > 0 for all s,t € D.
(f4): quasimonotone if (F(s),t — s) > 0 implies that (F(t),t — s) > 0 for all s,¢t € D.
Recall that an operator F': D — K is said to be v-Lipschitz continuous if |F(s) — F(¢)|| <
vl|s —t||, Vs,t € D, where v > 0 is a constant. If v = 1, F' is nonexpansive.
Let U : D — H be a Ainverse strongly monotone operator. For the composition
operator ResS (I — al) : D — D, we have the following conclusions:
(c5): Res o (I —aU) is an averaged operator provided a € (0,2)).
(c6): s* € (U+G)"1(0) & s* =ResS (I — al)(s*) for all o € (0,2)).
Let H be a Hilbert space and D C H be a closed convex set. A metric projection from H

onto D, denoted by projp satisfies, for z € H, ||z — projo (2)|| < ||Z2 —z||, VZ € D. It is well
known that projpn has the following characteristic inequality ([49])

z€H, (z—projp(z),2 — projn(z)) <0, VZ e D. (9)
In any Hilbert space H, we have the following equality
e+ (1= eyt |2 = llul? + (1 = &) uf |2 = (1 = ) Ju — o], (10)
Yu,u! € 3 and Vt € R.

Lemma 2.1 ([9]). Assume that H is a Hilbert space and D C H is a nonempty, convex
and closed set. Suppose that T is a nonerpansive self-mapping of D. For a given sequence
{tr} D, t, = z2€ D and t, — T(t,) — 0 imply that z € Fix(T).

3. Main results

In this section, we demonstrate an iterative algorithm and a relevant convergence
theorem for solving (1) and (3). Let D be a nonempty closed convex subset of a real Hilbert
space H. Assume that the following assumptions are fulfilled:

(al): G: H = 27C is a maximal monotone operator fulfilling D(G) C D.

(a2): U: D — H is a A-inverse strongly-monotone operator.

(a3): F is a quasimonotone operator on H and F' is v-Lipschitz on D.

(ad): If {t,} C H is a sequence satisfying ¢, — ¢! and lim,, , , [|F(¢,)|| = 0, then F(tf) = 0.
Set A := (U + G)~1(0) N DVI(F, D). Suppose that A # () and the set {p € D : F(p) =
0} \ DVI(F, D) is finite. Let 0,0 and k be three constants in (0,1). Let {v,} C (0,2),
{an} € (0,1) and {7} C (0,1) be three real number sequences satisfying 0 < lim,, , yn <
limp—e0tn < 2, 0 < lim, ., 7, < limy oo < land 0 < a < o, < @ < 2\ for all n > 0.

Now, we first present an iterative procedure for finding a point in A.

Algorithm 3.1. Select an initial guess to € D. Let n = 0.
Step 1. Assume that t,, is obtained. Compute

sn = (1 — 7o)ty + TaResS (I — a,U)ty, (11)



44 Youli Yu, Kun Chen, Li-Jun Zhu

and
Tn = pTOjD[Sn - ﬁQnF(Sn)]y (12)
where o, = max{1, 0, 0%, -} such that
Pon || F(1n) = F(sp)|| < (1= &)|rn — sull- (13)

Step 2. (i) If r, = sy, then set t,41 = s, and skip to step 1. (i) If v, # Sn, then
compute

tng1 = Projo (Sn — KYnGn), (14)
where
2
G = (lT” — S”) p (15)
[Pl ’
and

Set n:=n+ 1 and return to Step 1.

Proposition 3.1. There exists g, satisfying (13). Meanwhile, (I;Z)g < on < 1%”,

Proof. Since F' is v-Lipschitz, ||[F(r,) — F(tn)| < v||ra — tall- Then there exists g, such
that Yo,v|r, —ta|| < (1—&)|rn —t,|| which implies that o, < 1-%. By the definition of o,,
0n/0 does not satisfy (13), that is, J22v|r, —t, || > 9 || F(r,,) — ( 2l > X =g)||rn —tnll.

It follows that ( )g < On- Therefore a- ”)9 < op < 5 O
Proposition 3.2. (a) If r, = s,, then s, € VI(F, D). (b) If r, # sp, then p, # 0.

Proof. (a) If r,, = projp[s, — Y0 F(sn)] = sn, utilizing (9) we attain that (s, — [s, —
YonF(sn)],p — sn) > 0,Vp € D,, i.e., Y0, (F(8n),p — $n) > 0,Vp € D. By Proposition 3.1,
Fon > U VH) > 0. This together with the last inequality implies that s, € VI(F, D). (b)
Let ¢* € DVI(F, D). Since s, € D and 7, € D, from (8), we obtain that (F(s,), s, —¢*) >0
and (F(ry),r, —¢*) > 0. Thanks to (16), we gain
<pn; Sn — q*> = <5n —Tn+ ﬁQnF(Tn>7 Sn — q*>
= <5n —Tn — ﬁQnF(Sn)v Sn — q*> + 19@71<F(7"n)7 Sn — rn)
+ ﬁ@n<F(3n)75n - q*> + ﬁ@n<F( ) Tn — q*>

> (sn =10 = V0nF(sn); 80 — ) + Von(F(rn), sn = 1n) an
= (sp —Tn — ﬁgn(F(Sn) F(rn)), $n = Tn)
+ (80 =1 = V0nF(sn), 0 — q*>
= [lsn — 7'n”z — Uon(F(sn) = F(rn), 50 — Tn)
+ (sp —Tn — V0nF(8n),mn — ¢%).
Taking into account (13), we have
(F(5) = F(ra)s $n =) < [F(s0) = Fra) 130 = 1ol < - _: I = snll®. (18)
Since ¢* € D, from (12) and (9), we deduce
(80 — 1 — V0 F(8n),rn —q") > 0. (19)
According to (17)-(19), we acquire
(Pnysn = q%) 2 Klrn — 3n||2 (20)

If r,, # sy, then from (20) we get (pn, s, — ¢*) > 0 which results in that p, # 0. |
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In the sequel, we prove a convergence result.

Theorem 3.1. The sequence {t,} defined by Algorithm 3.1 converges weakly to a point in
(U +G)~Y0) N VI(F, D).
Proof. Let ¢* € A. Take into account of (14) and (15), we have

[tnsr = a1 = [Iprojop (sn — Kyngn) — projp(a*)|
< lsn = ¢" = Kl

= llsn — @[ = 2679 (@ 50 — @) + (570)*[ln |1? (21)
L e e

In view of (20) and (21), we receive
[tni1 = ¢ [1” < llsn — "> = £*(2 - %)%M (22)

[lpn ]I

By (c6), we obtain ¢* = Res$ (I — a,,U)(¢*),¥n > 0. Furthermore, Resgn (I —ayU) is

n

nonexpansive. By (10) and (11), we have
lsn = ¢* 1 = (1 = 70)(tn — ¢") + Ta(Resg, (I = anU)tn — ¢*)|?
= (1= 7)ltn = ¢*[1* = 70 (1 = 70) | tn — Resgﬂ (I = anU)tnll?
+ Tn||Res§n (I —a,U)t, — Resg” (I —a,U)g*|?

. . (23)
< (I =7)llth — ¢ H2 + Tulltn —q H2
—Tn(1 = 1) |tn — ResaGn (I — a,U)t,|?
= |ltn — ¢ |I* = 7n(1 = 7) ||tn — ResaGn (I — a,, U)t,|*
Combining (22) and (23), we get
ltns1 — q*HQ < ltn — q*”Q — T (1 — Tp)[tn — Resgﬂ (I - O‘nU)thZ
7 — $n|4 (24)

SR P
n

By (24), we have ||t,+1 —¢*|| < ||tn — ¢*|| which leads to that lim,,_, ||t, — ¢*|| exists. Thus,
we have the following results:

(b1): the sequence {¢,} is bounded and so is {F(t,)} due to the Lipschitz continuity of F.
(b2): the sequence {s,} is bounded by (23) and so is {F(s,)}.
(b3): the sequence {r,} is bounded because of ||r, || < ||sn|| +Jon||F(sn)] and so is {F(r,)}
(b4): the sequence {p,} is bounded by (16).
Further, by (24), we deduce
(1= )t — ResS (T — Yt 4 22 — )y I =201
2wl (25)

< ltn = ¢*I” = lltnsa — a"[I* = 0.
By the assumptions, we have lim, , 7,(1 —7,) > 0 and lim, , (2 — v,)v» > 0. This
together with (25) implies that

nh_>rr;o||tn Res, (I —a,U)t,|| =0 (26)

and

2
lim llrn = sal® _ 0. (27)
oo [F2l



46 Youli Yu, Kun Chen, Li-Jun Zhu

Let 71 > 0 be any constant. Then, we have
IResS (I — a,U)t,, — ResSi (I — 71Ut
< HResg” (I — a,U)t,, — ResC (I — a,, Uty |

+ |ResC (I — a, Uty — ResC, (I — 71U, (28)
< |ResS (I — anU)ty — ResS (I — i H)tyl| + e — 71U () ])-
Using (c4), we attain
IResS (I — Uty — ResS (I — a,U)t,||?
< Lﬁ(Resgn (I — a,U)t, — ResS (I — a,U)t,,
ResS (I — anU)tn — (I — anU)ty)
< |OénT;TT”HResgn (I — a,U)t,, — ResC (I — a, U)t, ||
x |Res§ (I — Uty — (I — aU)ty]],
which results in that
IResS (I — anU)ty, — Res (I — a,, U )ty ||
< M"T%THHR%S” (I = anU)tn — (I = anU)ty||. .
Based on (28) and (29), we receive
[ResS (I — Uty — ResSi (I — 71Ut || < |an — 71U (tn) ||
o (30)

_
+ niTT‘HResgn (I — aU)tn — (I — anU)ty |-
-

Since U is M-inverse strongly-monotone, U is 1/A-Lipschitz continuous. By the boundedness
of {t,,}, we deduce {U(%,)} is bounded. Hence, {Resgn (I —a,U)t,} is bounded.

Next, we show that w,,(t,) C A. First, we prove wy(t,) C (U + G)~(0). Pick up
any tt € wy,(t,).

Since {t,} and {a,} are bounded, there exists a common subsequence {n;} C {n}
fulfilling ¢,, — t' € D and a,,, — af € (0,2)) as i — oc.

Selecting 71 = af, from (30), we obtain

”Resgni (I = an, Uy, — RGSST (I - O‘TU)th <o, — aTmU(tm)H

i

|0‘m

—af G
+ T ResS, (= @, Ut — (I = €, Ut || = 0.

This together with (26) implies that
lim ||t,, — ResC: (I — afU)t,, | = 0. (31)
11— 00
Now, we have the facts that t,, — t' € D and Res&; (I — a!U) is nonexpansive. Applying
Lemma 2.1 to (31), we derive that t € Fix(ResS; (I — afU)) = (U 4+ G)~'(0). Hence,

Wy (tn) C (U 4+ G)71(0). Next, we show t' € VI(F, D). According to (11), we get s, — t,, =
Tn(Resgn (I — a,U)t, —t,). Then, by (26), we have

nh_)rr;o ltn — snl| = 0. (32)
With the help of (14) and (15), we have

[rn — SnH2

W = Snll” -~ (33)
[[2n]]

||tn+1 - an = ”p'r'OjD(sn - K?'ann) - pmjD(sn)H < K'YnHQnH < K
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It follows from (27) and (33) that lim,_,c ||Sn — tnt1|| = 0. Hence, from (32), we receive

T [y — ta]) = 0. (34)
By the boundeduness of p,, = t,, — r, + 90, F(ry,), thanks to (27), we attain
Tim [, — 5| =0 (35)

which together with the Lipschitz continuity of F' results in that
lim [[F(rn) = F(sn)|| = 0. (36)
By (9) and (11), we have
(8 — Vo F(sp) — rn,z2 — 1) <0, Vz € D.

Thus,
1
<F(5n)7 z— 8n> Z %<Sn —Tny,? — 7‘n> + <F(3n)7rn - 5n>7 VZ S D (37)
Observing that {s,,}, {rn,} and {F(s,,)} are bounded, from (35) and (37), we acquire
himi—>+oo<F(5m)v e 5n1> > 0’ VzeD. (38)

Next, we divide two cases to prove that t' € VI(F,D): (a) lim, ,, [[F(sn,)|| = 0 and (b)
lim; ;oo [[F'(sn,)l[ > 0.
For Case (a), since t,, — tf, from (32), we have s,, — tf. This together with
condition (a4) implies that F(t) = 0.
Now, we study Case (b). We can find an integer k£ > 0 such that ||F'(sp,)| > 0 for all
i > k. In terms of (38), we assert
himz—>+oo<F(sn7)/”F(sm)HaZ - S"Li> > Oa vz eD. (39)

Let {B;} be a positive real number sequence satisfying ;11 < 8; and §; — 0 as j — +o0.
With the help of (39), there is {n;,} C {n;} fulfilling n;;, > k,Vj > 0 and

Vz €D, (F(sn, )/ 1F (s 2 = 8, ) + B > 0, ¥ 20,
which indicates that

V€D, (F(su,,)2 — su,,) + B[ F(su, Il > 0, ¥ > 0. (40)

Set f3; = }*ﬂ(snj)/||F(an)H2 for all j > 0 which implies that (F(sn,, ), 3;) =1 for all j > 0.
Thanks to (40), we obtain

Vz €D, (F(su, ), BilIF (s, )| + 2 — 0, ) > 0, Vj > 0. (41)
Based on (41) and the quasimonotonicity of F', we assert
Vz € D, (F(z+ BB, F(sn, ) BiBill F (s ) 42 =50, ) 20, ¥j > 0. (42)

Notice that lim;_, /BJHBJHHF(SnJ)H = limj 4 B; = 0. Using the Lipschitz continuity
of F, we have F(z + BJBJHF(SHJ)H) — F(z) as j — 4oo. Letting j — 400 in (42), we
deduce (F(z),z —tt) > 0, ¥z € D, which implies that ¢! € DVI(F, D). According to Case
(a) and Case (b), we conclude that wy,(t,) C ({ € D : F(z) = 0} UDVI(F, D)) C VI(F, D).
Therefore, wy,(t,) C (U + G)~1(0) N VI(F, D).

Next, we prove {t,} has at most one weak cluster point in DVI(F,D). Assume ¢
and # are two weak cluster points of {t,,} in DVI(F, D). Then, there are {t,.} C {t,} and
{tn,} C {t,} satisfying t,,, = #(i — 00) and t,,, — £(j — 00). It is obviously that

2tn, T — &) = l[tn — 1> = lItw — &> + 21> = [£?, ¥n >0,
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which results in that lim,, o (t,,t — ) exists. Therefore,

lim (o, f—#) = lim (t,,,i— ) (43)

i——400 Jj—r+oo
Taking into account ¢,, — £ and t,, — £, by (44), we receive
{t,t—1t) = (t,t—1)
which yields that £ = . So, {t,} has no more than one weak cluster point in DVI(F, D).
Since the set {x € D : F(z) = 0} \ DVI(F, D) is finite, we conclude that {¢,} has only finite

weak cluster points in (U + G)~1(0) N VI(F, D). Suppose that ¢ ¢(2) ... (") are weak
cluster points of {t,} in (U + G)~1(0) N VI(F, D). Set I ={1,2,--- ,m} and

d=min{|[t" —)||/3,r,5 € I,r # s}. (44)
For t(,r € I, there is {t! } C {t,} satisfying ¢, — ¢(") as i — +oco. Then,

) . () — ¢(9) ; () _ ¢(s)
iilinoo“”i’m = (¢ >,m>, Vs e I. (45)
Note that
¢ — () [#) =) — )2
e = 27— ] .
—d4 [#) = [ Vs £
2[t™) — g

Combining (45) and (46), there is a positive integer N7 > 0 fulfilling for all ¢ > N7,

) ) O — )2
et (f,—— Y >a+ L T b ge], . 47
e { =) 2 — 1] } selsr 47
Write
mp ) ) 1O — )2
o, — Pog, Tty g 7 L 48
_(L{ e o)) > e = } (48)

Combining (47) with (48), we deduce that ¢, € ©, for all i > max{Nj,r € I}.
Next we show that ¢, € [JI", ©, for large enough n. Suppose that there is {t,,} C
{tn} verifying t,, ¢ |-, ©,. According to the boundedness of {t,, }, there exists a subse-
quence of {t,,}, without loss of generality, still denoted by {#,,}, which converges weakly
to 0. Hence t,,, ¢ ©, for any r € I. Then, there is a subsequence {t,, } of {t,,} such that
Vs > 0, '
oo gt O [l e
tn”¢{t<t7”t(7)—t(‘s)| >d+2||t(7)—t(‘5)|}’861,87éT (49)
So,

) 4 O] — )2
PR C RN T SN U L | Lot N Gy
”¢{ o)~ T e = } sET

which results in that o # ¢(") (Vr € I). It is impossible. Thus, there is an integer N; large
enough such that t,, € U:,nzl O, for all n > Nj.

Finally, we demonstrate that {t,,} has the unique weak cluster point in (U+G)~1(0)N
VI(F, D). Assume that m > 2. From (34), there exists a positive integer N2 > N such that
[tn+1 —tn|| < d for all n > Ny. Then, there exists p > N5 such that t, € ©, and tp;1 € O,
where r, s € I and m > 2, that is,

L P €O = 1))
neo= (1 =) > 4+ oty g
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and

m 0 €92 — )2
t1 €0, = PR LA S S L | | L |
. N &b o) > 4+ e

r=1,r#s

Thus, we have

t(r) — () 12 — [|¢(9)])2
b g > 4+ Ve i (50)
and
$(s) — () ()12 — ()12
<tp+17m > +||2||t(|3)—||t(r)|||. (51)
Thanks to (50) and (51), we acquire
() — 4(s)
(tp — tpt1, m) > 2d. (52)
Note that
Htp+1 - tp” <d. (53)
By virtue of (52) and (53), we receive
t(r) — 4(s)

2d < (tp — tps1, m> < ltp = tpsall < d.

It leads to a contradiction. Thus, {t,} has a unique weak cluster point in (U + G)~1(0) N
VI(F, D). Therefore, {t,} converges weakly to a point in (U + G)~1(0) N VI(F, D). O

4. Concluding remarks

In this paper, we investigate iterative schemes for finding a common solution of quasi-
variational inclusion (1) and quasimonotone variational inequality (3) in a Hilbert space
H. We present an iterative scheme {t,} generated by Algorithm 3.1 which consists of
resolvent operator step (11), extragradient step (12)-(14) and self-adaptive search step (13).
Under several appropriate conditions, we show that the proposed scheme {t,} defined by
Algorithm 3.1 converges weakly to some common solution of quasi-variational inclusion (1)
and quasimonotone variational inequality (3).
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