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A MODERN METHODOLOGY OF DESIGN OF THREE-
DIMENSIONAL STRUCTURES BY A GENETIC
ALGORITHMS APPROACH
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The computer aided design is realized today by the significant development
of computational tools. These computer codes are often intended for advanced
design phase of projects. However, there is to our knowledge very few design
support tools in preliminary design phase. Indeed, in the life cycle of a construction
project, the design phase is often the place of conflicting situations that prevent the
overall optimization of the said projects production costs. During this phase,
various technical treatments should be held to verify the feasibility of the works in
relation to the structural constraints, neighborhood, implementation, etc. In this
work, we propose a formulation of the optimization problem of the overall design of
a simple metallic structure and a methodology of resolution based on the approach
of Genetic Algorithms. The aim is to minimize the overall execution cost.

Keywords: Multidisciplinary optimization, numerical programming, computer
aided design, genetic algorithms, optimal design.

1. Introduction

The traditional approach to optimization of metallic structures is based on
the minimization of the structure weight. However, the assemblies rarely exceed
5% of total weight of a frame. This low percentage actually hides in reality a high
cost which can reach 30% of the total manufacturing cost of a structure [1].
Indeed, the cost of a frame is mainly constituted by the labor cost which
essentially depends on the complexity of the assemblies. An optimized structure
definition, made only on the unique weight criterion may therefore lead to
structural arrangements far from optimal in terms of realization cost.

On the other hand, the modeling of assemblies can affect, significantly, the
distribution of internal forces in the structure and also the forces to resume in the
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foundations. That is why Eurocode 3 [2] now allows the use and justification of
semi-rigid connections.

Naturally, the aim is to approach as much as possible, the actual behavior of
connections. Taking into account the behavior of nodes in the overall analysis is
an innovative and promising aspect.

The economic benefits of this approach were the subject of various benchmarking
[3]. Its implementation is greatly facilitated by appropriate analysis software
already available on the market [4] and various aids to calculation and to
characterizing the nodes [5].

For this we have developed an optimization methodology based on minimizing
the total cost of realization of the structure. This cost includes material costs,
manufacturing and assembly of the metallic superstructure thus as the material
costs and realization of foundation systems. This global optimization approach
based on the application of Genetic Algorithms, takes into account, in addition,
the dimensional characteristics of the elements, the nature of supports and the
design of connections.

2. The optimization methods

There are many methods for solving an optimization problem. These
methods can be divided into two groups:

-the so-called deterministic methods,

-the stochastic methods or called non-deterministic.
The deterministic methods, such as the gradient, are favourable to a local
optimum search but do not allow to leave the wells to find the global optimum.
The non-deterministic methods, such as Monte Carlo, can avoid convergence to a
local optimum. Therefore, the genetic algorithms (GA) offer many advantages
over conventional optimization methods

3. Overview of an optimization problem with genetic algorithm
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Fig. 1. Presentation of a flowchart-based on genetic Algorithms



A modern methodology of design of 3D structures by a genetic algorithms approach 79

A such algorithm requires no knowledge of the problem: we can represent
it as a black box with inputs (variables) and outputs (the objective functions). The
algorithm only manipulates entries, reads out, again manipulates the inputs so as
to improve the outputs, etc. [6].

Three types of evolutionary algorithms have been developed separately
and almost at the same time by different scientists: Evolutionary programming
[7], the evolutionary strategies [8] and Genetic Algorithms [9].

4. Operating principle of a genetic algorithm
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Fig. 2. Operating principle of genetic algorithms
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We start by generating a random population of individuals. To pass from
one generation k to generation k+1, the following three operations are repeated for
all elements of the population k.

v Couples of parents P1 and P2 are selected according to their

adaptations. The crossover operator is applied to them with a probability p.
(usually around 0.6) and generates couples of children C1 and C2.
Other elements P are selected according to their adaptation. The mutation operator
is applied to them with the probability pm, (pm is generally between 1% -1 %0) and
generates mutated individuals P'. Children (C1, C2) and mutated individuals P'
are then evaluated before insertion into this new population, the case where
children and mutated individuals replace the parents. Different stopping criteria of
the algorithm can be chosen.

v The number of generations that it is desired to execute can be fixed
a priori. This is what we are attempted to do when we have to find a solution in a
limited time.

v' The algorithm can be stopped when the population does not evolve
or does not evolve fast enough.

Now, the different operators introduced above will be studied in detail in the
following section:
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4.1. The coding
There are three main types of usable coding, and you can switch from one
to another easily.
v’ The binary encoding: this is the most used. The simplest decoding
function that allows the transformation of a bit string to an integer x is given by:
x =X b 2"t 1)
Thus the chromosome A = {1; 0; 1; 1} is the binary modeling of integer number
1x23+0%x22+1x2'+1x2°=11
v The actual encoding: is particularly useful where one seeks the
maximum of a real function. The actual encodings are now widely used,
especially in the fields of application for the continuous variable problems
optimization.
v The Gray encoding: where the binary encoding begins to show its
limits, this disadvantage can be avoided by using a "Gray coding".
4.2. The selection operator
The selection plays a very important role in genetic algorithms: firstly, to
direct research towards the best individuals and secondly, to maintain the diversity
of individuals in the population.
Several forms of selection are possible, the best known are [10]:
-The linear selection compared to the rank; the uniform selection with respect to
the rank; the selection by the elitist method (or proportional selection); the
selection by the elitist method (or proportional selection); the selection by
tournament and the selection by the method of biased lottery.
4.3. The crossover operator
This operator is applied after applying the selection operator upon the
population P; it finds itself with a population P* of n/2 individuals and one has to
double that number so that our next generation is full.
So we will randomly created n/4 couples and we will authorized them "to recur".
The chromosomes (sets of parameters) of parents are then copied and recombined
to form two offsprings with characteristics issued from both parents.

Table 1
Crossover with a crossover point
2 Parents 2 Children
[A[BJC[D]E] [A[BIH[T]J]
ﬁ
[FlelH[ 1] ] [Flc[c[D]E]

4.4. The mutation operator
This operator has many advantages:
v' It guarantees the diversity of the population, which is essential for
the genetic algorithms.



A modern methodology of design of 3D structures by a genetic algorithms approach 81

v" It allows to limit the risks of a premature convergence caused for
example by a elitist selection method requiring too much selective pressure at the
population.

v It allows to reach the ergodicity property which is a property
ensuring that each point of the search space can be reached. Due to this property,
it is possible to reach the global optimum. This operator consists to change allelic
value of a gene with a very low probability pnm, usually between 0.01 and 0.001.

Table 2
Example of a mutation
L Al B [ H [ D[ E |
Mutation §
LFEl e c ] v [ 3 |

4.5. The replacement operator

This operator is the simplest, his job consists to reintroduce the offspring
obtained by successive application of the selection operators, crossover and
mutation (population P*) in the population of their parents (P population).

4.6. Comprehensive approach: Example illustrating the

implementation of all previous operators

This example first allows to understand easily the formalism of genetic
algorithms but also to give an idea about the manner of their programming.
This example is due to Goldberg [11]. It is to find the maximum of the function
f (x) = x on the interval [0, 31] where x is a natural number. There is 32 possible
values for x: Therefore we choose a discrete coding of 5 bits: for example, one
thus obtains the sequence 0, 1, 1, 0,1 for 13, the sequence 1, 1, 0, 0,1 for 25, etc.
First, we initialize randomly the population and we fix its size to 4 individuals.
We simply define the fitness as being the value of x, since we seek the maximum
value throughout the interval [0, 31]. A higher value of x implies higher precision
in finding the maximum of the identity function.
If, by definition, the "fitness" is "the value of x" as one can deduce from the
previous sentence, then it is evident that increasing x is equivalent with increasing

the fitness.
Table 3
The initial population

Individuals | Sequence | Fitness | % of total
1 01011 11 18.6
2 10011 19 32.2
3 00101 5 8.5
4 11000 24 40.7
Total 59 100

Secondly, we choose for example a selection by the method of biased lottery.
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We rotate the wheel successively four times, typically we rotate n/2 times where n
represents the individuals number, so 2 times in this case, but the number 2 is too
small, we decide to turn it 4 times. We then obtain the new population:

Table 4
Individuals selected by the biased lottery method
Individuals Sequence
1 11000
2 00101
3 11000
4 01011

Thirdly, the crossover operator is applied using a single point crossover. Normally
each couple gives 2 children that are added to our new population P' passing from
n/2 individuals to n individuals, but as, in the case of our example we have
already reached our n individuals, the 2 children of the couple will then replace
their parents. So two couples are formed randomly:

» Couple 1: the individual 2 with the individual 4.

» Couple 2: the individual 1 with the individual 4.

The crossover points are also randomly drawn. We get the following result:

Table 5
Results of application of the crossover operator with a single point
Parents Children
03]101 01011
01j011 00101
10j00 01011
010111 11000

We apply the mutation operator which randomly chooses whether to make a
mutation and on which locus to do.

Table 6
Results of application of the mutation operator on individuals generated by crossing
Chromosome before mutation | Chromosome after mutation
01011 11011
00101 00101
01011 01111
11000 11000

Fourthly, then we apply the replacement operator who decides to replace 100% of
the population P, the population P is entirely replaced by P* and its size remains
fixed.

Table 7

The new population after application of various operators
Individuals | Sequence | Fitness | % of total

1 11011 27 38
2 00101 5 7

3 01111 15 211
4 11000 24 33.8

Total 71 100
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In one iteration, the maximum is increased from 24 to 27, and overall fitness of
the population has relatively increased from 59 to 71. We stop here for this
example but in reality, we will continue to produce successive generations until
obtaining the global maximum: 31

5. lllustrated examples: Application of genetic algorithms to steel
structures

Viewport: 1 ODB: /users/dea24/structure _1/sortie.odb

S5, Mis=s
Radius = 1.000000, angle = -907000004d
lAve. Crit.: 75%)
+2.380=+02 \\\kgi
+2. 18 3=+02
+1.986=+02
+1.78%9=+02
+1.592=+02
+1.395=+02
+1.199=+02 —
+1.002=+02
+5.051le+01
+6.082=+01

+4.114=+01
+2.148=+01
+1.781l=+00

)\ CDE: sortis=s.odk ABAQUS/Standard/G.Bl Mo Jul 20 15:42:41 BST 2015

Step: Step-1

Incremsnt 1l: Step Tims = 1. 020

FPrimary Var: 5, Mises

Lt o mad S I Ll mation Sl 0Tt nd v Y Slo=d o0

Fig. 3. Structure 3D with circular sections

To show the interest of the suggested methodology and validate our

results, the structure has been analysed using two different approaches:

v" The first is the Monte-Carlo optimization

v' The second is the optimization by the genetic algorithms which is the object

of our study and which involves the tools that we have developed ourselves.

Common assumptions to both approaches
-The connections between elements (n = 4) are perfectly embedded (so rigid)
-We adopt two classes of bars for the steel structure (S1 for columns section and
S2 for beams section) and two parameters for slabs of foundations (L1 for length
and L2 for width).
- The yield strength of steel is o, = 235 MPa.

- The allowable differential settlement is equal to 0.1mm
- The foundation depth is fixed to 2m.
-The financial envelope reserved to this project is: 2.0 e® €

Notations regarding the Monte-Carlo table
- Local gap: represents the Monte Carlo accuracy
- Min gap: is the best gap of the Euclidean norm at the current iteration i of MC
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- Current gap: is the min gap of the previous iteration. If this is the first iteration,
its value is predefined in the source code and is equal to 10 (that is the largest gap

known at present for the Monte Carlo algorithm).

-nit: represents the number of Monte-Carlo iterations
-Resumpt: represents the number of Monte Carlo resumption
The results obtained by the Monte Carlo method are presented in the following

table:
Table 8
The Monte-Carlo optimization
o
n -2
- =2
£ g < - -
=1 S 3
== < =
o
Par_nomgene.inp S1=350 S1=350 S1=461.00 S1=459.48
(mm?and (mm) $2=300 $2=300 $2=199.44 $2=208.05
With embedded Length =1000 Length =758.2 Length =747.4
supports Width =500 Width =363.3 Width =270.2
Parameters
variation (%) 50 50 50
O, =230.378 O, =233.491 O, =233516
Response values | G = 268.865 0, =138638 O, =144.19 O, =136.624
(MPa) O, =176.253 gap_max=-28617.2 gap _max=-27250.5 gap _max=-25147.4
diff _settl =4.22¢™ diff _settl =3.91¢™™ diff _settl =4,.39¢™
cost=1173.68 cost=1051.74 cost=846.21
Optimised S1=461.00 S1=459.48 S1=464.64
parameters $2=199.44 $2=208.05 $2=181.96
(mm?) and (mm) Length=758.2 Length=747.4 Length=742.5
Width=363.3 Width =270.2 Width =352.4
Min gap 2510.4 2491.2 2428.8
Current gap 10* 2510.4 2491.2
Local gap 0.001 0.001 0.001
nit+Resumpt MC 1 1 1

Notations regarding the genetic algorithms method

The problem of the overall design of steel structures may, in our opinion, be
globally posed as an optimization problem for minimizing the objective function
or the criterion of the overall cost (CG) of the structure in accordance with the
conditions or constraints of Eurocode .
The (CG) is a function of a number of variables such as the three variables: I, X,
and X, that will be explained explicitly in the following sections.
Thus, we can implicitly formulate the optimization problem as follows:

Min CG (I, X4, X,) (2)
where:
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CG: represents the overall production cost of the structure; I: vector of
dimensional characteristics of bars; X,: vector of the supports nature; X,: vector
of the nodes nature.
The overall cost (CG) of a metallic construction (superstructure and foundations)
can be written:

(CG) = (CS) + (CF) 3)
with:
(CS): Cost of steel superstructure; (CF): Cost of reinforced concrete foundations.
The cost (CS) is itself composed of the following costs:

(CS) = (Mat) + (Fab) + (Mon) 4)
with:
(Mat): Materials cost of profiles and assemblies; (Fab): Manufacturing cost;
(Mon): Assembly cost of different elements on site.
The cost (CF) consists of two following basic units:

(CF) = (Ter) + (B.F) ®)
with:
(Ter): represents the excavations cost; (P,F): Production cost of foundations.
Exploitation of results:
- Concerning the Monte Carlo approach
It should be noted that each Monte Carlo iteration requires 3* = 81 draws (so 243
calculations for this structure).
The results exploitation of the Monte Carlo optimization shows that the optimal
solution is the one that corresponds to the minimum of min-gap (here equal to
2428.8). Therefore, the solution is the vector (S1 = 464.64, S2 = 181.96, Length =
742.5, width = 352.4). The local gap is not being reached, it is therefore a local
optimum. However, this solution corresponds to minimum cost (here equal to
846.21€).
- Concerning the genetic algorithms approach
It is notoriously known that the Genetic Algorithms often use vectors and matrices
to modelise engineering problems. The choice of the most appropriate
programming language is obviously MATLAB.
Therefore, our application example was implemented with MATLAB and
interfaced to calculation code based on finite elements ABAQUS. By following
scrupulously the steps of paragraph 4.6 above and applying the values 0.6 and
0.006 respectively for the probabilities of crossover and mutation, the best
solution vector found by genetic algorithms method after 27 iterations is:

V=(373.57, 146.30, 596.97, 283.33) which corresponds to 680.35 €.

5. Conclusions

The analysis of the two approaches provides the following synthesis table:
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Table 9
Comparison of two approaches
TOTAL
STRUCTURE FOUNDATIONS COST
Section | Section .
Columns | Beams Lenght | Width Depth (euros)

(mmz) (mmz) (mm) (mm) (mm)

Monte-Carlo | ye1 64 | 18106 | 7425 | 3524 | 2000.00 846.21
Approach
Genetic algorithms| 373 57 | 14530 | 596.97 | 28333 | 2000.00 680.35
Approach

The contribution of genetic algorithms methodology can be represented by

the relative ratio of costs produced by each of two approaches.
R = %—2?0.35 =0,196 or approximately a gain of 20%
It therefore appears that this new approach is very promising and should be

further refined by a number of measures before the validation of the results.
Indeed, for the sake of objectivity, the order of the gain magnitude of recognized
cost for this sample cannot be generalized for the simple reason that our tool is in
its first release and it therefore incorporates not all optimization constraints of the
Eurocode in terms of resistance calculation, stability and dimensioning of
constructions.

In final version, an extensive program of numerical simulations on various
conceptions can allow to elaborate "design rules” that lead, in early phase, the
designers towards optimized total solutions.
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