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A MODERN METHODOLOGY OF DESIGN OF THREE-
DIMENSIONAL STRUCTURES BY A GENETIC 

ALGORITHMS APPROACH 
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The computer aided design is realized today by the significant development 
of computational tools. These computer codes are often intended for advanced 
design phase of projects. However, there is to our knowledge very few design 
support tools in preliminary design phase. Indeed, in the life cycle of a construction 
project, the design phase is often the place of conflicting situations that prevent the 
overall optimization of the said projects production costs. During this phase, 
various technical treatments should be held to verify the feasibility of the works in 
relation to the structural constraints, neighborhood, implementation, etc. In this 
work, we propose a formulation of the optimization problem of the overall design of 
a simple metallic structure and a methodology of resolution based on the approach 
of Genetic Algorithms. The aim is to minimize the overall execution cost.  

Keywords: Multidisciplinary optimization, numerical programming, computer  
                   aided design, genetic algorithms, optimal design. 

1. Introduction 

The traditional approach to optimization of metallic structures is based on 
the minimization of the structure weight. However, the assemblies rarely exceed 
5% of total weight of a frame. This low percentage actually hides in reality a high 
cost which can reach 30% of the total manufacturing cost of a structure [1]. 
Indeed, the cost of a frame is mainly constituted by the labor cost which 
essentially depends on the complexity of the assemblies. An optimized structure 
definition, made only on the unique weight criterion may therefore lead to 
structural arrangements far from optimal in terms of realization cost. 
On the other hand, the modeling of assemblies can affect, significantly, the 
distribution of internal forces in the structure and also the forces to resume in the 
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foundations. That is why Eurocode 3 [2] now allows the use and justification of 
semi-rigid connections. 
Naturally, the aim is to approach as much as possible, the actual behavior of 
connections. Taking into account the behavior of nodes in the overall analysis is 
an innovative and promising aspect. 
The economic benefits of this approach were the subject of various benchmarking 
[3]. Its implementation is greatly facilitated by appropriate analysis software 
already available on the market [4] and various aids to calculation and to 
characterizing the nodes [5]. 
For this we have developed an optimization methodology based on minimizing 
the total cost of realization of the structure. This cost includes material costs, 
manufacturing and assembly of the metallic superstructure thus as the material 
costs and realization of foundation systems. This global optimization approach 
based on the application of Genetic Algorithms, takes into account, in addition, 
the dimensional characteristics of the elements, the nature of supports and the 
design of connections. 

2. The optimization methods 

There are many methods for solving an optimization problem. These 
methods can be divided into two groups: 

-the so-called deterministic methods, 
-the stochastic methods or called non-deterministic. 

The deterministic methods, such as the gradient, are favourable to a local 
optimum search but do not allow to leave the wells to find the global optimum. 
The non-deterministic methods, such as Monte Carlo, can avoid convergence to a 
local optimum. Therefore, the genetic algorithms (GA) offer many advantages 
over conventional optimization methods 

3. Overview of an optimization problem with genetic algorithm 

 Initial population 
  
 Evaluation 
  
 Selection 
  
 Operators(crossover, mutation) 

No  
 check the stop criterion 
             Yes 
 Results 

 
Fig. 1. Presentation of a flowchart-based on genetic Algorithms 
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A such algorithm requires no knowledge of the problem: we can represent 
it as a black box with inputs (variables) and outputs (the objective functions). The 
algorithm only manipulates entries, reads out, again manipulates the inputs so as 
to improve the outputs, etc. [6].  

Three types of evolutionary algorithms have been developed separately 
and almost at the same time by different scientists: Evolutionary programming 
[7], the evolutionary strategies [8] and Genetic Algorithms [9]. 

4. Operating principle of a genetic algorithm 

 Population of individuals 
Generation K          

Evaluation 
Reproduction 

 

 P1 P2   P     
 
 
 
 

 

Generation (K+1) C1 C2   P’     
Fig. 2. Operating principle of genetic algorithms 

 
We start by generating a random population of individuals. To pass from 

one generation k to generation k+1, the following three operations are repeated for 
all elements of the population k. 

 Couples of parents P1 and P2 are selected according to their 
adaptations. The crossover operator is applied to them with a probability pc 
(usually around 0.6) and generates couples of children C1 and C2. 
Other elements P are selected according to their adaptation. The mutation operator 
is applied to them with the probability pm (pm is generally between 1% -1 %0) and 
generates mutated individuals P'. Children (C1, C2) and mutated individuals P' 
are then evaluated before insertion into this new population, the case where 
children and mutated individuals replace the parents. Different stopping criteria of 
the algorithm can be chosen. 

 The number of generations that it is desired to execute can be fixed 
a priori. This is what we are attempted to do when we have to find a solution in a 
limited time. 

 The algorithm can be stopped when the population does not evolve 
or does not evolve fast enough. 
Now, the different operators introduced above will be studied in detail in the 
following section: 

Crossover Mutation Crossover
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4.1. The coding 
There are three main types of usable coding, and you can switch from one 

to another easily. 
 The binary encoding: this is the most used. The simplest decoding 

function that allows the transformation of a bit string to an integer x is given by: 
ݔ  ൌ ∑ ܾ௜ 2௡ିଵ௡

௜ୀଵ       (1) 
Thus the chromosome ܣ ൌ ሼ1; 0; 1; 1ሽ is the binary modeling of integer number 
1 ൈ 2ଷ ൅ 0 ൈ 2ଶ ൅ 1 ൈ 2ଵ ൅ 1 ൈ 2଴ ൌ 11 

 The actual encoding: is particularly useful where one seeks the 
maximum of a real function. The actual encodings are now widely used, 
especially in the fields of application for the continuous variable problems 
optimization. 

 The Gray encoding: where the binary encoding begins to show its 
limits, this disadvantage can be avoided by using a "Gray coding". 

4.2. The selection operator 
The selection plays a very important role in genetic algorithms: firstly, to 

direct research towards the best individuals and secondly, to maintain the diversity 
of individuals in the population.  
Several forms of selection are possible, the best known are [10]: 
-The linear selection compared to the rank; the uniform selection with respect to 
the rank; the selection by the elitist method (or proportional selection); the 
selection by the elitist method (or proportional selection); the selection by 
tournament and the selection by the method of biased lottery. 

4.3. The crossover operator 
This operator is applied after applying the selection operator upon the 

population P; it finds itself with a population P' of n/2 individuals and one has to 
double that number so that our next generation is full. 
So we will randomly created n/4 couples and we will authorized them "to recur". 
The chromosomes (sets of parameters) of parents are then copied and recombined 
to form two offsprings with characteristics issued from both parents. 

Table 1  
Crossover with a crossover point 

2 Parents 2 Children
A B C D E 

 

 A B H I J 
   

F G H I J 
 

 F G C D E 
 

4.4. The mutation operator 
This operator has many advantages:  

 It guarantees the diversity of the population, which is essential for 
the genetic algorithms. 
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 It allows to limit the risks of a premature convergence caused for 
example by a elitist selection method requiring too much selective pressure at the 
population. 

 It allows to reach the ergodicity property which is a property 
ensuring that each point of the search space can be reached. Due to this property, 
it is possible to reach the global optimum. This operator consists to change allelic 
value of a gene with a very low probability pm, usually between 0.01 and 0.001.  

Table 2 
Example of a mutation 

A B H D E 
                   Mutation 

F G C I J 
 

4.5. The replacement operator 
This operator is the simplest, his job consists to reintroduce the offspring 

obtained by successive application of the selection operators, crossover and 
mutation (population P') in the population of their parents (P population). 

4.6. Comprehensive approach: Example illustrating the 
implementation of all previous operators 

This example first allows to understand easily the formalism of genetic 
algorithms but also to give an idea about the manner of their programming. 
This example is due to Goldberg [11]. It is to find the maximum of the function    
f (x) = x on the interval [0, 31] where x is a natural number. There is 32 possible 
values for x: Therefore we choose a discrete coding of 5 bits: for example, one 
thus obtains the sequence 0, 1, 1, 0,1 for 13, the sequence 1, 1, 0, 0,1 for  25, etc. 
First, we initialize randomly the population and we fix its size to 4 individuals. 
We simply define the fitness as being the value of x, since we seek the maximum 
value throughout the interval [0, 31]. A higher value of x implies higher precision 
in finding the maximum of the identity function. 
If, by definition, the "fitness" is "the value of x" as one can deduce from the 
previous sentence, then it is evident that increasing x is equivalent with increasing 
the fitness.  

Table 3 
The initial population 

Individuals Sequence Fitness % of total 
1 01011 11 18.6 
2 10011 19 32.2 
3 00101 5 8.5 
4 11000 24 40.7 

Total  59 100 
Secondly, we choose for example a selection by the method of biased lottery. 
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We rotate the wheel successively four times, typically we rotate n/2 times where n 
represents the individuals number, so 2 times in this case, but the number 2 is too 
small, we decide to turn it 4 times. We then obtain the new population: 

Table 4  
Individuals selected by the biased lottery method 

Individuals Sequence 
1 11000 
2 00101 
3 11000 
4 01011 

Thirdly, the crossover operator is applied using a single point crossover. Normally 
each couple gives 2 children that are added to our new population P' passing from 
n/2 individuals to n individuals, but as, in the case of our example we have 
already reached our n individuals, the 2 children of the couple will then replace 
their parents. So two couples are formed randomly: 
• Couple 1:   the individual 2 with the individual 4. 
• Couple 2:   the individual 1 with the individual 4. 
The crossover points are also randomly drawn. We get the following result: 

Table 5 
 Results of application of the crossover operator with a single point 

Parents Children 
00 101 
01 011 

01011 
00101 

110 00 
010 11 

01011 
11000 

We apply the mutation operator which randomly chooses whether to make a 
mutation and on which locus to do. 

Table 6 
 Results of application of the mutation operator on individuals generated by crossing 

Chromosome before mutation Chromosome after mutation 
01011 11011 
00101 00101 
01011 01111 
11000 11000 

Fourthly,  then we apply the replacement operator who decides to replace 100% of 
the population P, the population P is entirely replaced by P' and its size remains 
fixed. 

Table 7 
 The new population after application of various operators 

Individuals Sequence Fitness % of total 
1 11011 27 38 
2 00101 5 7 
3 01111 15 21.1 
4 11000 24 33.8 

Total  71 100 
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In one iteration, the maximum is increased from 24 to 27, and overall fitness of 
the population has relatively increased from 59 to 71. We stop here for this 
example but in reality, we will continue to produce successive generations until 
obtaining the global maximum: 31 

5. Illustrated examples: Application of genetic algorithms to steel 
structures 

Fig. 3. Structure 3D with circular sections 

To show the interest of the suggested methodology and validate our 
results, the structure has been analysed using two different approaches: 

 The first is the Monte-Carlo optimization  
 The second is the optimization by the genetic algorithms which is the object 
of our study and which involves the tools that we have developed ourselves. 

Common assumptions to both approaches 
-The connections between elements (n = 4) are perfectly embedded (so rigid) 
-We adopt two classes of bars for the steel structure (S1 for columns section  and 
S2 for beams section) and two parameters for slabs of foundations (L1 for length 
and L2 for width).  
- The yield strength of steel is eσ  = 235 MPa. 
- The allowable differential settlement is equal to 0.1mm  
- The foundation depth is fixed to 2m. 
-The financial envelope reserved to this project is: 2.0 e03 € 

Notations regarding the Monte-Carlo table 
- Local gap: represents the Monte Carlo accuracy 
- Min gap: is the best gap of the Euclidean norm at the current iteration i of MC  
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- Current gap: is the min gap of the previous iteration. If this is the first iteration, 
its value is predefined in the source code and is equal to 104 (that is the largest gap 
known at present for the Monte Carlo algorithm). 
-nit: represents the number of Monte-Carlo iterations  
-Resumpt: represents the number of Monte Carlo resumption  
The results obtained by the Monte Carlo method are presented in the following 
table:  

Table 8  
The Monte-Carlo optimization 

nu
m

et
 

A
ba

qu
s 

C
al

cu
la

-ti
on

 
 4 4 4 

Par_nomgene.inp 
(mm2)and (mm) 

S1=350 
S2=300 

With embedded 
supports 

S1=350 
S2=300 

Length =1000 
Width =500 

S1=461.00 
S2=199.44 

Length =758.2 
Width =363.3 

S1=459.48 
S2=208.05 

Length =747.4 
Width =270.2 

Parameters   
variation ( % )  50 50 50 

Response values 
 

(MPa) 

=1σ 268.865 

=2σ 176.253 

=1σ 230.378 

=2σ 138.638 
gap_max=-28617.2 
diff _settl =4.22e-04 

cost= 1173.68 

=1σ 233.491 

=2σ 144.196 
gap _max=-27250.5 
diff _settl =3.91e-04 

cost=1051.74 

=1σ 233.516 

=2σ 136.624 
gap _max=-25147.4 
diff _settl =4.39e-04 

cost=846.21 

Optimised 
parameters 

(mm2) and (mm) 
 

 

S1=461.00 
S2=199.44 

Length=758.2 
Width=363.3 

S1=459.48 
S2=208.05 

Length=747.4 
Width =270.2 

S1=464.64 
S2=181.96 

Length=742.5 
Width =352.4 

Min gap  2510.4 2491.2 2428.8 
Current gap  104 2510.4 2491.2 
Local gap  0.001 0.001 0.001 

nit+Resumpt MC  1 1 1 

 
Notations regarding the genetic algorithms method 
The problem of the overall design of steel structures may, in our opinion, be 
globally posed as an optimization problem for minimizing the objective function 
or the criterion of the overall cost (CG) of the structure in accordance with the 
conditions or constraints of Eurocode . 
The (CG) is a function of a number of variables such as the three variables: I, Xa 
and Xn that will be explained explicitly in the following sections. 
Thus, we can implicitly formulate the optimization problem as follows: 

,ܫሺ ܩܥ ݊݅ܯ ܺ௔, ܺ௡ሻ     (2) 
where:   
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CG: represents the overall production cost of the structure; I:  vector of 
dimensional  characteristics of bars;  Xa: vector of the supports nature;  Xn:  vector 
of the nodes nature. 
The overall cost (CG) of a metallic construction (superstructure and foundations) 
can be written:  

ሺܩܥሻ ൌ ሺܵܥሻ ൅ ሺܨܥሻ     (3) 
with: 
(CS):   Cost of steel superstructure; (CF): Cost of reinforced concrete foundations. 
The cost (CS) is itself composed of the following costs: 

ሺܵܥሻ ൌ ሺݐܽܯሻ ൅ ሺܾܽܨሻ ൅ ሺ݊݋ܯሻ    (4) 
with: 
(Mat): Materials cost of profiles and assemblies;   (Fab): Manufacturing cost;     
(Mon): Assembly cost of different elements on site. 
The cost (CF) consists of two following basic units: 

ሺܨܥሻ ൌ ሺܶ݁ݎሻ ൅ ሺ ௥ܲܨሻ       (5) 
with: 
(Ter): represents the excavations cost; (PrF):  Production cost of foundations.  
Exploitation of results: 
- Concerning the Monte Carlo approach 
It should be noted that each Monte Carlo iteration requires 34 = 81 draws (so 243 
calculations for this structure). 
The results exploitation of the Monte Carlo optimization shows that the optimal 
solution is the one that corresponds to the minimum of min-gap (here equal to 
2428.8). Therefore, the solution is the vector (S1 = 464.64, S2 = 181.96, Length = 
742.5, width = 352.4). The local gap is not being reached, it is therefore a local 
optimum. However, this solution corresponds to minimum cost (here equal to 
846.21€). 
- Concerning the genetic algorithms approach 
It is notoriously known that the Genetic Algorithms often use vectors and matrices 
to modelise engineering problems. The choice of the most appropriate 
programming language is obviously MATLAB. 
Therefore, our application example was implemented with MATLAB and 
interfaced to calculation code based on finite elements ABAQUS. By following 
scrupulously the steps of paragraph 4.6 above and applying the values 0.6 and 
0.006 respectively for the probabilities of crossover and mutation, the best 
solution vector found by genetic algorithms method after 27 iterations is: 

V=(373.57, 146.30, 596.97, 283.33)  which corresponds to 680.35 €. 

5. Conclusions 

The analysis of the two approaches provides the following synthesis table: 
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Table 9 
Comparison of two approaches 

 STRUCTURE FOUNDATIONS TOTAL 
COST 

 
Section 

Columns 
(mm2) 

Section 
Beams 
(mm2) 

Lenght 
(mm) 

Width 
(mm) 

Depth 
(mm) (euros) 

Monte-Carlo 
Approach 464.64 181.96 742.5 352.4 2000.00 846.21 

Genetic algorithms 
Approach 373.57 146.30 596.97 283.33 2000.00 680.35 

The contribution of genetic algorithms methodology can be represented by 
the relative ratio of costs produced by each of two approaches.  
ࡾ ൌ ૡ૝૟,૛૚ି૟ૡ૙,૜૞

ૡ૝૟,૛૚
ൌ ૙, ૚ૢ૟                    or approximately a gain of 20%    

It therefore appears that this new approach is very promising and should be 
further refined by a number of measures before the validation of the results. 
Indeed, for the sake of objectivity, the order of the gain magnitude of recognized 
cost for this sample cannot be generalized for the simple reason that our tool is in 
its first release and it therefore incorporates not all optimization constraints of the 
Eurocode in terms of resistance calculation, stability and dimensioning of 
constructions. 
In final version, an extensive program of numerical simulations on various 
conceptions can allow to elaborate "design rules" that lead, in early phase, the 
designers towards optimized total solutions. 
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