
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 1, 2015 ISSN 2286-3540

A DISTRIBUTED SYSTEM FOR EASY CLIENT
ASSOCIATION IN WIRELESS NETWORKS

Mihai BUCICOIU1, Victor ŞERBU2, Nicolae ŢĂPUŞ3

As wireless networks evolve more and more driven by the low-priced wireless
devices, the load on those networks raises. A challenge for these networks is
enabling a way for fast scaling and easy client control. Motivated by this problem,
we present a self-aware network, capable of deciding how to accept a new user. Our
approach uses self-discovery for the access points. Furthermore, it enforces
distributed decision making in order to associate a new client. Our implementation
requires less than 53 lines of application-specific code changes in the current
wireless implementation and also, a “thin” service, running as a daemon that
allows access point communication. We demonstrate the effectiveness of our
approach using ns-3, a discrete-event network simulator for Internet systems,
targeted primarily for research and educational use.

Keywords: wireless, client association, access point, distributed systems

1. Introduction

The rapid growth of the mobile devices made today’s wireless access a
fight. Yesterday’s wireless technology could offer access for 54 clients, we
assume 1Mbps per client and 54Mbps access points even though this is highly
unlikely, while today’s mobile technology brings us to more than 300 clients.
Increasing the speed of access points from 54Mbps, 802.11g, up to 300Mbps,
802.11n, enabled a 6x increase in the number of users, and with a more efficient
usage of the wireless spectrum we can add 3x speed-ups by using three access
points instead of one for the same location. This sums up to an ideal speed-up of
18x, but the problem of client association still remains.

Consider a simple example that can explain why client distribution is so
important. We have an open space with 200 possible clients and three access
points, each running on a different wireless channel and offering the same
bandwidth. The decision on the association is at the client side and everyone can
decide to go with the same access point, living the other two unused. One can

1 PhD Assist., Dept.of Computer Science, University POLITEHNICA of Bucharest, Romania, e-

mail: mihai.bucicoiu@cs.pub.ro
2 MSc., Dept.of Computer Science, University POLITEHNICA of Bucharest, Romania, e-mail:

victor.serbu@cti.pub.ro
3 Prof., Dept.of Computer Science, University POLITEHNICA of Bucharest, Romania, e-mail:

nicolae.tapus@cti.pub.ro

4 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

assume that we have a “smart” client that can listen to the channel before trying to
associate, but in wireless the hidden node problem would make the
implementation of such a smart client nearly impossible without communication
with the access point. In this paper we present a “smart” algorithm implemented
on the access point side that allows easy association and fast client migration.

In this paper we introduce a new way of managing clients in a wireless
network, allowing the access points to dynamically decide where a client should
go and, when necessary, migration can also be achieved.

The rest of the paper is structured as follows. In Section II we introduce
related work. Section III covers the design of our solution, including the
algorithms used for balancing and for computing the metrics. Section IV describes
how we’ve implemented the proposed solution both in a simulated and real
environment. In section V we present the results of our implementation, while
section VI concludes the paper.

2. Related work

In order to improve the performance of wireless LAN deployment, many
approaches have been proposed to allow a better client association. Different
algorithms try to allocate channel frequency and power level to the access points
in an intelligent manner so as to allow a better coverage. Also, these algorithms
control the association of clients to the access points in order to avoid major
differences between loads on each access point. Broustis quantifies the effect of
individual optimization and combinations of these optimizations [1].

The intelligent association of clients with access points can be obtained by
adding the following fields to beacon frames: current number of clients
associated, the mean RSSI of signal received by access point from its clients and
the RSSI of Probe Request frame received from a client scanning the medium [2].
The main issue with this approach is that the clients must be modified in order to
take in consideration these additional fields. We consider this approach difficult to
implement on production devices as they need to modify the structure of the
beacon and change the implementation of both clients and access points.

Another solution that does not require modifying neither the standardized
protocols nor the clients is presented by Rohan [3]. Each access point
communicates with a Central Controller when a new client appears in the
network, including in messages the RSSI of received Probe Request frame. The
access points must also send periodic messages that contain traffic pattern of
associated clients. All decisions are taken by Central Controller which further
instructs the access point to permit/deny association of a client or to move an
associated client.

A distributed system for easy client association in wireless networks 5

Our key contribution is developing a distributed solution that does not
require a centralized controller. Also, we propose a different methodology to
select the access point for initial client association and a methodology to select
clients that need to be moved from an overloaded one to a less utilized one. Our
application can be extended so that access points can act together upon some
network attacks such as distributed denial of service [4].

3. System design

Naming convention. For convenience we will use the following notations
throughout this paper.

ܲܣ • ൌ ሼܽଵ, ܽଶ … ܽ௡ሽ, the list of access points (APs) in the network;
௞ܽܥ • ൌ ሼܿଵ, ܿଶ … ܿ௡ሽ, all the clients visible to access point ܽ௞;
ሺܿ௜ሻܮܴ • ൌ ሼܴܽଵሺܿ௜ሻ, ܴܽଶሺܿ௜ሻ … ܴܽ௡ሺܿ௜ሻሽ, the Received Signal Strength

Indication (RSSI) for all the possible access points that ܿ௜ can connect
to, where Raj(ci) is the RSSI calculated by the access point ௝ܽ for client
ܿ௜;

ܭܯ • ௝ܽሺܿ௜ሻ ൌ ሼܽܯଵሺܿ௜ሻ, ଶሺܿ௜ሻܽܯ … ௡ሺܿ௜ሻሽ, the list of metrics, for allܽܯ
the access points in the network, as known by access point ௝ܽ for client
ܿ௜; we will explain how this metric is computed in Section III.

We note LOAD(aj) the load for access point aj, and
NO_ACTIVE_CLIENTS the number of ACTIVE CLIENTS as calculated in
Section III.B.

In order to make our system work we assume that all the access points are
in the same network, with multicast messages not being filtered by intermediate
devices. This assumption is made only for an easier explanation and
implementation of the process. We also believe that this is the case in most of the
situation where the wireless infrastructure is under the same management,
creating a single Virtual Local Area Network for wireless would be the simplest
choice when deploying wireless. If this is not the case, multicast routing
protocols, such as PIM [5], could be used to deliver multicast.

The connection to the network is made through the LAN interface for
every access point. Because we do not use layer 3 roaming for our scenario, we
could also make the connection through the WAN port and allow the access point
to play the role of a router, as it happens in many situations.

Neighbour discovery. The first step in creating a distributed system is
discovering all its members. Our application accomplishes this by sending hello
messages to a predefined multicast address, 224.0.1.50, similar to what is used in
different routing protocols [6]. This approach is convenient as multicast traffic
will not take up bandwidth to deliver the same message to more than one client.

6 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

We also define a hold-down timer in case an access point losses access to the
infrastructure.

The hello messages are sent every two seconds, containing the following
fields: ID, LOAD, NO_ACTIVE_CLIENTS. The ID is the IP address of the
access point. Using this mechanism, the AP list is built. Although there might be a
slight difference in the list contained by each access point, e.g. when a new access
point is added, we advocate that the network will converge after few seconds. In
the initial discovery process the access point will not allow any client association
for the first six seconds.
 Metric computation. A linear dependency exists between the value of
RSSI and the bandwidth [7]. From experimental results, the following formula
can be used to deduct the bandwidth available for a client:

ሺܿ௜ሻܫܴܵܵ ൌ 1.0 כ ௜ܤ െ 86 (1)

In order to test our algorithm on a large scale wireless infrastructure, we
used a network simulator, ns-3. We have verified if the preceding formula also
applies in ns-3. For this, we created a topology of 30 clients and one access point
located on a grid, 31 lines and 1 column, with a distance of 2. In this topology,
RSSI for frames received by the access point is situated between -36 and -82,
being constant for each of the clients. In the simulation we’ve used 30 non-
concurrent TCP flows between access point and each client.

Fig. 1. Determine an equation between RSSI and Bandwidth

A distributed system for easy client association in wireless networks 7

From our tests, Fig. 1, we’ve observed that for ܴܵܵܫሺܿ௜ሻ ൐ െ70,the
bandwidth remained constant at approximately 8.48 Mbps. For ܴܵܵܫሺܿ௜ሻ ൑ െ70
we’ve determined the following polynomial equation of degree one using Matlab
polyfit function:

௜ܤ ൌ 0.19 כ RSSIሺc௜ሻ ൅ 21.55 (2)

We propose the following equation to determine the load generated by

each client associated.

஼௅ூாே்ሺܿ௜ሻܦܣܱܮ ൌ 100 כ
௜ܦ

௜ܤ
כ

1
 (3) ܥܧܵ_ܴܰ

Di represents the amount of data transferred to and from client ci in

NR_SEC seconds and Bi is the estimated bandwidth available to ci. Intuitively, the
value of LOAD shows the percentage of “air time” used by client ci. For each
access point we compute the load as a sum of all clients load.

In the preceding simulation and observed that if the RSSI of a client is
greater the -70, the load it generates is constant at 104, while for clients with RSSI
between -70 and -82 the load varies between 63 and 104, with an average of
80.22. We’ve also taken into consideration how an access point balances the
channel between different clients. In order to test this we’ve created a small
topology with three clients having the RSSI of -73, -75, and, respectively, -77 and
joining the access point after 0, 6 and, respectively, 13 seconds. We’ve observed
an almost perfect distribution of channel, Fig. 2, each client receiving equal
number of time slots.

Fig. 2. Evolution of clients load

8 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

We note as ACTIVE CLIENTS the clients associated with the access point
that use the channel. Let ܺܣܯ௅ை஺஽ሺ ௝ܽሻ be the maximum load generated by one of
the associated clients. We considered a client ci as ACTIVE CLIENTS if:

஼௅ூாே்ሺܿ௜ሻܦܣܱܮ ൒ 60 כ
௅ை஺஽ሺܺܣܯ ௝ܽሻ

100 (4)

Let ܱܰ_ܵܶܰܧܫܮܥ_ܧܸܫܶܥܣሺ ௝ܽሻ be the number of ACTIVE CLIENTS
associated with access point ௝ܽ .

In order to determine the access point to which a client should be
connected to, a metric is required. This metric must consider both the signal
strength and also the number of clients competing for medium. Our metric
estimates the maximum amount of data that a new client will transfer in a second.
We suggest the following formula:

ܯ ௝ܽሺܿ௜ሻ ൌ ௜൫ܤ ௝ܽ൯ כ
0.6

൫ܵܶܰܧܫܮܥ_ܧܸܫܶܥܣ_ܱܰ ௝ܽ൯ ൅ 1
 (5)

A new client will become an active client and active clients will occupy

the medium for at least 60% of total time. Estimated bandwidth ܤ௜൫ ௝ܽ൯ is
computed based on the average RSSI value of the Probe Requests frames sent
before association by the client, as received by the access point.

If a forced computation is required, see 0, we have set a minimum number
of Probe Request frames that an access point must have received in order to
calculate the metric. Let this constant be called MIN_PR. We advocate that if an
access point receives enough frames and the second one receives less than this
minimum, the second access point should not be used for association as the speed
will be very low and the metric is equal with zero. All the access points will
respond with a metric of 0 for the clients that are not in their range.

Initial client association. The most important decision is where to
associate a new client. For this, the access points must be able to “talk” between
them and decide who should accept the client. Listing 1 exposes the algorithm
used to achieve this for access point ak and client ci.

A distributed system for easy client association in wireless networks 9

Listing 1. Client association decision process

The first step taken when a new client arrives in a network is to compute a

metric as discussed in Section III by all the access points where the client can
associate. The goal is to compute ܽܭܯ௞ሺܿ௜ሻ and based on this to determine which
access point is preferred.

For each access point in the network a metric for client ܿ௜ needs to be
computed. Those access points that don’t “see” the client will compute the 0
metric. This process is initiated by an access point that received a number of
Probe Request frame bigger than a constant named MAX_PR. After these access
points have calculated the metric, they will start to announce their metric and
request the neighbors to respond with their metric.

If an access point receives a request for a client that it cannot “see”
(received a number of Probe Request less than MIN_PR or does not have access
to the client), he will respond with a metric of 0. If he has already computed the
metric for this client, an exchange of the ܭܯ lists will takes place. When the
access point hasn’t calculated the metric yet, a forced computation will take place.
After exchanging the ܭܯ list with the initiator of exchange, this access point will
also begin to announce it’s metric.

For better performance we interrogate a random neighbor and receive his
 list. Using this approach we ensure a fast process to compute MK by using ܭܯ
the results from the rest of the prospective access points.

Client relocation. Load balancing is a must in wireless networks.
Previous work use a central controller that tells the access points how to associate

௞ܽܥ ൌ ௞ܽܥ ൅ ሼܿ௜ሽ
 ௞ሺܿ௜ሻܽܯ ݁ݐݑ݌݉݋ܿ
ܣܮ ൌ ሼܽ௞ሽ #݈݅݀݁ݐܽ݃݋ݎݎ݁ݐ݊݅ ݐ݊݅݋݌ ݏݏ݁ܿܿܽ ݄݁ݐ ݂݋ ݐݏ
ሺܿ௜ሻܮܴ ൌ ሼܴܽ௞ሺܿ௜ሻሽ #ܴܵܵݐ݈݊݁݅ܿ ݏ݄݅ݐ ݂݋ ݏܲܣ ݈݈ܽ ݎ݋݂ ܫ
௞ሺܿ௜ሻܽܭܯ ൌ ሼܽܯ௞ሺܿ௜ሻሽ #݈݅݀݁ݎ݁ݒ݋ܿݏ݅݀ ݏܿ݅ݎݐ݁݉ ݂݋ ݐݏ
൫ ݉݋݀݊ܽݎ ݎ݋݂ ݋݀ ௝ܽ൯݅݊ ܲܣ െ :ܣܮ
 ௞ሺܿ௜ሻܽܯ ݀݊݁ݏ
ܯ ݐ݁݃ ௝ܽሺܿ௜ሻ
௞ሺܿ௜ሻܽܭܯ ൌ ௞ሺܿ௜ሻܽܭܯ ൅ ൛ܯ ௝ܽሺܿ௜ሻൟ
ܣܮ ൌ ܣܮ ൅ ൛ ௝ܽൟ
 ݂݅ ൫ܯ ௝ܽሺܿ௜ሻ ൐ 0൯:
 ௞ሺܿ௜ሻܽܭܯ ݀݊݁ܵ
ܭܯ ݁ݒܴ݅݁ܿ݁ ௝ܽሺܿ௜ሻ
௞ሺܿ௜ሻܽܭܯ ൌ ௞ሺܿ௜ሻܽܭܯ ൅ ܭܯ ௝ܽሺܿ௜ሻ
ܭܯ ݊݅ ௫ܽ ݄ܿܽ݁ݎ݋݂ ௝ܽሺܿ௜ሻ
ܣܮ ൌ ܣܮ ൅ ሼܽ௫ሽ
! ௫ሺܿ௜ሻܽܯ ݂݅ ൌ ܨܰܫ
ሺܿ௜ሻܮܴ ൌ ሺܿ௜ሻܮܴ ൅ ܴܽ௫ሺܿ௜ሻ
! ܣܮ#ሺ ݈݄݁݅ݓ ൌ ݊ሻ#݊ܣܮ ݊݅ ݏݐ݈݊݁݉݁݁ ݂݋ ݎܾ݁݉ݑ
௞ሺܿ௜ሻܽܯ ݂݅ ൌ ௞ሺܿ௜ሻ൯ܽܭܯ൫ܺܣܯ ݄݊݁ݐ
ݐ݈݊݁݅ܿ ݁ݐܽ݅ܿ݋ݏݏܽ ܿ௜

10 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

or migrate its clients [8]. In order to allow our network to adjust itself in case of a
network reconfiguration or overload, we have developed a mechanism that allows
client migration. Each access point monitors its local LOAD and if it is greater
than THRESHOLD_LOAD, a reconfiguration algorithm will be triggered.

Provided the threshold is reached, the access point will try to relocate one
of its active clients. We impose the limit that a maximum of one client will be
moved in a round of this load-balancing process. Load balancing process will try
to move it to another access point in order to obtain the best bandwidth after
association.

The migration process is a two-step process. Firstly, the access point must
determine if the relocation is possible based on RL and the expected bandwidth
the client will reach after association. Secondly, it will send a message to the
selected access point to inform him to accept this client and then disassociate the
client. The clients are identified based on their layer 2 addressing, the MAC
address.Let ܽ௞ be the current access point, ௝ܽ the access point that can “take” ci,
the client to be moved. A client will be moved only if:

 ܴ ௝ܽሺܿ௜ሻ ൏ (6) ܨܰܫ
௞ܽܯ ሺܿ௜ሻ ൏ ܯ ௝ܽሺܿ௜ሻ (7)

ܰܧܴܴܷܥ ்ܶூொ െ ௟௔௦௧_௖௟௜௘௡௧_௠௢௩௘ௗܧܯܫܶ ൐ (8) ܥܧܵ_ܴܰ

The first rule is required in order to consider only access points that are in

the range of that client. The second rule tries to find one where the client can
obtain a higher throughput than the current throughput by comparing metrics. The
third rule states that an access point cannot move two clients to a new one in an
interval within less than NR_SEC. This rule takes in account that the load of new
access point might be inaccurate because the load generated of new clients is
determined for a period of NR_SEC seconds.

4. Design implementation

802.11 devices today tend to be SoftMAC wireless devices [9]. These
devices allow for a finer control of the hardware, allowing for 802.11 frame
management to be done in software for them, for both parsing and generation of
802.11 wireless frames. The drivers for these devices use mac80211 framework
[10]. In mac80211 Media Access Control (MAC) Sublayer Management Entity
(MLME) events (e.g. Authentication, Association) are handled in user space for
wireless network devices that are in access point mode.

In order to function in access point mode, a daemon that implements IEEE
802.11 access point management must run on the host. One of these daemons is
hostapd, [11], which supports Linux drivers, such as Host Access Point, MadWifi,

A distributed system for easy client association in wireless networks 11

Prism54 and some of the drivers which use the kernel's mac80211 subsystem.
This daemon uses netlink (the nl80211 driver) to create a master mode interface
for traffic and a monitor mode interface for receiving and transmitting
management frames.

Our target is to provide a helper for hostapd in order to improve the
association process to avoid the situation when one access point is overloaded and
others are free. For this, we created a new daemon that does all the calculation
concerning load balancing and initial association. This daemon writes in a file the
MAC addresses of clients that hostapd should permit association. When a
modification occurs on that file, our daemon will send SIGUSR2 signal to
hostapd that will re-read those MAC addresses in memory. The only modification
in hostapd daemon was rewriting a function that handles the SIGUSR2 signal and
a minor modification of function handle_probe_req: before responding to a
PROBE REQUEST, hostapd must verify if the sender’s MAC is on the permitted
list of MAC addresses.

In order to decide which access point will accept a new client, all access
points must obtain the average RSSI from Probe Request frames sent by client.
This information can be obtained by sniffing on an interface working in monitor
mode. After configuring monitor interface, all the management frames can be
captured. Each frame will contain an additional header called radiotap. This
header is a mechanism to supply information about frames from the driver to user-
space applications such as libpcap and contains, among other information, the
value of RSSI and the channel frequency.

By default, the monitoring interface created by hostapd is called
mon.wlan0. We discovered that this interface does not add radiotap header to
captured frames. In order to solved this problem we changed the flags of the
monitoring interface using following commands: “iw mon.wlan0 set monitor
none”.

Our daemon uses libpcap to read frames from the monitoring interface.
The structure of this daemon is: (1) Open the capture interface; (2) Set the
following capture filter in order to receive only Probe Request frames: “type mgt
subtype probe-req”; (3) Register a callback function that is called every time a
frame is captured.

To calculate the LOAD on an access point we must determine the amount
of data transferred by each client associated with it. We used the
 command and then we parsed the output in order to obtain ݌݉ݑ݀ ݊݋݅ݐܽݐݏ ݓ݅
RX/TX bytes transferred by each client. To disassociate a client use the
hostapd_cli command: “hostapd_cli –p hostapd disassociate $client_mac”.

In order to determine how many packets are lost when a client is migrated
from one access point to another, we started an icmp flood using command ping
and then force client to migrate. We observed that on average 35 packets are

12 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

dropped and this corresponds to approximately 0.01314 seconds of failure (the
time difference between two icmp echo request packets is approximately of
0.000365 seconds).

5. Simulation

For testing our algorithm we use two different scenarios. One that involves
three real users, which proofs that our solution can be implemented only with little
modification on the access point, and the other using the ns-3 simulator in order to
have a bigger number of clients.

Real scenario. We’ve implemented the access points, noted here as AP1
and AP0, using two Cisco wireless PCI cards with AR5212/AR5213 Atheros
chipset. One instance of hostapd is configured to use channel 1 and the other one
to use channel 6. Also, we started two instances of our helper and each instance
communicates with its corresponding hostapd instance.

Our test bed included 3 wireless clients: two notebooks (noted here as C1
and C2) and one smartphone (C3). The RSSI for the same client observed by both
access points was approximately equal, with C1 having a RSSI of -59, C2 of -55
and C3 of -62. After association, each client started to transfer a 1GB file from an
http server (running in the local network).

Fig. 3. C1 throughput

First, we started the client C1 and associate it with AP1. After 30 seconds,

C2 was started and associated with AP0. After another 60 seconds we started the
client C3 which associated with AP1 (marked as 1 in Fig. 3). At this point the

A distributed system for easy client association in wireless networks 13

average throughput of C1 dropped from 2261 KB/s to 1140 KB/s and the average
throughput of client C3 was 1139KB/s. Last, we’ve stopped the transfer on C2
and after two seconds client C1 was migrated from AP1 to AP0. At this point the
average throughput of C1 increased to 2237 KB/s (marked as 2 in 3). The
throughput of C1 can be seen in Fig. 3.

Simulation scenario. The topology of first simulation is composed of five
clients and two access points, Fig. 4. The corresponding values for RSSI of frames
received by AP0, respectively by AP1, can be observed in Table 1; these values
were read from pcap trace generated by ns3 for each access point.

Fig. 4. Simulation topology 1

Table 1.

RSSI values for simulation 1
Access
Point

CLIENT
C0 C11 C12 C13 C14

AP0 -74 -74 -73 -74 -79
AP1 -85 -68 -64 -68 -64

The simulation consists of client association; download some data and

disassociation. The time difference between associations of two consecutive
clients is seven seconds and the clients “appear” in the following order: C14, C0,
C11, C12, and C13. After one second from the moment of associating with an
access point, clients start downloading the amount of data depicted in Table 2.
After two seconds from the moment when each client have finished downloading,
that client will disassociate.

Table 2.
Amount of data to downloaded in simulation 1

 C0 C11 C12 C13 C14
Amount(MB) 38.14 228.88 38.14 76.29 38.14

14 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

This simulation was repeated three times in order to show how time
necessary to finish downloading the same amount of data differs in the following
situations: (A) Normal client association (based on RSSI only); (B) Proposed
association algorithm; (C) Proposed association algorithm + load balancing. The
results can be observed in Table 3.

Table 3.

Donwload time simulation 1
Client C0 C11 C12 C13 C14
Download start time 14 21 28 35 7
Download finish
time

Case A 53 352 130 236 80
Case B 83 317 101 186 74
Case C 83 281 101 145 74

Download time Case A 39 331 102 201 73
Case B 69 296 73 151 67
Case C 69 260 73 110 67

The sum of client’s duration time necessary to download data was in case

A, 746 seconds, in case B, 656 seconds and in case C, 579 seconds. It can be
observed that our proposed solution has the effect of lowering the total download
time with 22% in comparison with the scenario where association decision is took
based only on RSSI.

For the first case, four clients were associated with AP1, leaving client C0
alone with AP0. With our association algorithm this was significantly improved,
clients C11, C13 and C13 were associated with AP1, while C0 and C12 with AP0.

When including also the load balancing mechanism, case C, after 102
seconds, C2 associated finished downloading, client 11 was moved from AP1 to
AP0 and his throughput increased from 567KB/s to 998 KB/s. After another 44
seconds, C13 finished downloading, C11 was moved again from AP0 to AP1 and
the speed increased now to 1126KB/s.

Table 4.

Simulation topology 2
C33 C34 AP4
C27 C28 C29 C30 C31 C32
C21 C22 AP3 C24 C25 C26
C16 C17 C18 C19 AP2 C20
AP1 C11 C12 C13 C14 C15
C5 C6 C7 C8 C9 C10
C0 C1 AP0 C2 C3 C4

Table 5.
Download time in simulation 2

Case Total download Time
A 1721
B 1443
C 1342

For the second simulation we built a topology composed of 36 clients and

5 access points placed on a grid with 6 columns and 7 rows. We have chosen this
topology to observe how our algorithm performs in a situation where the clients

A distributed system for easy client association in wireless networks 15

are distributed uniformly and are not concentrated nearby one of the access points.
The topology can be observed in Table 4. The clients associated in random order
at interval of two seconds. The amount of data downloaded by each client was
chosen randomly from five values, see Table 5.

Table 6.
Amount of data to download simulation 2

Amount of Data(MB) Clients
2 6, 9, 16, 19, 22, 24, 26, 35
4 7, 23, 29, 34
8 0, 1, 3, 12, 13, 15, 25, 30, 31
26 4, 8, 10, 11, 17, 18, 20, 27, 28, 32
32 2, 5, 14, 21, 33

We observed that in case B 17 clients (7, 8, 9, 12, 13, 14, 17, 18, 20, 23,

24, 25, 26, 29, 30, 33, 34) have chosen a different access point comparing with
case A where the association takes in consideration only the value of the RSSI.
The sum of clients duration time necessary to download data in the three cases
analysed is shown in Table 5. Analysing case C, we observed that in our
simulation appeared 45 events where an access point moved a client to another
one, a total of 20 clients were moved at least once and the maximum number of
times a client have been migrated was equal with six.

6. Conclusion

This paper presents a new approach for client association in large wireless
networks by creating a self-aware distributed system. We demonstrated that
involving each access point into the decision process of client association could be
beneficial for the entire network in terms of resource utilization. Our key
contributions are the algorithm used for load balancing the metric computation for
each client and the self-aware system. Our application can be easily integrated
with today’s access point and needs no modifications on the client side.

We plan to extend the developed prototype and include some security
features like client filtering, malicious client migration and secure channel
between access points. Moreover, a real-world simulation using our prototype will
give us more insights on how to improve the proposed algorithms.

R E F E R E N C E S

[1] Ioannis Broustis, Ioannis Broustis, Srikanth V., Michalis Faloutsos, and Vivek P. Mhatre,
"MDG: Measurement-Driven Guidelines for 802.11WLAN Design," IEEE/ACM
Transactions on Networking, vol. 18, no. 3, pp. 722-735, June 2010.

[2] Paramvir (Victor) Bahl et al., "A study on dynamic load balance for IEEE 802.11b wireless
LAN," IEEE Transactions on Mobile Computing, vol. 6, no. 2, pp. 164-178 , 2007.

16 Mihai Bucicoiu, Victor Şerbu, Nicolae Ţăpuş

[3] Rohan Murty, Jitendra Padhye, Ranveer Chandra, Alec Wolman, and Brian Zill,
"Designing High Performance Enterprise Wi-FI Networks," in 5th USENIX Symposium on
Networked Systems Design and Implementation, 2008, pp. 73-88.

[4] Laura Gheorge, Razvan Rughinis, "Storm Control Mechanism in Wireless Sensor
Networks," in Roedunet International Conference (RoEduNet), Sibiu, 2010.

[5] RFC4601
[6] RFC2328
[7] Yuto NAKATSU, Tomotsugu HASEGAWA, and Manabu OMIYA, Irokazu TAKENO,

"Throughput Measurements and Numerical Prediction Methods for IEEE802.11n Wireless
LAN Installations at 2.4 GHz in a Residential Two-Story House," in International
Symposium on Antennas and Propagation (ISAP 2011), Jeju, Korea, 2011, pp. 1-4.

[8] Aggressive Load Balancing on WLAN,
http://www.cisco.com/image/gif/paws/107457/load_balancing_wlc.pdf (February 2014)

[9] Linux Wireless,
http://wireless.kernel.org/en/developers/Documentation/Glossary#SoftMAC (October 2013)

[10] MAC 802.11, http://wireless.kernel.org/en/developers/Documentation/mac80211 (January
2014)

[11] hostapd IEEE 802.11, http://hostap.epitest.fi/hostapd/ (October 2013)

