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TSENG-TYPE SUBGRADIENT METHODS FOR SOLVING

NONMONOTONE VARIATIONAL INEQUALITIES

Xiangyao Li1, Li-jun Zhu2, Mihai Postolache3

In this article, we introduce two new approaches for solving variational inequal-

ities without monotonicity. The first algorithm simplifies the projection region of each

iteration in Ye and He [Comput. Optim. Appl., 60 (2015), 141-150], that is, it becomes

the intersection of multiple half-spaces and no longer needs to be intersected with the fea-

sible set. By a selection technique, the second algorithm replaces the projection on the

common region of the feasible set and multiple half-spaces with a specific half-spaces in

each iteration. The strong convergence of these two algorithms have been demonstrated

under the assumption that the Minty variational inequality has a solution. Finally, some

numerical examples are given to illustrate the advantages of the proposed algorithms.
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1. Introduction

Let H be a real Hilbert space and C ⊂ H represent a nonempty convex closed set.

Denote Γ: H −→ H a continuous mapping, ‖ · ‖ and 〈·〉 the norm and inner product in H,

respectively. Variational inequalities (VI) problem is finding an element u ∈ C such that

〈Γ(u), x− u〉 ≥ 0, ∀x ∈ C. (1)

We also know that the Minty variational inequality of (1) is formulated in the following

form: find an element u ∈ C such that

〈Γ(x), x− u〉 ≥ 0, ∀x ∈ C.

Let S be the solution set of variational inequalities problem, and SD be the solution

set of the Minty variational inequality of (1). According to Karamardian [9] in 1976, we

obtain that S ⊂ SD when Γ is pseudomonotone. Moreover, suppose that C is nonempty
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convex closed and Γ represents a continuous mapping on C. Then the conclusion SD ⊂ S

holds based on the Minty lemma. Hence, we have that S = SD, when C ⊂ H is nonempty

convex closed and Γ represents a pseudomonotone and continuous mapping on C.

For the convergence analysis of many classical algorithms, the assumption that S =

SD is very important. Such as the Goldstein-Levitin-Polyak projection algorithm [2], [3],

proximal point algorithm [4], extragradient algorithm [5], subgradient extragradient algo-

rithm [7], Tseng algorithm [8] and their variant algorithms (see [11], [12], [14], [17]). However,

if the mapping Γ is quasimonotone or even nonmonotone, the condition S = SD no longer

holds. In order to solve more general variational inequalities, we need to find new methods.

In 2015, Ye and He [1] proposed a double projection approach for solving variational inequal-

ities. This method guarantees convergence only under the assumption that SD is nonempty

and does not depend on the generalized monotonicity of Γ. However, for getting next itera-

tion point xk+1 in [1], we need to project the current iteration point onto the common region

of k + 1 half-spaces and the feasible set. It is well known that the calculation of projection

is complicated. Therefore, it will be very meaningful to cut down the computational cost of

the approach in [1]. To this end, the first algorithm is introduced.

In 2021, Lei and He [19] proposed an improved extragradient algorithm for solving

nonmonotone variational inequalities. Undoubtedly, this is a more efficient approach than

[1]. Very recently, a modified Solodov-Svaiter method was introduced in [23]. In this method,

the projection region in [1] is reduced to the common region of a certain half-space and the

feasible set. However, both the methods in [19] and [23] need to project a vector onto the

feasible set twice (or more complicated) in every iteration. Inspired by [7], [10], [11], [19] and

[23], we proposed the second algorithm. The improved Tseng method and the subgradient

method are combined, so as to achieve the purpose of convenient calculation. In fact, we

can’t prove theoretically which algorithm is more efficient, the first algorithm or the second

algorithm. So, we have left both of them for interested readers to study. Throughout this

article, we stipulate that the Minty variational inequality of problem (1) has a solution. The

reader is referred to Ye [10] for more details on SD 6= ∅.
The rest of this paper is structured as follows. In section 2, we recall some lemmas

and properties for use in the following sections. In section 3, we propose two new iterative

schemes to solve nonmonotone variational inequalities and perform convergence analysis on

them. When the mapping imposed on variational inequalities is Lipschitz continuous, we

can simplify the proposed two algorithms. In section 4, we demonstrate the efficiency of the

introduced algorithms through several numerical examples.

2. Preliminaries

In this section, we present some properties and conclusions which will be useful for

the following convergence analysis.

Let C represents a nonempty convex closed subset of H, and denote the distance from

an element x1 ∈ H to C by d(x1, C); namely

d(x1, C) := inf{‖x1 − x2‖ : x2 ∈ C}.
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Set PC(u1) the projection of a vector u1 onto C; namely

PC(u1) := arg min{‖u1 − u2‖ : u2 ∈ C}.

Because C represents a convex closed set, we get easily d(u1, C) = ‖u1 − PC(u1)‖.
For a point u ∈ H and a fixed number δ > 0, we call r(u, δ) the residual function of

the variational inequality (1); namely

r(u, δ) = u− PC(u− δΓ(u)). (2)

Lemma 2.1 ([10]). Let C represent a nonempty convex closed set. Then, the next proposi-

tions hold.

(a) for a vector u1 ∈ H, we have

v = PC(u1)⇐⇒ v ∈ C and 〈u1 − v, u2 − v〉 ≤ 0 for all u2 ∈ C.

(b) the projection is nonexpansive, namely

‖PC(x1)− PC(x2)‖ ≤ ‖x1 − x2‖ for any x1, x2 ∈ H.

(c) set v = PC(u1); then we have

‖v − u2‖2 ≤ ‖u1 − u2‖2 − ‖u1 − v‖2 for all u2 ∈ C.

Lemma 2.2 ([24, 25]). Suppose that r(u, δ) is defined by (2). Then the next two conclusions

hold.

(a) a sufficient and necessary condition for u ∈ S is that ‖r(u, δ)‖ = 0 for any fixed δ > 0.

(b) if we can find a constant δ > 0 satisfying ‖r(u, δ)‖ = 0, then u is an element in S.

Lemma 2.3 ([23]). Let r(u, δ) be defined by (2) and u ∈ H, then we have the next propo-

sitions.

(a) function δ 7→ ‖r(u, δ)‖ is nondecreasing whenever δ > 0.

(b) function δ 7→ ‖r(u,δ)‖
δ is nonincreasing whenever δ > 0.

According to Lemma 2.3, we can get directly the following inequality and omit its

proof. For any constant δ > 0, we obtain

min{δ, 1}‖r(u, 1)‖ ≤ ‖r(u, δ)‖ ≤ max{δ, 1}‖r(u, 1)‖. (3)

Lemma 2.4 ([10]). Let {αk} and {βk} represent two nonnegative real number sequences. If

for any k, we have αk+1 ≤ αk+βk and
∑∞
k=0 βk <∞, then the sequence {αk} is convergent.

3. Main results

In this section, we propose two new approaches and their variant forms under Lipschitz

continuity assumption for solving variational inequalities without monotonicity.

Algorithm 3.1

Step 0. Let Γ represent a continuous mapping on H; choose parameters 0 < ã < ā,

θ, σ ∈ (0, 1), and choose u0 ∈ H. Set k = 0.
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Step 1. Compute ϑk = PC(uk−αkΓ(uk)) and αk = α0
kθ
mk , where α0

k ∈ [ã, ā] and mk

represents the smallest nonnegative integer m satisfies

α0
kθ
m‖Γ(uk)− Γ(PC(uk − α0

kθ
mΓ(uk)))‖ ≤ σ‖uk − PC(uk − α0

kθ
mΓ(uk))‖. (4)

If uk = ϑk, then program stops. Else, it continues.

Step 2. Calculate

zk = (1− βk)uk + βk[ϑk + αk(Γ(uk)− Γ(ϑk))],

where {βk} ⊂ [a, b] ⊂ (0, 2).

Step 3. Set hj = {x ∈ H : 〈Γ(ϑj), x− ϑj〉 ≤ 0}, and let Hk =
⋂k
i=0 hi. Compute

uk+1 = PHk
zk.

Step 4. Let k = k + 1 and return to Step 1.

Remark 3.1. If we remove the last part in Algorithm 3.1, namely projection on Hk, then

the above algorithm collapses into the extrapolated Tseng algorithm in Bot [11].

Now, we show that the linesearch procedure is well-defined in Algorithm 3.1.

Lemma 3.1. If Γ is continuous on H and α ∈ [ã, ā] be a constant, then we can find a

nonnegative integer m satisfying

αθm‖Γ(u)− Γ(PC(u− αθmΓ(u)))‖ ≤ σ‖u− PC(u− αθmΓ(u))‖, (5)

where θ, σ ∈ (0, 1).

Proof. If u is an element in the solution set of problem (1), then together with Lemma

2.2(a), we attain that u− PC(u− αΓ(u)) = 0. Take m = 0, and inequality (5) holds.

If u /∈ S, based on Lemma 2.2(b), for every δ > 0 we have ‖r(u, δ)‖ > 0. Next, we

prove that inequality (5) holds after a finite number of steps. Suppose to the contradict

circumstance, for all m

αθm‖Γ(u)− Γ(PC(u− αθmΓ(u)))‖ > σ‖u− PC(u− αθmΓ(u))‖. (6)

Then, we discuss the problem in two possibilities.

Case 1: If u ∈ C, then we can get PC(u) = u. By the fact θ ∈ (0, 1) and both PC(·)
and Γ(·) are continuous, we see

‖Γ(u)− Γ(PC(u− αθmΓ(u)))‖ → 0 as m→∞. (7)

Moreover, together with θ ∈ (0, 1) and Lemma 2.3(b), for sufficient large m

‖u− PC(u− αθmΓ(u))‖
αθm

=
‖r(u, αθm)‖

αθm
≥ ‖r(u, 1)‖

1
.

Since u /∈ S, we have ‖r(u, 1)‖ > 0. By σ ∈ (0, 1) and (7), for sufficient large m

σ
‖r(u, αθm)‖

αθm
≥ σ‖r(u, 1)‖ > αθm‖Γ(u)− Γ(PC(u− αθmΓ(u)))‖.

It contradicts (6).
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Case 2: If u /∈ C, according to Lemma 2.2(b), we have σ‖u − PC(u)‖ > 0. Since

Γ(·) and PC(·) are continuous, we see that αθm‖Γ(u) − Γ(PC(u − αθmΓ(u)))‖ → 0 and

σ‖u− PC(u− αθmΓ(u))‖ → σ‖u− PC(u)‖ > 0 as m→∞. This contradicts (6).

After all, the proof is completed. �

Set H̃ =
⋂∞
i=0 hi. Because SD 6= ∅, we can get clearly H̃

⋂
C 6= ∅.

Proposition 3.1. Let the sequence {uk} and {zk} be generated by Algorithm 3.1. Then for

any ω∗ ∈ H̃
⋂
C, we obtain that ‖uk+1 − ω∗‖ ≤ ‖zk − ω∗‖ ≤ ‖uk − ω∗‖ for any k.

Proof. From the definition of zk, we have

‖zk − ω∗‖2 = ‖(1− βk)uk + βkϑk − ω∗‖2 + α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2

+ 2αkβk〈(1− βk)uk + βkϑk − ω∗,Γ(uk)− Γ(ϑk)〉

= (1− βk)‖uk − ω∗‖2 + βk‖ϑk − ω∗‖2 − (1− βk)βk‖uk − ϑk‖2

+ α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2 + 2αk(1− βk)βk〈uk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβ
2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

= (1− βk)‖uk − ω∗‖2 + βk‖ϑk − uk + uk − ω∗‖2

− (1− βk)βk‖uk − ϑk‖2 + α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2

+ 2αk(1− βk)βk〈uk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβ
2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

= (1− βk)‖uk − ω∗‖2 + βk(‖ϑk − uk‖2 + ‖uk − ω∗‖2 + 2〈ϑk − uk, uk − ω∗〉)

− (1− βk)βk‖uk − ϑk‖2 + α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2

+ 2αk(1− βk)βk〈uk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβ
2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

= ‖uk − ω∗‖2 + βk‖uk − ϑk‖2 + 2βk〈ϑk − uk, uk − ϑk + ϑk − ω∗〉

− (1− βk)βk‖uk − ϑk‖2 + α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2

+ 2αk(1− βk)βk〈uk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβ
2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

= ‖uk − ω∗‖2 − (2− βk)βk‖uk − ϑk‖2 + 2βk〈ϑk − uk, ϑk − ω∗〉

+ α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2 + 2αkβ

2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβk(1− βk)〈uk − ω∗,Γ(uk)− Γ(ϑk)〉. (8)

Since ϑk = PC(uk − αkΓ(uk)) and ω∗ ∈ C, we have

〈uk − αkΓ(uk)− ϑk, ω∗ − ϑk〉 ≤ 0

⇒ 〈uk − ϑk, ω∗ − ϑk〉 ≤ αk〈Γ(uk), ω∗ − ϑk〉.
(9)
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Combining (8) and (9), we can get

‖uk+1 − ω∗‖2 = ‖PHk
zk − PHk

ω∗‖ ≤ ‖zk − ω∗‖2

≤ ‖uk − ω∗‖2 − (2− βk)βk‖uk − ϑk‖2 + 2αkβk〈Γ(uk), ω∗ − ϑk〉

+ α2
kβ

2
k‖Γ(uk)− Γ(ϑk)‖2 + 2αkβ

2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβk(1− βk)〈uk − ω∗,Γ(uk)− Γ(ϑk)〉.

≤ ‖uk − ω∗‖2 − (2− βk)βk‖uk − ϑk‖2 + 2αkβk〈Γ(uk), ω∗ − ϑk〉

+ σ2β2
k‖uk − ϑk‖2 + 2αkβ

2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβk(1− βk)〈uk − ϑk + ϑk − ω∗,Γ(uk)− Γ(ϑk)〉.

= ‖uk − ω∗‖2 − (2− βk)βk‖uk − ϑk‖2 + 2αkβk〈Γ(uk), ω∗ − ϑk〉

+ σ2β2
k‖uk − ϑk‖2 + 2αkβ

2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

+ 2αkβk〈uk − ϑk,Γ(uk)− Γ(ϑk)〉+ 2αkβk〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

− 2αkβ
2
k〈uk − ϑk,Γ(uk)− Γ(ϑk)〉 − 2αkβ

2
k〈ϑk − ω∗,Γ(uk)− Γ(ϑk)〉

≤ ‖uk − ω∗‖2 − (2− βk)βk‖uk − ϑk‖2 − 2αkβk〈Γ(ϑk), ϑk − ω∗〉

+ σ2β2
k‖uk − ϑk‖2 + 2βk(1− βk)σ‖uk − ϑk‖2

= ‖uk − ω∗‖2 − 2αkβk〈Γ(ϑk), ϑk − ω∗〉

+ [(σ − 1)2β2
k + 2(σ − 1)βk]‖uk − ϑk‖2. (10)

By definition of H̃, we can get

〈Γ(ϑk), ϑk − ω∗〉 ≥ 0. (11)

Set f(βk) = (σ − 1)2β2
k + 2(σ − 1)βk. Then it is clear that f(βk) ≤ max{f(a), f(b)} < 0.

Above all, we have for any k

‖uk+1 − ω∗‖ ≤ ‖zk − ω∗‖ ≤ ‖uk − ω∗‖, (12)

and this concludes the proof. �

According to (12), we have that {uk} is a bound sequence. Due to the fact that Γ

represents a continuous mapping, we see that {Γ(uk)} is bounded as well.

Moreover, based on (10) and (11) we also have for all k

‖uk+1 − ω∗‖2 ≤ ‖u0 − ω∗‖2 +

k∑
i=0

[(σ − 1)2β2
i + 2(σ − 1)βi]‖ui − ϑi‖2.

This means that

lim
k→∞

‖uk − ϑk‖ = lim
k→∞

‖r(uk, αk)‖ = 0. (13)

Because {uk} is a bounded sequence, we can find a subsequence {ukj} of {uk} such that

limj→∞ ukj = ū. Based on (13), we can get

lim
j→∞

‖ukj − ϑkj‖ = 0. (14)

Since {ϑk} ⊂ C and C is closed, the equality (14) implies ū ∈ C.

Next, we show that ū is an element in the solution set S.
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Proposition 3.2. Suppose that {uk} is defined by Algorithm 3.1, then any accumulation

point of {uk} is a solution to problem (1).

Proof. We suppose, without loss of generality, that {ukj} is a convergent subsequence of

{uk} and limkj→∞ ukj = ū. Denote ᾱ = infkj{αkj}. We discuss the proposition in two

cases.

Case 1: If ᾱ > 0, then for every kj we have αkj ≥ ᾱ > 0. Based on (3), we have for every kj

0 ≤ ‖r(ukj , 1)‖ ≤
‖r(ukj , αkj )‖
min{αkj , 1}

≤
‖r(ukj , αkj )‖

min{ᾱ, 1}
.

Hence, together with (14), we have limkj→∞ ‖r(ukj , 1)‖ = 0 = ‖r(ū, 1)‖. This implies

ū a solution of problem (1).

Case 2: If ᾱ = 0, then we have limkj→∞ αkj = 0. By linesearch rule, for sufficiently large kj

αkjθ
−1‖Γ(ukj )− Γ(PC(ukj − αkjθ−1Γ(ukj )))‖ > σ‖r(ukj , αkjθ−1)‖.

Hence, it follows that for sufficiently large kj

‖Γ(ukj )− Γ(PC(ukj − αkjθ−1Γ(ukj )))‖ >
σ‖r(ukj , αkjθ−1)‖

αkjθ
−1

≥
σ‖r(ukj , 1)‖

1
= σ‖r(ukj , 1)‖.

(15)

Since the projection is nonexpansive, we see that

‖ukj − PC(ukj − αkjθ−1Γ(ukj ))‖

≤ ‖r(ukj , αkj )‖+ ‖PC(ukj − αkjΓ(ukj ))− PC(ukj − αkjθ−1Γ(ukj ))‖

≤ ‖r(ukj , αkj )‖+ ‖ukj − αkjΓ(ukj )− ukj − αkjθ−1Γ(ukj )‖

= ‖r(ukj , αkj )‖+ αkj (θ−1 − 1)‖Γ(ukj )‖ → 0(kj →∞),

(16)

where the limit holds from the fact (14), the fact limkj→∞ αkj = 0 and {Γ(ukj )} is

bounded.

Because Γ is continuous and together with (16), we can see that

lim
kj→∞

‖Γ(ukj )− Γ(PC(ukj − αkjθ−1Γ(ukj )))‖ = 0.

Based on (15) and together with sandwich theorem, we can get ‖r(ū, 1)‖ = 0. This

implies ū is a point in S.

Above all, the proof is completed. �

In order to obtain the convergence of Algorithm 3.1, we prove that ū ∈ H̃.

Proposition 3.3. Suppose that {uk} represents the sequence defined by Algorithm 3.1. Then

any cluster point of {uk} belongs to H̃.

Proof. By Lemma 2.1(c), for each u∗ ∈ Hk

⋂
C and any k

‖uk+1 − u∗‖2 ≤ ‖zk − u∗‖2 − ‖zk − uk+1‖2.
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Together with (12), we see that

‖zk − uk+1‖2 ≤ ‖zk − u∗‖2 − ‖uk+1 − u∗‖2

≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2.
(17)

Notice that the right side of the latter inequality in (17) is summable. This implies

lim
k→∞

‖zk − uk+1‖ = 0. (18)

Since ‖zk − uk+1‖ = d(zk, Hk), we can get zk ∈ Hk as k →∞. Together with the structure

of H̃, we obtain zk ∈ H̃ as k → ∞. Using (18) we can see uk ∈ H̃ as k → ∞. This means

that all cluster points of {uk} are in H̃. �

Now, we set about proving that Algorithm 3.1 is global convergent.

Theorem 3.1. Let Γ represent a continuous mapping on H and SD 6= ∅. Assume that the

sequence {uk} is defined by Algorithm 3.1, then {uk} converges to an element in S.

Proof. Using (14) and Proposition 3.3, we can get ū ∈ H̃
⋂
C. Together with Proposition

3.1, we get that

‖uk+1 − ū‖ ≤ ‖uk − ū‖ for all k.

Based on Lemma 2.4, we can see that {‖uk − ū‖} is convergent. Moreover, ū is also a

accumulation point of {uk}. Hence, we have

lim
k→∞

‖uk − ū‖ = 0.

From Proposition 3.2, the conclusion holds. �

In fact, if the mapping Γ in problem (1) is Lipschitz continuous with Lipschitz modulus

L, then we can rewrite Algorithm 3.1 in a simpler form.

Algorithm 3.2

Step 0. Let Γ represents a L-Lipschitz continuous mapping. Choose a parameter

λ ∈ (0, 1
L ), and u0 ∈ H. Set k = 0.

Step 1. Compute

ϑk = PC(uk − λΓ(uk)).

If uk = ϑk, the program stops. Else, continue.

Step 2. Calculate

zk = (1− βk)uk + βk[ϑk + λ(Γ(uk)− Γ(ϑk))],

where {βk} ⊂ [a, b] ⊂ (0, 2)

Step 3. Set hj = {x ∈ H : 〈Γ(ϑj), x− ϑj〉 ≤ 0}, and let Hk =
⋂k
i=0 hi. Compute

uk+1 = PHk
zk.

Step 4. Let k = k + 1 and go to Step 1.
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Let Γ represent a L-Lipschitz continuous mapping and set λ ∈ (0, 1
L ). Clearly, if we

take α0
k = λ and σ = λL in Algorithm 3.1, then it degenerates into Algorithm 3.2. Together

with Theorem 3.1, we can get the next corollary.

Corollary 3.1. Let Γ represent a L-Lipschitz continuous mapping on H. Suppose {uk} is

the sequence generated by Algorithm 3.2. Then {uk} converges to a point in S.

Proof. Since Γ is L-Lipschitz continuous, we take α0
k = λ and σ = λL in Algorithm 3.1.

In this case, the inequality (4) is satisfied with mk = 0, and Algorithm 3.1 is equivalent to

Algorithm 3.2. Together with Theorem 3.1, we have the conclusion is true. �

Next, we propose another algorithm and its variant forms under Lipschitz continuity

assumption.

Algorithm 3.3

Step 0. Let Γ be a continuous mapping on H. Choose parameters 0 < ã < ā,

θ, σ ∈ (0, 1), and u0 ∈ H. Set k = 0.

Step 1. Calculate ϑk = PC(uk−αkΓ(uk)) and αk = α0
kθ
mk , where α0

k ∈ [ã, ā] and mk

represents the smallest nonnegative integer m which satisfies

α0
kθ
m‖Γ(uk)− Γ(PC(uk − α0

kθ
mΓ(uk)))‖ ≤ σ‖uk − PC(uk − α0

kθ
mΓ(uk))‖.

If uk = ϑk, the program stops. Else, continue.

Step 2. Calculate

zk = (1− βk)uk + βk[ϑk + αk(Γ(uk)− Γ(ϑk))],

where {βk} ⊂ [a, b] ⊂ (0, 2).

Step 3. Set hj = {x ∈ H : 〈Γ(ϑj), x− ϑj〉 ≤ 0}, and let

tk ∈ arg max{d(uk, hj) : 0 ≤ j ≤ k} and Hk = htk .

Compute

uk+1 = PHk
zk.

Step 4. Let k = k + 1 and go to Step 1.

According to the structure of Algorithm 3.3, it is not difficult to see that Proposition

3.1 and Proposition 3.2 are also true for Algorithm 3.3. So, we will just give the following

statements and leave out their proof.

Proposition 3.4. Let the sequence {uk} and {zk} be generated by Algorithm 3.3. Then for

any ω∗ ∈ H̃
⋂
C and all k, we have that the statement ‖uk+1−ω∗‖ ≤ ‖zk−ω∗‖ ≤ ‖uk−ω∗‖

holds.

Proposition 3.5. Assume that {uk} is the sequence defined by Algorithm 3.3. Then all

cluster points of {uk} are the solution of problem (1).

Now, we only need to show that any accumulation point of {uk} belongs to H̃. Then

we obtain that Algorithm 3.3 is convergent.
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Proposition 3.6. Let {uk} represent the sequence defined by Algorithm 3.3. Then any

accumulation point of {uk} is in H̃.

Proof. From the structure of H̃, we attain H̃ ⊂ hi for each i ≥ 0. According to Lemma

2.1(c) and Proposition 3.4, for all ω∗ ∈ H̃
⋂
C, we have

‖zk − uk+1‖2 ≤ ‖uk − ω∗‖2 − ‖uk+1 − ω∗‖2 for any k. (19)

Notice that the left hand of the inequality (19) is summable. This implies

lim
k→∞

‖zk − uk+1‖ = 0. (20)

Since ‖zk − uk+1‖ = d(zk, Hk), we can get limk→∞ d(zk, Hk) = 0. From the definition of

Hk, we have 0 ≤ d(zk, hi) ≤ d(zk, Hk) for all i ≤ k. This means that for any fixed i,

limk→∞ d(zk, hi) = 0. Together with (20), we obtain that d(ū, hi) = 0 for any fixed i, and

the proposition is proved. �

According to Proposition 3.4-3.6, we can give the following theorem and omit its

proof.

Theorem 3.2. Let Γ be continuous on H. The iterative procedure of Algorithm 3.3 either

terminates in finite number of steps or converges to an element in S.

Similarly, if Γ is L-Lipschitz continuous in (1), then we can remove the line search

procedure in Algorithm 3.3 and rewrite it in a simpler form.

Algorithm 3.4

Step 0. Let Γ represent a L-Lipschitz continuous mapping, choose a parameter λ ∈
(0, 1

L ), and choose u0 ∈ H. Set k = 0.

Step 1. Calculate

ϑk = PC(uk − λΓ(uk)).

If uk = ϑk, the program stop; Else, continue.

Step 2. Calculate

zk = (1− βk)uk + βk[ϑk + λ(Γ(uk)− Γ(ϑk))],

where {βk} ⊂ [a, b] ⊂ (0, 2).

Step 3. Set hj = {x ∈ H :< Γ(ϑj), x − ϑj >≤ 0}, and let tk ∈ arg max{d(uk, hj) :

0 ≤ j ≤ k} and Hk = htk .

Compute uk+1 = PHk
zk.

Step 4. Let k = k + 1 and return to Step 1.

Since the convergence analysis between Algorithm 3.4 and Algorithm 3.2 have no

difference, we give directly the following conclusion and omit its proof.

Theorem 3.3. Assume that Γ is L-Lipschitz continuous on H, and {uk} represent the

sequence defined by Algorithm 3.4, then {uk} converges to a point in S.
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4. Numerical Examples

We illustrate the convergence of our proposed iterative schemes through several ex-

amples. Denote the Algorithm 3 in [23] by Alg. B, and compare it with Algorithm 3.2 (for

short Alg. 2) and Algorithm 3.4 (for short Alg. 4). Assume that C = {u ∈ Rn : Au ≤ b},
where A ∈ Rm×n is a matrix and b ∈ Rm is a vector. According to [23], projecting a vec-

tor x onto the polyhedron C is equivalent to solving the following quadratic programming

problem:

arg min

{
1

2
uTu− xTu : u ∈ C

}
. (21)

Since a half-space is also a polyhedron, the intersection of half-spaces and C is still a

polyhedron, we can use the matlab optimization toolbox to calculate the projection.

Example 4.1 ([23]). Let be given C = [−1, 1]4 and Γ(u) = (u21, u
2
2, u

2
3, u

2
4)T . If we set

u = (−1,−1,−1,−1)T , then for all x ∈ C, we see that 〈Γ(x), x − u〉 ≥ 0. Moreover, it is

easily verified that Γ is Lipschitz continuous with Lipschitz modulus 4. Take the stopping

criteria error = ‖r(uk, λ)‖2 ≤ 10−7, we use Alg. 2, Alg. 4 with parameter λ = 0.2 and Alg.

B with parameter λ = 0.9999
4 . The initial point is u0 = (−0.5,−0.5,−0.5,−0.5)T , and we

illustrate the result in Table 1 and Fig. 1.

Example 4.2 ([23]). Suppose C = [−1, 1]× [−2, 2]× [−3, 3], and for any u = (u1, u2, u3)T ,

set Γ(u) = (u1 − u2, u3

1+‖u‖2 ,
u3

1+‖u‖2 )T . We take u = (0,− 1
2 ,

1
4 )T and x = ( 1

2 , 1,
1
4 )T , then

it is not difficult to verify that Γ is not quasimonotone. Moreover, we can get clearly

‖Γ(u)− Γ(x)‖ <
√

6‖u− x‖. Take the stopping criteria error = ‖r(uk, λ)‖2 ≤ 10−7, we use

Alg. 2, Alg. 4, Alg. B with parameter λ = 1√
8
. The initial point is u0 = (0.5, 1.5, 2)T , and

we illustrate the result in Table 2 and Fig. 2.

Table 1. Result of Example 1

u0 Alg. 2 Alg. 4 Alg. B

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 )T CPU(s) iter. CPU(s) iter. CPU(s) iter.

0.1875 21 0.20312 23 2.4531 311

Table 2. Result of Example 2

u0 Alg. 2 Alg. 4 Alg. B

(0.5, 1.5, 2)T CPU(s) iter. CPU(s) iter. CPU(s) iter.

0.60938 35 0.35938 46 0.59375 55

5. Conclusions

In this article, we introduce two new approaches to solve variational inequalities with-

out monotonicity. The strong convergence of the two algorithms is proved. In comparison,

the convergence range of algorithms proposed in this paper is larger than [23]. Finalliy, we

demonstrate the advantages of our proposed algorithms through some numerical examples.
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Figure 1. u0 = (−0.5,−0.5,−0.5,−0.5)
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Figure 2. u0 = (0.5, 1.5, 2)
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