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TSENG-TYPE SUBGRADIENT METHODS FOR SOLVING
NONMONOTONE VARIATIONAL INEQUALITIES

Xiangyao Li', Li-jun Zhu?, Mihai Postolache®

In this article, we introduce two new approaches for solving variational inequal-
ities without monotonicity. The first algorithm simplifies the projection region of each
iteration in Ye and He [Comput. Optim. Appl., 60 (2015), 141-150], that is, it becomes
the intersection of multiple half-spaces and no longer needs to be intersected with the fea-
sible set. By a selection technique, the second algorithm replaces the projection on the
common region of the feasible set and multiple half-spaces with a specific half-spaces in
each iteration. The strong convergence of these two algorithms have been demonstrated
under the assumption that the Minty variational inequality has a solution. Finally, some

numerical examples are given to illustrate the advantages of the proposed algorithms.
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1. Introduction

Let H be a real Hilbert space and C' C H represent a nonempty convex closed set.
Denote I': H — H a continuous mapping, || - || and (-) the norm and inner product in H,

respectively. Variational inequalities (VI) problem is finding an element u € C' such that
(T'(u),z—u) >0, VeeC. (1)

We also know that the Minty variational inequality of (1) is formulated in the following
form: find an element u € C' such that

(T(z),x —u) >0, Vo € C.

Let S be the solution set of variational inequalities problem, and Sp be the solution
set of the Minty variational inequality of (1). According to Karamardian [9] in 1976, we
obtain that S C Sp when I' is pseudomonotone. Moreover, suppose that C' is nonempty
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convex closed and I' represents a continuous mapping on C. Then the conclusion Sp C S
holds based on the Minty lemma. Hence, we have that S = Sp, when C' C H is nonempty
convex closed and T" represents a pseudomonotone and continuous mapping on C'.

For the convergence analysis of many classical algorithms, the assumption that S =
Sp is very important. Such as the Goldstein-Levitin-Polyak projection algorithm [2], [3],
proximal point algorithm [4], extragradient algorithm [5], subgradient extragradient algo-
rithm [7], Tseng algorithm [8] and their variant algorithms (see [11], [12], [14], [17]). However,
if the mapping I' is quasimonotone or even nonmonotone, the condition S = Sp no longer
holds. In order to solve more general variational inequalities, we need to find new methods.
In 2015, Ye and He [1] proposed a double projection approach for solving variational inequal-
ities. This method guarantees convergence only under the assumption that Sp is nonempty
and does not depend on the generalized monotonicity of I'. However, for getting next itera-
tion point k1 in [1], we need to project the current iteration point onto the common region
of k 4+ 1 half-spaces and the feasible set. It is well known that the calculation of projection
is complicated. Therefore, it will be very meaningful to cut down the computational cost of
the approach in [1]. To this end, the first algorithm is introduced.

In 2021, Lei and He [19] proposed an improved extragradient algorithm for solving
nonmonotone variational inequalities. Undoubtedly, this is a more efficient approach than
[1]. Very recently, a modified Solodov-Svaiter method was introduced in [23]. In this method,
the projection region in [1] is reduced to the common region of a certain half-space and the
feasible set. However, both the methods in [19] and [23] need to project a vector onto the
feasible set twice (or more complicated) in every iteration. Inspired by [7], [10], [11], [19] and
[23], we proposed the second algorithm. The improved Tseng method and the subgradient
method are combined, so as to achieve the purpose of convenient calculation. In fact, we
can’t prove theoretically which algorithm is more efficient, the first algorithm or the second
algorithm. So, we have left both of them for interested readers to study. Throughout this
article, we stipulate that the Minty variational inequality of problem (1) has a solution. The
reader is referred to Ye [10] for more details on Sp # (0.

The rest of this paper is structured as follows. In section 2, we recall some lemmas
and properties for use in the following sections. In section 3, we propose two new iterative
schemes to solve nonmonotone variational inequalities and perform convergence analysis on
them. When the mapping imposed on variational inequalities is Lipschitz continuous, we
can simplify the proposed two algorithms. In section 4, we demonstrate the efficiency of the

introduced algorithms through several numerical examples.

2. Preliminaries

In this section, we present some properties and conclusions which will be useful for
the following convergence analysis.
Let C represents a nonempty convex closed subset of H, and denote the distance from

an element z, € H to C by d(z1,C); namely

d(x1,C) == inf{||z1 — x2|| : z2 € C}.
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Set Pc(uy) the projection of a vector u; onto C; namely
Po(uy) := argmin{||u; — us| : uz € C}.

Because C represents a convex closed set, we get easily d(uq,C) = ||lu1 — Po(u1)]|-
For a point v € H and a fixed number § > 0, we call r(u, ) the residual function of

the variational inequality (1); namely
r(u,d) = u — Po(u — 6T (u)). (2)

Lemma 2.1 ([10]). Let C represent a nonempty convex closed set. Then, the next proposi-
tions hold.

(a) for a vector uy € H, we have
v=Po(u) <= v eC and (ug —v,us —v) <0 forall us € C.
(b) the projection is nonexpansive, namely
|Peer) — Polan)]| < lles — aa]] for any 1.2 € .
(c) set v = Pe(uy); then we have
v —ug|® < |luy — uz||® — |Jus — v||* for all us € C.

Lemma 2.2 ([24, 25]). Suppose that r(u, ) is defined by (2). Then the next two conclusions
hold.
(a) a sufficient and necessary condition for w € S is that ||r(u,d)| = 0 for any fized § > 0.

(b) if we can find a constant § > 0 satisfying ||r(u,d)| =0, then u is an element in S.

Lemma 2.3 ([23]). Let r(u,d) be defined by (2) and u € H, then we have the next propo-
sittons.

(a) function 6 — ||r(u, )| is nondecreasing whenever 6 > 0.

(b) function & — M{é)” is nonincreasing whenever ¢ > 0.

According to Lemma 2.3, we can get directly the following inequality and omit its

proof. For any constant § > 0, we obtain
min{d, 1}[[r(u, || < [[r(u,0)|| < max{8, 1}|[r(u, 1)]. (3)
Lemma 2.4 ([10]). Let {ax} and {Br} represent two nonnegative real number sequences. If
for any k, we have a1 < ax+ B and Yoo B < oo, then the sequence {ay} is convergent.
3. Main results

In this section, we propose two new approaches and their variant forms under Lipschitz

continuity assumption for solving variational inequalities without monotonicity.

Algorithm 3.1

Step 0. Let I' represent a continuous mapping on H; choose parameters 0 < a < a,
0,0 € (0,1), and choose ug € H. Set k = 0.
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Step 1. Compute ¥), = Po(uy, — ay'(ug)) and a = af™, where of € [a,a] and my,

represents the smallest nonnegative integer m satisfies
apt™ || (ux) — D(Pe(ug — ag0™ T (up))|| < ollug — Pe(up — ag0™ T (up))]|. (4)

If up, = 9y, then program stops. Else, it continues.
Step 2. Calculate

2k = (1= Br)ug + B[k + ar(T'(ug) — T'(9))],

where {08;} C [a,b] C (0,2).
Step 3. Set h; = {x € H: (I'(¥;),z — ;) <0}, and let Hj, = ﬂf:o h;. Compute

Uk+1 = Pszk.

Step 4. Let k = k 4+ 1 and return to Step 1.

Remark 3.1. If we remove the last part in Algorithm 3.1, namely projection on Hy, then

the above algorithm collapses into the extrapolated Tseng algorithm in Bot [11].
Now, we show that the linesearch procedure is well-defined in Algorithm 3.1.

Lemma 3.1. If T is continuous on H and o € [a,a] be a constant, then we can find a

nonnegative integer m satisfying
af™||T(u) = T(Po(u — ad™T'(w)))]| < ollu — Po(u—ad™T(u))], (5)
where 0,0 € (0,1).

Proof. If w is an element in the solution set of problem (1), then together with Lemma
2.2(a), we attain that u — Po(u — aI'(u)) = 0. Take m = 0, and inequality (5) holds.

If u ¢ S, based on Lemma 2.2(b), for every § > 0 we have ||r(u,d)|| > 0. Next, we
prove that inequality (5) holds after a finite number of steps. Suppose to the contradict

circumstance, for all m
af™[|I'(u) = I'(Pe(u — ad™(u)))|| > ofju — Po(u — a6™T'(u))]]. (6)

Then, we discuss the problem in two possibilities.
Case 1: If u € C, then we can get Po(u) = u. By the fact 8 € (0,1) and both Po(+)

and T'(+) are continuous, we see
IT(u) — T(Po(u — ad@™T(w)))|| = 0 as m — oo. (7)

Moreover, together with 6 € (0,1) and Lemma 2.3(b), for sufficient large m
lu = Po(u = ab™T(w))|| _ [Ir(u, a8™)|| _ |Ir(u, 1)]]
afm af™ - 1
Since u ¢ S, we have ||r(u,1)|| > 0. By o € (0,1) and (7), for sufficient large m
7 (u, 26™)]|
T agm

It contradicts (6).

2 ol|r(u, )| > ab™|[T'(u) = T'(Po(u — af™T (u)))].-
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Case 2: If u ¢ C, according to Lemma 2.2(b), we have o|jlu — Pc(u)|| > 0. Since
I'() and Pc(-) are continuous, we see that afd™|I'(u) — T'(Pe(u — af™T(u)))|| — 0 and
ollu — Po(u — ad™T'(u))]] = olju — Po(u)|| > 0 as m — oco. This contradicts (6).

After all, the proof is completed. O

Set H = Nieo hi- Because Sp # 0, we can get clearly HNOC 0.

Proposition 3.1. Let the sequence {uy} and {z} be generated by Algorithm 3.1. Then for
any w* € H(C, we obtain that ||upi1 — w*|| < ||z — w*|| < |lux — w*|| for any k.

Proof. From the definition of zx, we have

llzk — ™[I = (1 = Br)un + Bty — w*||* + @i BRIIT (ur) — T(95)1?
+ 20 B (1 = Br)ur + By — w™, T'(ug) — T'(Ix))
= (1= Bi)llur — w*[I* + Brll 9k — w*[I* = (1 — Br) Brllur — I 1?
+ i BRIIT (uk) = D(0k)|” + 2000 (1 = B) Bre(ure — ™, T(ug) — T (V)
+ 200 B (9 — w*, T(ug,) — T(3))
= (1 = Bi)|Jux — w*|I* + BrllPx — ug + up, — w*|?
— (1= B1)Bullur — Okl|* + o BEIIT (ur) — T (9|12
+ 200(1 — Br) Bre (ur, — w*, () — T'(95))
+ 20583 (Vg — w*, T(ug) — T (V%))
= (1= Be)llur, — w1 + B9k — gl + lur — ™[> + 2(0% — ug, up — w*))
— (1= Br)Bellur — Ok + aZ BEIT (ur) — T(0)|?
+ 2a(1 = Br) B (up — w*, T'(ug) — T (k)
+ 2082 (0 — w*, T(ug) — T'(9g))
= |lup — w*||? + Brllur — 9kl|® + 28k (9 — up, up — I + 9 — w*)
— (1= Bi) Brllur, — Okl® + @ BRIT (ur) — T (92|
+ 20 (1 = Bi) B (ur, — w™, T(ug) — T (k)
+ 20 B2 (Vg — w*, T(ug) — T'(9g))
= |luk — w*[|* = (2 = Be)Bellur — Iell® + 2Bk (Vi — uk, Up — w*)
+ i BRIT (uk) = D(0k)II* + 20083 (9% — w*, T(ug) — T ()
+ 20085 (1 — Br) {u — w*, T'(ug) — T'(Ik)). (8)

Since ¥y, = Po(ur — axl'(ug)) and w* € C, we have

<uk — akF(uk) — 19k,w* — 19k> S 0

= <’U,k — 19]@,(40* — 19k> < ak<1"(uk),w* — 19k>
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Combining (8) and (9), we can get

lug1 = w*l|* = || P2 — Pryw*|| < |l2x — w*||?
< luk = w*[1” = (2 = Bi) Brllur — Okl + 20 B (T (ug), w* — i)
+ g BRIT (ur) — T(0x)[1? + 20083 (9 — w*, T(ug) — T(3))
+ 205 B (1 — Br) (uk — w™, T'(ug) — D(Ig)).
< luk = w*I* = (2 = Bi) Brllur — Il + 20 Bi(T (un), w* — i)
+ 02 B2 |up — Ik||* + 20k B2 (0 — w*, T(ug) — T'(Wp))
+ 200k (1 — Br) (ur — O + 9 — w*, T(ug) — T(9g)).
= [lur, — w*||> = (2 = Br)Brllur — Inl|” + 20081 (T (uk), w* — Ii)

+ 02 B |up — Ik||? + 20, B2 (Vg — w*, T(ug) — T'(Wg))

+ 20 B (ur — Ok, D(ug) — T(0k)) + 20085 (Or — 0™, T'(ur) — T'(k))

— 2a B {ur, — g, T(u) = T(93)) — 20 B (g — w*, T(ug) = T())

< luk = w1 = (2 = Bi) Brllur — Okl — 20k B (T (1), I — w*)

+ 0 Bl — Ok* + 28k (1 = Br)o||lu — Ok |?

= [lux — w*[|* = 200 Bk (L (9), I — w*)

+[(0 = 1)%8% + 2(0 — 1)B]llur — 9] (10)
By definition of H , we can get

(T(95), 95 — ") > 0, (11)

Set f(Br) = (0 — 1)2513 + 2(0c — 1)Bk. Then it is clear that f(8r) < max{f(a), f(b)} < 0.
Above all, we have for any k

k1 — ™l < flox — || < flurx — ", (12)
and this concludes the proof. |

According to (12), we have that {uy} is a bound sequence. Due to the fact that I’
represents a continuous mapping, we see that {I'(ux)} is bounded as well.

Moreover, based on (10) and (11) we also have for all k

k
uks1 —w* 1> < Jluo —w*|* + > _[(0 = 1)*87 +2(0 — 1)Bi][Jus — 94|
i=0
This means that
lim ||ur — 9| = lim ||r(ug, ax)|| = 0. (13)
k—o0 k—o0

Because {uy} is a bounded sequence, we can find a subsequence {uy,} of {ux} such that
lim;_, o ug; = @. Based on (13), we can get

T [fus, O, | = 0. (14)

Since {9} € C and C is closed, the equality (14) implies @ € C.
Next, we show that @ is an element in the solution set S.
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Proposition 3.2. Suppose that {uy} is defined by Algorithm 3.1, then any accumulation

point of {ur} is a solution to problem (1).

Proof. We suppose, without loss of generality, that {u,} is a convergent subsequence of

{ux} and limg; oo up, = 4. Denote & = infy,{ay,}. We discuss the proposition in two

cases.

Case 1:

Case 2:

If & > 0, then for every k; we have ay; > @ > 0. Based on (3), we have for every k;

(e, v )| [l (e, o, )|
min{oy,,1} — min{a, 1}

0 < lr(un,, DI <

Hence, together with (14), we have limy; o [|7(ux,,1)|| = 0 = ||7(u, 1)||. This implies
4 a solution of problem (1).

If @ = 0, then we have limy; o ay; = 0. By linesearch rule, for sufficiently large k;
a0 T (ur, ) — T(Po(ur; — aw, 0T (ur,)| > ol (ung, an, 67|
Hence, it follows that for sufficiently large k;

ol (01|

_ _ —1
(T (ur,) — T(Po(ur, — ar, 0 T(ux,)))|| > e

(15)
A DLy oy
Since the projection is nonexpansive, we see that
lur; — Pe(ur, — ar, 07T (ug,))|
< (g s )|+ 1| Po(ury — e, T, ) — Pe(ug, — i, 67 T (ug,)) | (16)

< ”r(uk]‘vakj)” + ||ukj - O‘kjr(ukj) - Uk; — O‘kjoilr(ukj)”

= llr(ur, , ) )| + e, (07 = DT (ug, )| = 0(k; — 00),
where the limit holds from the fact (14), the fact limy, oo ax;, = 0 and {I'(ug;)} is
bounded.

Because T is continuous and together with (16), we can see that

lim ||T(ug,) — T'(Pe(uk, — ok, 07 'T(ug,)))| = 0.

k}j*}OO

Based on (15) and together with sandwich theorem, we can get ||r(a,1)|] = 0. This
implies @ is a point in S.
Above all, the proof is completed. O

In order to obtain the convergence of Algorithm 3.1, we prove that u € H.

Proposition 3.3. Suppose that {uy} represents the sequence defined by Algorithm 3.1. Then

any cluster point of {ux} belongs to H.

Proof. By Lemma 2.1(c), for each u* € H, [ C and any k

Uk+1 — U S ||IRE — U — ||Rk — Uk+1 .
| 1P <) 1P =1 I?
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Together with (12), we see that

2k = s |® < flzw = u* | = Jlugegr — |
* (|12 * 12 (17)
< Jug = w7 = fJuggr — "
Notice that the right side of the latter inequality in (17) is summable. This implies
lim ||z — ug41]] = 0. (18)
k—o0

Since ||z, — ugt1|| = d(zk, Hy), we can get z, € Hy, as k — co. Together with the structure
of H, we obtain z, € H as k — oo. Using (18) we can see u, € H as k — co. This means
that all cluster points of {u;} are in H. O

Now, we set about proving that Algorithm 3.1 is global convergent.

Theorem 3.1. Let I' represent a continuous mapping on H and Sp # (). Assume that the
sequence {uy} is defined by Algorithm 3.1, then {u} converges to an element in S.

Proof. Using (14) and Proposition 3.3, we can get 4 € I;Tﬂ C. Together with Proposition
3.1, we get that

lug+1 — @l < |lug — @l| for all k.

Based on Lemma 2.4, we can see that {|lux — @||} is convergent. Moreover, @ is also a

accumulation point of {uy}. Hence, we have
lim |lup —al =0.
k—o0
From Proposition 3.2, the conclusion holds. |

In fact, if the mapping I in problem (1) is Lipschitz continuous with Lipschitz modulus

L, then we can rewrite Algorithm 3.1 in a simpler form.

Algorithm 3.2

Step 0. Let I' represents a L-Lipschitz continuous mapping. Choose a parameter
A€ (0,1), and up € H. Set k = 0.
Step 1. Compute
ng = Pc(uk — )\F(uk)).

If up = Y, the program stops. Else, continue.
Step 2. Calculate

2 = (1 = Br)ug + B[V + AT (ug) — T(Vi))],

where {8;} C [a,b] C (0,2)
Step 3. Set h; = {z € H: (I'(¢¥;),z —9J;) <0}, and let Hy, = ﬂf:o h;. Compute

Uk+1 = PHka-

Step 4. Let k =k + 1 and go to Step 1.
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Let I" represent a L-Lipschitz continuous mapping and set A € (0, %) Clearly, if we
take o = X and o = AL in Algorithm 3.1, then it degenerates into Algorithm 3.2. Together
with Theorem 3.1, we can get the next corollary.

Corollary 3.1. Let I represent a L-Lipschitz continuous mapping on H. Suppose {uy} is
the sequence generated by Algorithm 3.2. Then {ur} converges to a point in S.

Proof. Since T is L-Lipschitz continuous, we take a = A and ¢ = AL in Algorithm 3.1.
In this case, the inequality (4) is satisfied with my = 0, and Algorithm 3.1 is equivalent to
Algorithm 3.2. Together with Theorem 3.1, we have the conclusion is true. O

Next, we propose another algorithm and its variant forms under Lipschitz continuity

assumption.

Algorithm 3.3

Step 0. Let I' be a continuous mapping on H. Choose parameters 0 < a < a,
0,0 €(0,1), and ug € H. Set k = 0.

Step 1. Calculate ¥y = Po(ug, — axl'(ug)) and ag = a20™+ where o € [a,a) and my,
represents the smallest nonnegative integer m which satisfies

apt™ || (ug) — D(Pe(ug — agd™ T (wp))|| < ollug — Pe(ugp — a6 T (up))||-

If up = 9%, the program stops. Else, continue.

Step 2. Calculate

zp = (1 = Br)uk + B[V + aw (T (ug) — T'(Ik))],

where {8;} C [a,b] C (0,2).

Step 3. Set h; = {x € H : (I'(¥;),z — ¥;) < 0}, and let

ty € argmax{d(ug,h;) : 0 < j <k} and Hy = hy,.
Compute
Uk+1 = Pszk.
Step 4. Let k = k + 1 and go to Step 1.

According to the structure of Algorithm 3.3, it is not difficult to see that Proposition
3.1 and Proposition 3.2 are also true for Algorithm 3.3. So, we will just give the following
statements and leave out their proof.

Proposition 3.4. Let the sequence {uy} and {zx} be generated by Algorithm 3.3. Then for
anyw* € H(C and all k, we have that the statement ||ug+1 —w*|| < ||z —w*|| < [Jup —w*||
holds.

Proposition 3.5. Assume that {uy} is the sequence defined by Algorithm 3.3. Then all
cluster points of {ur} are the solution of problem (1).

Now, we only need to show that any accumulation point of {uy} belongs to H. Then
we obtain that Algorithm 3.3 is convergent.
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Proposition 3.6. Let {uy} represent the sequence defined by Algorithm 3.3. Then any

accumulation point of {uy} is in H.

Proof. From the structure of H , we attain HC h; for each ¢ > 0. According to Lemma
2.1(c) and Proposition 3.4, for all w* € H(C, we have

2 — wa | < Il = w* I = g — |2 for any k. (19)

Notice that the left hand of the inequality (19) is summable. This implies

lim ||z — uk41]] = 0. (20)
k—o0
Since ||zx — ugt1]| = d(zk, Hi), we can get limg_,o d(2k, Hr) = 0. From the definition of

Hj,, we have 0 < d(zg,h;) < d(z,Hy) for all ¢ < k. This means that for any fixed i,
limg 00 d(2k, h;) = 0. Together with (20), we obtain that d(a, h;) = 0 for any fixed 4, and
the proposition is proved. |

According to Proposition 3.4-3.6, we can give the following theorem and omit its

proof.

Theorem 3.2. Let I' be continuous on H. The iterative procedure of Algorithm 3.3 either

terminates in finite number of steps or converges to an element in S.

Similarly, if T is L-Lipschitz continuous in (1), then we can remove the line search
procedure in Algorithm 3.3 and rewrite it in a simpler form.
Algorithm 3.4

Step 0. Let I' represent a L-Lipschitz continuous mapping, choose a parameter A €
(0, %), and choose ug € H. Set k = 0.
Step 1. Calculate

19]€ = Pc(uk — )\I‘(uk))

If up, = 9y, the program stop; Else, continue.
Step 2. Calculate

2k = (1 = Br)ug + Be[Vr + MIT(ug) — T'(9x))],

where {8;} C [a,b] C (0,2).

Step 3. Set h; = {z € H :< T'(¥;),x —9; >< 0}, and let ¢, € argmax{d(ux, h;) :
0<j<k}and Hy = hy,.

Compute ugy1 = P, 2k-

Step 4. Let kK = k + 1 and return to Step 1.

Since the convergence analysis between Algorithm 3.4 and Algorithm 3.2 have no

difference, we give directly the following conclusion and omit its proof.

Theorem 3.3. Assume that T is L-Lipschitz continuous on H, and {uy} represent the
sequence defined by Algorithm 3.4, then {ug} converges to a point in S.
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4. Numerical Examples

We illustrate the convergence of our proposed iterative schemes through several ex-
amples. Denote the Algorithm 3 in [23] by Alg. B, and compare it with Algorithm 3.2 (for
short Alg. 2) and Algorithm 3.4 (for short Alg. 4). Assume that C' = {u € R" : Au < b},
where A € R™*" is a matrix and b € R™ is a vector. According to [23], projecting a vec-
tor x onto the polyhedron C is equivalent to solving the following quadratic programming

problem:
1

arg min {2uTu —xTu:ue C} . (21)
Since a half-space is also a polyhedron, the intersection of half-spaces and C' is still a

polyhedron, we can use the matlab optimization toolbox to calculate the projection.

Example 4.1 ([23]). Let be given C = [~1,1]* and T'(u) = (u?,u3,u3,u$)T. If we set
u = (—1,-1,-1,—1)T then for all x € C, we see that (I'(z),z — u) > 0. Moreover, it is
easily verified that I' is Lipschitz continuous with Lipschitz modulus 4. Take the stopping
criteria error = ||r(ug, \)||? <1077, we use Alg. 2, Alg. 4 with parameter A = 0.2 and Alg.
B with parameter A = %2292 The initial point is ug = (—0.5,—0.5,—0.5,—0.5), and we
illustrate the result in Table 1 and Fig. 1.

Example 4.2 ([23]). Suppose C = [~1,1] x [-2,2] x [-3, 3], and for any u = (uy,uz,u3)7,
set D(u) = (u; — ug, Hiﬁii”% H’ﬁizuz)T We take u = ( ,—%, i)T and © = (%,1,%)717 then
it is not difficult to verify that I' is not quasimonotone. Moreover, we can get clearly
IT(u) — T'(2)|| < vV6|ju — . Take the stopping criteria error = ||r(ux, \)||> < 1077, we use
Alg. 2, Alg. 4, Alg. B with parameter A = ﬁ. The initial point is ug = (0.5,1.5,2)7, and
we illustrate the result in Table 2 and Fig. 2.

TABLE 1. Result of Example 1

Ug Alg. 2 Alg. 4 Alg. B
(-3, -4 -1 DT CPU(s) iter. CPU(s) iter. CPU(s) iter.
0.1875 21 0.20312 23 2.4531 311

TABLE 2. Result of Example 2

Uug Alg. 2 Alg. 4 Alg. B
(0.5,1.5,2) CPU(s) iter. CPU(s) iter. CPU(s) iter.
0.60938 35 0.35938 46 0.59375 55

5. Conclusions

In this article, we introduce two new approaches to solve variational inequalities with-
out monotonicity. The strong convergence of the two algorithms is proved. In comparison,
the convergence range of algorithms proposed in this paper is larger than [23]. Finalliy, we
demonstrate the advantages of our proposed algorithms through some numerical examples.
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FIGURE 1. uy = (—0.5,—-0.5,—0.5,—0.5)
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FIGURE 2. ug = (0.5,1.5,2)
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