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FAULT ANALYSIS AND IDENTIFICATION OF MOTOR
BEARING BASED ON ESMD AND SVM

Xuejun CHEN*, Zhixin CUI?, Jun SHEN?, Lin MA?

Aiming at the non-stationary and non-linear characteristics of motor bearing
vibration signal, a fault analysis and identification method of motor bearing based on
extreme-point symmetric mode decomposition (ESMD) and support vector machine
(SVM) is proposed. ESMD uses the optimal adaptive global mean to determine the
optimal number of modal decomposition. The best IMF component of fault feature can
be obtained by decomposing the vibration signal of motor bearing by ESMD algorithm.
The energy of IMF components which contain the main fault features are extracted and
normalized. The feature vectors are imported into SVM classification, and then the fault
types are identified based on SVM classifier. It is verified by simulation experiment and
database of Case Western Reserve University. Experimental results show that compared
with empirical mode decomposition (EMD), this method can not only reduce the useless
IMF components, but also effectively improve the signal decomposition accuracy and
suppress the mode aliasing phenomenon in the process of EMD decomposition.
Compared with the EMD-SVM method, the ESMD-SVM based method has higher
accuracy. This method can provide a new idea for motor bearing fault analysis and
identification.

Keywords: Motor bearing; Fault analysis; Identification; Extreme-point symmetric
mode decomposition; Support vector machine

1. Introduction

The motor is widely used in the industrial field, and the bearing as an
important component of the motor, the performance of the bearing directly
determines the operation of the motor. According to relevant statistics, bearing
fault accounts for 40% of the total faults in motor fault types, so it is of great
significance to study the fault diagnosis of motor bearing [1-2].

There are many methods for motor bearing fault analysis and identification
diagnosis, but the most common and effective method is to extract fault features
and identify fault categories from vibration signals [3-4]. Due to the complexity of
motor operating conditions, the vibration signal often contains noise and other
interference signals, which makes it nonlinear and non-stationary. Traditional
signal processing methods, such as Fourier transform and wavelet transform, have
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good application effect on linear stationary signal [5-6], but they are not
applicable to nonlinear and non-stationary signals. Aiming at the non-linear and
non-stationary characteristics of vibration signals, Norden E. Huang proposed the
Hilbert Huang transform (HHT) [7].

HHT firstly carries out empirical mode decomposition (EMD) on vibration
signals to obtain the intrinsic mode functions (IMF) including the main frequency
components, and then carries out Hilbert spectrum analysis (HSA) on these
characteristic component signals [8-9]. For the analysis of nonlinear and non-
stationary vibration signals, this method has achieved good results, but sometimes
the accuracy of EMD decomposition is not high, and the mode aliasing
phenomenon exists in the decomposition process.

In order to improve the inherent mode aliasing problem of EMD, based on
EEMD method, reference [10] achieves the effect of denoising by adding
Gaussian white noise to further reduce the impact of mode aliasing. However, its
own white noise can not be effectively eliminated.

According to the problems existing in the practical application of EMD,
Wang Jinliang and others proposed extreme-point symmetric mode decomposition
(ESMD) in 2013 [11]. ESMD is a new development of HHT method. ESMD
retains the characteristics of EMD adaptive decomposition signal, but uses
internal extreme-point symmetry direct interpolation to replace the external
envelope interpolation in EMD, and adopts the optimization strategy, introduces
the optimal adaptive global mean (AGM) to determine the optimal screening
times, and then obtains the optimal mode decomposition times [11-12]. The
experimental results show that this method has more advantages than EMD.

Support vector machine (SVM) is a data classifier based on the statistical
learning theory of data [13], which has the advantages of simple structure, short
learning and prediction time, global optimization and so on. Therefore, in this
paper, SVM classifier is used to identify the fault category of motor bearing.

2. ESMD-SVM Method
2.1. EMD

The core idea of EMD is to decompose the signal into the sum of IMF
components and residual quantity including the main frequency components,
according to the local characteristic time scale of the signal [14]. Its principle can
be simply described as:

x(t)=Zn:cj +R 1)

In formula (1), R is the residual quantity, that is, the residual term, c; is
the j-th IMF component, and n is the number of IMF components.
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2.2. ESMD

ESMD is essentially the same as EMD. The difference is that ESMD
introduces the optimal adaptive global mean to optimize the screening times, and
uses the internal extreme-point symmetry interpolation to replace the outer
envelope interpolation in EMD, which can reduce or even eliminate the mode
aliasing in EMD to a certain extent. Meanwhile, ESMD also expands the two
conditions that define the IMF to improve its decomposition accuracy. The
expansion content is as follows:

(1) Regarding the adjacent and equal extreme-points as one, the local
maximum points and the minimum points of the IMF are arranged staggered, and
the maximum value is defined as positive and the minimum value is negative.

(2) In general, the IMF components are almost extreme-point symmetric.

Therefore, the whole ESMD decomposition process can be realized in
seven steps.

(1) All the maximum and minimum points of the original signal Y are
obtained and marked as E (i=12---n) in turn.

(2) Mark separately with F(i=12.--n-1), the midpoints connected by line
segments between adjacent extreme points, and supplement the midpoints , and
F, of the left and right boundaries by a certain method.

(3) Using the above n+1 midpoints, construct p interpolation line
L,L,-L(P>D, and take the average value L°, namely:

I::L1+L2J|;--~+Lp (2)

(4) Repeat the above steps (1)-(3) for Y-L* until ' meets the pre-set
termination condition, and then the first mode M, is obtained.

(5) Let y—m, be the original signal and repeat the above steps (1) - (4) to
obtain M,,M,--- in turn until the extreme point of the final margin R is within the

preset value.
(6) Change the value of the maximum screening times k, but ensure that
k belongs to [K . ,K__]. repeat the steps (1) - (5) above to calculate the variance

ratio. The calculation formula is as follows:

©)

Where v ={y}-- the original data, Y’:[iyij n, R={r} -- the remainder is the
AGM curve of the original data.
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(7) Draw a graph of the change of ,/, with K, select the number of

screenings corresponding to the minimum variance ratio, and repeat steps (1)-(4)
to decompose a series of optimal IMF and residual R.

2.3. Fault Analysis and Recognition Based on ESMD-SVM

Compared with EMD, ESMD has strong decomposition ability, high
decomposition accuracy, and can effectively suppress mode aliasing. Compared
with other classification algorithms, SVM has the advantages of simple structure,
short learning and prediction time, global optimization and so on [13]. The fault
diagnosis steps of motor bearing based on ESMD-SVM are as follows:

(1) The vibration signal of motor bearing collected by data acquisition
system is decomposed by ESMD method.

(2) The first n modal components including the main fault features are
extracted from the ESMD decomposition results, and the energy of the first n
modal components is calculated. The calculation formula is as follows:

RN LY (t)ro't :]Zm;‘ M;; r (4)
Where, i=12--n (n-the number of modal components); j=12.-.m (M-
the number of data sampling points); m, -the amplitude of each IMF component.
(3) The energy feature vector T is constructed by using E, in (2), and T
is normalized to get T

T =[E,E,+E,] (5)
el ©

(4) The 1~ of training samples and test samples are used as feature vectors
to input the multi-fault classification SVM classifier composed of SVM1, SVM2,
SVM3 and SVM4. The data samples are trained and identified by SVM, and the
fault classification of motor bearing and the accuracy of recognition results are
finally output.

3. Simulation Signal Analysis

EMD and ESMD are both signal-based adaptive decomposition methods.
Taking the simulation signal as an example, this paper analyzes and compares the
ability of EMD and ESMD in signal decomposition and mode aliasing
suppression. The superposition signal z(t) of sine signal x(t) and amplitude
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modulation signal y(t) is taken as the original input signal, and its expression is as
follows:
X(t) = sin(2750t)
y(t) = (L1+0.6sin(27r4t)) -sin(2790t) (8)
z(t) = x(t) + y(t)
The time domain waveforms of x(t), y(t)and z(t) are shown in Fig. 1.
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Fig. 1 Time domain waveform

EMD and ESMD methods are used to decompose z(t), and the

decomposition results are shown in Fig. 2 (a) and (b) respectively. It can be seen
from the decomposition results that the signal features are mainly concentrated in
IMF1 and IMF2 components, and the components after IMF3 can be regarded as
interference due to their small amplitude. Comparing the decomposition results of
the two methods, it can be seen that the decomposition amount of ESMD is less
and the IMF component causing interference is less.

The results of correlation coefficient comparison between EMD and
ESMD decomposition results and original signal are shown in Table 1. The higher
the correlation between IMF and the original signal, the higher the decomposition
accuracy and the better the decomposition effect. Otherwise, the decomposition
accuracy is low and the decomposition effect is poor. It can be seen from Table 1
that the correlation coefficient of each IMF in the decomposition results of ESMD
is higher, the decomposition ability is stronger, and the decomposition effect is
better.

Perform spectrum and instantaneous frequency analysis on IMF1 and
IMF2 in the decomposition results of EMD and ESMD. The two modal
components spectrograms after EMD and ESMD decomposition are shown in Fig.
3 (a) and (b) respectively. And Fig. 4 (a) and (b) respectively show the
instantaneous frequency diagrams of the two modal components after the
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decomposition of EMD and ESMD. Comparing Fig. 3 (a), (b) and Fig. 4 (a), (b),
it can be seen that the modal aliasing phenomenon is obvious in the
decomposition result of EMD, and the ESMD decomposition method can
effectively suppress the modal Aliasing phenomenon.

Table 1
Correlation coefficients between EMD and ESMD
decomposition results and original signals
Decomposition EMD ESMD
component

IMF1 0.9383 0.9538

IMF2 0.9464 0.9553

IMF3 0.0029 0.0345

IMF4 0.0105 0.0286

IMF5 0.0137 0.0427
IMF6 0.0151 /
IMF7 0.0103 /

R 0.0039 0.0379
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(a) The decomposition results of EMD method.
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Fig. 2 EMD and ESMD decomposition results
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Fig. 4. The instantaneous frequency diagram
4. Fault diagnosis of motor bearing

Take the experimental database of motor bearing fault of Case Western
Reserve University as the data source of this experiment [14]. The experimental
platform is shown in Fig. 5. In the experiment, artificial faults were created on the
inner and outer rings and rolling elements of motor bearings to simulate the
natural fault categories of motor bearings. Data collection is performed on the fan
side and the drive side with a sampling frequency of 12 kHz [15-17]. In this
paper, 60 sets of fan end data are randomly selected, including 15 sets of normal
data, inner ring fault data, outer ring fault data, and rolling element fault data. The
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number of data sampling points for each group is set to 3600. The 60 groups of
data are divided into test samples and training samples. Among them, 40 groups
are training samples and 20 groups are test samples.

Fig. 5 No-load circuit model of single-phase transformer
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Fig. 6. The ESMD decomposition results of inner ring fault data

First, 60 sets of sample data are decomposed by ESMD. The ESMD
decomposition results of a group of motor bearing inner ring faults are shown in
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Fig. 6. From the ESMD decomposition results, it can be seen that the fault
frequency information of motor bearings mainly contains the first few modes.

In this paper, the first six modal components are selected for research, and
their energy is calculated, the energy eigenvector is constructed and normalized.
The first six IMF normalized energy distributions of the four bearing fault
categories are shown in Fig. 7.
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Fig. 7 The IMF normalized energy distribution histogram

And Fig. 7 (@), (b), (c) and (d) are normalized energy distribution
histograms of IMF for normal, inner ring, outer ring and rolling element
respectively. Comparing the IMF normalized energy distribution histogram of
these four kinds of bearing fault categories, it can be seen that the energy
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distribution of each IMF is obviously different after ESMD decomposition for
different kinds of bearing fault signals. Therefore, the normalized energy value of
each IMF is taken as the feature vector of SVM. The extracted feature vectors are
shown in Table 2.

Four kinds of label sets are set in the SVM classifier: “1” for normal, “2”
for inner ring fault, “3” for outer ring fault and “4” for rolling element fault. The
above feature vectors are input into the multi-fault SVM classifier composed of
SVM1, SVM2, SVM3 and SVM4 for training, and then imported into the test set.
The test results are shown in Fig. 8. In order to show that ESMD-SVM method
has more advantages, EMD-SVM method is used for the same data, and the test
results are shown in Fig. 9.

Table 2
Feature vector

Data sample | oy ey | Eoex | E3Er | E4/Er | ES/E* | E6ES
type number
Normal 1 0.7509 0.5053 0.1872 0.4321 0.1438 0.0625
data 2 0.5229 0.7037 0.1478 0.2785 0.3458 0.1112

a 3 0.5869 0.5970 0.2154 0.4244 0.2564 0.0832
Inner 1 0.5449 0.7799 0.2929 0.0913 0.0228 0.0120
Ring 2 0.7365 0.6373 0.2257 0.0430 0.0066 0.0029
fault 3 0.6449 0.7175 0.2527 0.0710 0.0164 0.0067
Outer 1 0.9731 0.2072 0.0785 0.0625 0.0120 0.0060
Ring 2 0.9734 0.2113 0.0659 0.0588 0.0102 0.0047
fault 3 0.9746 | 0.1991 | 0.0818 | 0.0590 | 0.0167 | 0.0056
Rolling 1 0.7099 0.6439 0.2735 0.0724 0.0176 0.0065
element 2 0.6984 0.6622 0.2335 0.1357 0.0273 0.0076
fault 3 0.7081 0.6332 0.3031 0.0746 0.0157 0.0066

The accuracy of ESMD-SV is 95%, and EMD-SVM is 85%. Compared
with Fig. 8 and Fig. 9, the detection accuracy of ESMD-SVM method is higher,
and the recognition effect of motor bearing fault category is better.
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Fig. 8 ESMD-SVM method test results
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Fig. 9 EMD-SVM method test results
5. Conclusions

Aiming at the non-stationary and non-linear characteristics of motor
bearing vibration signal, a method based on pole symmetric mode decomposition
Is proposed to decompose the bearing vibration signal. The simulation results
show that the ESMD decomposition method has stronger decomposition ability,
higher precision, stronger ability to suppress mode aliasing and better effect than
the popular EMD decomposition method.

The energy distribution histogram of each IMF component after ESMD
decomposition is quite different for different fault types of bearings. The energy
of each IMF component is used as a feature vector to input SVM for training, and
the fault types of test samples are identified. Finally, through the analysis of
engineering examples, the ESMD-SVM and EMD-SVM are compared. The
experimental results show that the former has higher recognition rate and better
effect for motor bearing fault. This ESMD-SVM provides a new method for fault
identification with non-stationary and non-linear characteristic signals.
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