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BLOWING UP AND INTEGRABILITY OF HOMOGENEOUS 

PLANAR VECTOR FIELDS 
 

Razie Shafeii LASHKARIAN1, D. Behmardi SHARIFABAD2  

 In this paper, we consider the integrability of the strongly degenerate planar 

polynomial systems, i.e., the systems with no linear term. Using a special blowing up 

via the Newton polyhedra, we construct a magnification of the singular point. The 

effectiveness of this blowing up is that to study a quasi-homogeneous system, a single 

blowing up is enough, instead of iterative blowing ups. We show that for the 

homogeneous systems and a generic family of quasi-homogeneous systems, this 

magnification is a desingularization and we give a criterion for the integrability of 

such systems. We give a rational first integral for those systems which have a first 

integral.   

 

Keywords: blow up, Newton polyhedra, inverse integral factor, integrability 

problem, first integral.   

1. Introduction 

Throughout this paper, the sets of integer, real and complex numbers are 

denoted by ℤ, ℝ and ℂ respectively. Also the ring of all polynomials in the variables 

x  and y  with coefficients in ℂ, is denoted by [ , ]C x y  and ( , )C x y  is its quotient 

field, that is, the field of rational functions.  

One of the main problems in the theory of differential equations, is the 

integrability problem. The existence of a first integral, that is, a function which 

remains constant along the trajectories of the system, completely determines the 

phase portrait of the system.  

We consider the polynomial vector field  

),,(=),,(= yxQyyxPx                                                                         (1) 

 where ( , ), ( , ) [ , ]P x y Q x y C x y  and x  denotes the derivative of x  with respect to 

an independent real or complex variable t .  

We recall that a function [ , ]H C x y  (or a curve 0=H ) is an invariant function 

(or curve) for the system (1) on an open set U ⊆ ℂ × ℂ, if H  is not identically zero 

and if there exists [ , ]K C x y  such that: 
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The function K  is called the cofactor of the invariant function H . 
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              Let U ⊆ ℂ × ℂ be an open set. A continuous and not locally constant 

function 𝐻: 𝑈 → ℂ, is called a first integral of the system (1), if H  is constant on 

each trajectory of the system contained in U . Note that if H  is of class at least 1C  

(the class of differentiable functions with continuous derivative) in U , then H  is a 

first integral if it is not locally constant and satisfies the following partial differential 

equation  

0,),(),( 









y

H
yxQ

x

H
yxP  

in U . In other words H  is an invariant function with zero cofactor. 

We recall that the integrability problem is the problem of finding such a first 

integral and the functional class where it belongs. It is said that the system has a 

polynomial first integral if there exists a first integral ( , ) [ , ]H x y C x y . 

Analogously, the system has a rational first integral if there exists a first integral 

( , ) ( , )H x y C x y .  

Let W  be an open set and consider the function 𝑉: 𝑊 ⊆ ℂ𝑥ℂ → ℂ. We 

recall that V  is an inverse integrating factor of system (1), if V  is of class 1C , not 

locally zero and satisfies the following linear partial differential equation  
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in W .  

               Once we know the inverse integrating factor defined in W , we can 

compute the first integral in 0}={\= VWU  by the following line integral  

,
),(

),(),(
=),(
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)
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,
0

( yxV
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yx

yx


  

where Uyx ),( 00  is an arbitrary point.  

                The integrability of the system (1) for special cases have been studied by 

various authors see e.g.[4, 7, 9, 12, 13, 14, 15] and references therein. All of them 

study the eigenvalues of the Jacobian matrix of the system at the singular point, 

whenever the system either has at least one linear term or is homogeneous (quasi-

homogeneous) of degree 2 or 3. Recall that a scalar polynomial 𝑝: ℝ2 → ℝ is quasi-

homogeneous of type ),( 21 tt  and degree k  if ),(=),( 21 yxpyxp ktt
  for all                 

𝜆 ∈ ℝ. The vector field ),(= QPF  is called quasi-homogeneous of type ),( 21 tt  and 

degree k  if QP,  are quasi-homogeneous polynomials of type ),( 21 tt  and degree 

kt 1
, kt 2

 respectively. If both the eigenvalues of the Jacobian matrix of (1), at 

a singular point have nonzero real part, the singular point is called hyperbolic and 

if just one of the eigenvalues is zero the singular point is called semi-hyperbolic. If 

both eigenvalues of the Jacobian matrix at a singular point equal zero the singular 
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point is degenerate. In this case if the Jacobian matrix is not identically zero, the 

system is called nilpotent. The integrability of a class of nilpotent systems is studied 

in [6]. If the Jacobian matrix is identically zero, i.e., the system has no linear part, 

the singular point is called strongly degenerate. One of the ways to study a system 

with strongly degenerate singular point is the blowing up method. In this method 

one explodes a singular point to a line or closed curve (divisor). Studying those 

singular points of the new system which lie on the divisor, can help the study the 

original singular point. If some of the singular points on the divisor are strongly 

degenerate, then the blowing up process is repeated.  

For the analytic nondegenerate planar systems, the Poincaré Theorem states that the 

system has a center if and only if there exist analytic first integrals for the system. 

But, there are analytic nilpotent systems which have a center and do not admit 

analytic first integrals [16]. The theoretical characterization of centers and analytic 

first integrals for analytic nilpotent systems can be found in [17]. For the strongly 

degenerate systems only naive analyses have been carried out, see for instance [2]. 

The ideas presented in this paper should contribute to a deeper understanding of 

this case.  

               In this paper we use a blowing up method that relates to Newton polyhedra 

of the system. Using this special blowing up, one can avoid the iterative polar or 

other blowing ups, to study the homogeneous or quasi-homogeneous systems, see 

Example 2.1 and Example 2.2. In other words all the new singular points which lie 

on the divisor are hyperbolic or semi-hyperbolic and none of them are degenerate. 

Using this blowing up method we give an integrability criterion for (quasi-) 

homogeneous polynomial planar systems. Unlike the previous works our 

integrability criterion can be applied for the systems with arbitrary degree. 

The paper is organized as follows. In Section 2, we give the preliminary 

definitions and construct a  magnification of the origin for an arbitrary planar 

polynomial system. We prove that this magnification is actually a  desingularization 

of the origin for homogeneous vector fields and a generic family of quasi-

homogeneous vector field. In Section 3, using the desingularization built in Section 

2, we give an integrability criterion for homogeneous vector fields. We give a 

rational first integral for those systems which have a first integral.  

2 Blow up via the Newton polyhedra 

 In this section we recall the blowing up method using the Newton 

polyhedra. Indeed it is a  magnification of the origin, associated to the  skeleton of 

simple fan extending of the vectors which are normal to  Newton polyhedra. This 

magnification was introduced by Brunella and Miari [8] and it often prevents the 

iterative polar or quasi-polar blowing up processes, see Example 2.1 . Throughout 

the following sections we suppose that the origin is an isolated singular point of the 
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vector fields we deal with. So it is assumed that the degree of homogeneous systems 

is greater than one and the homogeneous linear systems are not the subject of our 

study. 

Definition 2.1 [8] A  magnification of 0 ∈ ℝ2  is a pair ),( M  such that:   

    1.  the set M  is a C  2 -dimensional manifold; 𝜋: 𝑀 → ℝ2 is a C

(infinitely many differentiable), surjective and proper map.  

    2.  Let (0)= 1Z  be the divisor of the magnification. Then Z  is union 

of one-dimensional manifolds in general position on M . Furthermore ZM \|  is a 

diffeomorphism from ZM \  to ℝ2 ∖ {0}. 

A  desingularization of a vector field X  is a magnification ),( M  such 

that:  

    3.  if X
~

 is the unique vector field on M  defined by means of the 

following commutative diagram  

 

 TM          2TR  

 

 

 X
~

 X  
  

                                                                M          2R  

 

then for any Zp  there exist a neighborhood U  of p  and a function f , 

different from zero outside Z , such that fXX U =|
~

 and if 0=)(
~

pX  then p  is a 

hyperbolic or semi-hyperbolic singularity of the field X
~

.  

Proposition 2.1  [8] Suppose that ),( M  is a magnification of 0 ∈ ℝ2. Let 

YX
~

,
~

 be the corresponding vector fields of the vector fields YX ,  defined by means 

of the previous diagram. If YX
~

,
~

 are topologically equivalent in a neighborhood of 

Z , then X  and Y  are topologically equivalent in a neighborhood of 0 ∈ ℝ2.   

 

Let ),(= QPF  be a planar vector field, where  

.=),(,=),( 1
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The support of F  is defined as the set (0,0)}.),(:),{(= ijij bajiS  

Consider the set ⋃(𝑖,𝑗)∈𝑆{(𝑖, 𝑗) + ℝ+
2 },  
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where ℝ+
2  is the positive quadrant. The boundary of the convex hull of this set is 

made of two open rays and a polygon. The polygon together with the rays that do 

not lie on a coordinate axis, if there existed, is called the Newton diagram of the 

vector field F  and we denote it by  . The component parts of the Newton diagram 

are called the edges and their endpoints are the vertices of the Newton diagram. If 

a vertex of the Newton diagram does not lie on a coordinate axis, then it is said to 

be inner, otherwise, it is an exterior vertex.  

               The principal part of a vector field X , is made of those terms in the formal 

series of X  such that the corresponding points in the support of X  are vertices of 

the Newton diagram. It was shown in [8] that there is a topological equivalence 

between the planar vector fields and their principal part for an open and dense 

family of vector fields.  

                Let )},(,),,{( 11 kk baba   be a collection of k  vectors (𝑎𝑗, 𝑏𝑗) ∈ ℝ+
2 ⊂ ℝ2 

with mutually prime integer components, each normal to an edge j  of the Newton 

diagram  . 

Definition 2.2 [8] A skeleton of simple fan extending the collection 

)},,(,),,{( 11 kk baba   

is a finite collection )},{( jj   of vectors 𝑒𝑗 = (𝛼𝑗 , 𝛽𝑗) ∈ ℝ+
2 , 𝑗 = 0, … 𝑛, 𝑛 ∈ ℕ,  

each with mutually prime integer components such that   

    1.  ,(0,1)=),(=(1,0);=),(= 000 nnnee    

    2.  ,)},{()},(,),,{( 0=11

n

jjjkk baba    

    3.  .,1,=1,=det
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
  

Remark 2.1   Condition (3) of the definition implies, in particular, that any 

pair of consecutive vectors },{= 1 jjj eeB   is a basis of 2
Z ; the inverse of the matrix  
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jj
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 still has integer elements and furthermore the matrix defining the transformation 

from the basis jB  to the basis lB , ljnlj ,,1,=,  , has integer elements and its 

determinant equals one.  

               Now we associate a manifold M  to the skeleton 
n

jje 0=}{  by means of the 

transition maps between two local charts on M .  

             To every pair },{= 1 jjj eeB   a chart ),( jj U  on M , 

2: , ( , )j j j jU p x y   is associated. The transition map from ),( jj U  to 

,),,( ljUll   is given by  
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),,(=),( jl
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jjjjl yxyxyxh                                                         (2) 

 where )(=),( pyx jjj   for jUp  and jljljljl dcba ,,,  are defined by  
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 The set M  obtained by glueing the n  copies of ℝ2 by means of the 1)( nn  maps 

jlh  is an analytic manifold [8]. In order to construct the map ; 𝜋: 𝑀 → ℝ2, one 

expresses },{= 1 jjj eeB   in terms of the basis },{ 0 nee ; the local representation of   

in the chart ),( jj U  is defined by  

).,(=),( 11 j

j

j

j

j

j

j

jjjj yxyxyxh
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
                                                             (4) 

 Note that 
1

jh  is still a monomial map with integer exponents  

).,(=),( 111 


 jjjj

j yxyxyxh


                                                            (5) 

 The maps ℎ𝑗: 𝑈𝑗 → ℝ2, 𝑗 = 1, … , 𝑛 are compatible and define an analytic map 

𝜋: 𝑀 → ℝ2, which is surjective and proper. The divisor (0)= 1Z  is the union of 

circles 1S  intersecting transversally. Furthermore, 𝜋: 𝑀 ∖ ℤ → ℝ2 ∖ {0} is a 

diffeomorphism. The pair ),( M  is therefore a magnification of 0 ∈ ℝ2, [8].  

              We remark that Z  is expressed locally by : 

0}={ 1y  in the chart ;),( 11 U   

0}={0}={ jj yx   in the chart ;1,2,=),,(  njU jj    

0}={ nx  in the chart ).,( nn U   

             In the following example we show how this blowing up is effective to 

shorten the blowing up process.  

Example 2.1 Consider the system  

).|,(|

,)|,(|

32
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yxbxy

yxaxyx

O
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


                                                                         (6) 

 Using two iterated polar blow ups, some change of variables and normal form 

theory, it was shown in [11, pp. 362-364] that the origin is a cusp of the system (6). 

The Newton diagram of the system (6) has two vertices (3,0)(0,2),  and the 

associated extending skeleton of simple fan is  

(0,1)}.=(1,2),=(2,3),=(1,1),=(1,0),={ 43210 eeeee  

The principal part of the system (6) is  

.

,

2bxy
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






                                                                      (7) 
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 It is a quasi-homogeneous system of type (2,3)  and degree 1. Using the blow up 

associated with the Newton polyhedra ),(),( 232 yxyxyx   on the chart ),( 33 U  

(follow by canceling a common factor x ), the system can be written as  

.
2

3

2

3

,
22

2

2

xy
a

yby

x
axy

x









                                                            (8) 

 The system (8) has two singular points )32(0, b , both of them are saddles. The 

phase portrait of the system after blowing up and going back through blowing up 

(shrinking the divisor to a point) is shown in Fig.1.  

 
Fig.  1: Cusp at the origin 

 

 Example 2.2   Let ),(= nn QPX  be a homogeneous vector field, where 

),( yxPn , ),( yxQn  are homogeneous polynomials of degree n . The Newton 

diagram of X  has a single side and the vector (1,1)  is normal to it. So (1,0)={ 0e

, (1,1)=1e , (0,1)}=2e  is a skeleton of simple fan extending of the set {(1,1)} . 

Consider two charts 
11,( U ), ),( 22 U  with the transition map  

.
1

,=),(
1

111112 








x
yxyxh  

This map joins together two copies of ℝ2 by glueing the half-plane 0>1x  with the 

half-plane 0>2y , and 0<1x  with 0<2y  but reversing the orientation. The 

manifold M  so obtained is a Moebius band. On the charts 1,2=),,( iUii , the local 

representations of   are:  

),,(=),( 111111 yyxyxh  

),,(=),( 222222 yxxyxh  

and the divisor Z  is expressed by 0}={ 1y  in the chart ),,( 11 U  0}={ 2x  in the 

chart ).,( 22 U     

Remark 2.2 The blow up described in Example 2.2 on the chart ),( 22 U  is indeed 

the directional blow up in the x  direction. The system after blowing up on this chart 

becomes  
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)).(1,)(1,(=
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 Using the change of the variable 
1

2= nx
dt

d
 and denoting the derivative with respect 

to   with dot, the system (9) becomes  
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),,1(
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
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 Similarly on the chart ),( 11 U  the magnification via the Newton polyhedra is 

actually the directional blow up in the y  direction. The system after the blowing 

up and canceling 1

1

ny  becomes  

,1).(

,,1)(,1)(

111

1111

xPyy

xQxxPx

n
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


                                                         (11) 

  From now on we suppose that nn QP ,  are co-prime in the sense that each element 

of the set 0}=),(=),(:),{( yxQyxPyx nn  is isolated.   

Theorem 2.1 The magnification ),( M  built in Example 2.2, is a desingularization 

of the origin.   

Proof. Let ),( M  are such that described in Example 2.2. On the chart 

),( 22 U  the divisor Z  is expressed by 0}={ 2x  and the local representation of   

on this chart is ),(=),( 222222 yxxyxh . Under this transformation after dividing by 
1

2

nx  the system becomes  

).(1,)(1,

,)(1,

2222

222

yPyyQy

yPxx

nn

n








                                                (12) 

 

 Define the function ),(),(:=),( 22222222 yxQxyxPyyxV nn  . Note that V  is a 

polynomial of degree 1n . We can factorize V  as  

),()(=),( 21221222 xyxycyxV n                                 (13) 

 where C11 ,, n  , Cc .  

                In the equation (13) note that c  equals the coefficient of ny  in ),( yxPn , 

since nn QP ,  are co-prime we have 0c  and without loos of generality one can 

suppose that 1=c .  On the exceptional divisor 0=2x , the singularities of the 

system (12) are the roots of the function  

).(1,)(1,=)(1, 2222 yQyPyyV nn  
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Thus )(0,,),(0, 11 n   are the singular points of the system.  

               The Jacobian matrix of the system (12) in a neighborhood of the singular 

point )(0, i , 1,1  ni  is  

.
))(1,)(1,(0
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 Denote )(1, inP   by i  and 
i

ynn yPyyQ
y

=
2

222

2

|))(1,)(1,( 



 by i . We shall 

show that 0i , and hence if 0i  then the singular point is hyperbolic and the 

singular point is semi-hyperbolic if 0=i . If on the contrary 0=i  then since 

0=)(1,)(1, iniin PQ   , we should have 0=)(1, inQ  . Hence nn QP ,  are not co-

prime, in contradiction to the hypothesis. Thus 0i . Furthermore let i  be a 

simple root of the function )(1,)(1, 222 yPyyQ nn  . Then we have  
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since i  is a simple root then 0i  and in this case the singular point is 

hyperbolic. A similar argument shows that on the chart ),( 11 U  all the singular 

points are hyperbolic or semi-hyperbolic. Thus ),( M  is a desingularization of the 

the origin.  

  

 3 Integrability of homogeneous systems 
 

 In this section we use the desingularization built in Example 2.2, in order 

to solve the integrability problem for the homogeneous planar vector fields. 

Consider the homogeneous planar polynomial system  

),,(=),,(= yxQyyxPx nn
                                                               (14) 

 where nn QP ,  are co-prime homogeneous polynomials of degree n . Associate to 

the system (14) the vector field ),(= nn QPF .   

Lemma 3.1 Using the same notation as in the proof of Theorem 1, we have  

1.=
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
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i
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 Proof. Consider the function  

.
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yyPyQ
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The degree of the numerator of this fraction is smaller than the degree of its 

denominator. Using the decomposition in simple fractions of a rational function, by 

some direct calculation one can easily show that  

.
)(

=
)(1,)(1,

)(1, 1

1= i

i

i

n

inn

n

yyyPyQ

yP











                                          (15) 

 The multiplier of ny  in the numerator of the left side of the equation (15) equals 

1 , but in the numerator of the right hand side the multiplier is ,
1

1=
i

in

i 





 as desired.  

Theorem 3.1  If all the roots of ),( yxV  are simple, then the homogeneous 

vector field has a rational first integral.   

Proof. Since all the roots of V  are simple, using the similar notation as the 

proof of Theorem 1 we have 00,  ii  . Let i
i

n

i
xyyxH


 )(=),(

1

1=
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
, we 

show that H  is a first integral for the system (14). On the chart ),( 22 U  the system 

(14) becomes  

).(1,)(1,

,)(1,

2222

222

yPyyQy

yPxx

nn

n








                                                  (16) 

 Thus ),( yxH  is a first integral for the system (14) if and only if ),( 222 yxxH  is a 

first integral for the system (16). We have  
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 By some direct calculation one has  
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 To show the last equivalence note that  
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since )(1,= ini P   and )(=
1

1,= ji

n

ijji  
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
 we have  
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The last one is the expression of the Lagrange polynomial which interpolates the 

1n  points 1,1,=)),(1,,( niP ini  , thus it equals )(1, 2yPn  and the 

equivalence in (17) obtained. By a similar argument one can easily see that on the 

chart ),( 11 U , ),( yxH  is a first integral for the system (14).  

Remark 3.1  The magnification constructed in Section 2 is a 

desingularization for a quasi-homogeneous systems too and our method can be used 

to solve the integrability problem for quasi-homogeneous systems. The quasi-

homogeneous systems has recently considered for their relation with the principal 

part of a system in generalizations of Hatrman-Grobman theorem, for instance see 

[1, 3, 5, 6].    

Remark 3.2 It was shown in [10] that the function 

),(),(=),( yxyPyxxQyxV nn   is an inverse integrating factor for the system (14).   

One can prove (for example using a generalization of the Euler’s formula) 

that a quasi-homogeneous vector field ),( QP  of type ),( 21 tt  has an inverse 

integrating factor in the form yPtxQtV 21=  .   
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