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BLOWING UP AND INTEGRABILITY OF HOMOGENEOUS
PLANAR VECTOR FIELDS

Razie Shafeii LASHKARIAN?, D. Behmardi SHARIFABAD?

In this paper, we consider the integrability of the strongly degenerate planar
polynomial systems, i.e., the systems with no linear term. Using a special blowing up
via the Newton polyhedra, we construct a magnification of the singular point. The
effectiveness of this blowing up is that to study a quasi-homogeneous system, a single
blowing up is enough, instead of iterative blowing ups. We show that for the
homogeneous systems and a generic family of quasi-homogeneous systems, this
magnification is a desingularization and we give a criterion for the integrability of
such systems. We give a rational first integral for those systems which have a first
integral.

Keywords: blow up, Newton polyhedra, inverse integral factor, integrability
problem, first integral.

1. Introduction

Throughout this paper, the sets of integer, real and complex numbers are
denoted by Z, R and C respectively. Also the ring of all polynomials in the variables
X and y with coefficients in C, is denoted by C[x,y] and C(x,y) is its quotient
field, that is, the field of rational functions.

One of the main problems in the theory of differential equations, is the
integrability problem. The existence of a first integral, that is, a function which
remains constant along the trajectories of the system, completely determines the
phase portrait of the system.

We consider the polynomial vector field

x=P(x,y), y=Q(xy), 1)
where P(X,Y),Q(x,Yy) eC[x,y] and X denotes the derivative of x with respect to
an independent real or complex variable t.

We recall that a function H € C[x,y] (or a curve H =0) is an invariant function
(or curve) for the system (1) onanopenset U € C x C, if H is not identically zero
and if there exists K € C[x, y] such that:

P(X, y)aa—l;lJrQ(x, y)% =KH.

The function K is called the cofactor of the invariant function H .
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Let U € C x C be an open set. A continuous and not locally constant
function H: U — C, is called a first integral of the system (1), if H is constant on
each trajectory of the system contained in U . Note that if H is of class at least C*
(the class of differentiable functions with continuous derivative) in U , then H isa
first integral if it is not locally constant and satisfies the following partial differential
equation

P(X, y)%—;'+Q(x, y)%zo,

in U . In other words H is an invariant function with zero cofactor.

We recall that the integrability problem is the problem of finding such a first
integral and the functional class where it belongs. It is said that the system has a
polynomial first integral if there exists a first integral H(x,y)eC[x,y].
Analogously, the system has a rational first integral if there exists a first integral
H(x,y)eC(x,y).

Let W be an open set and consider the function V: W < CxC — C. We
recall that V is an inverse integrating factor of system (1), if V is of class C*, not
locally zero and satisfies the foIIowing linear partial differential equation

P(X y)—+Q( y)——(ﬂ aV)V(x ),

Once we know the inverse integrating factor defined in W, we can
compute the first integral in U =W \{V = 0} by the following line integral

_ oy P(x, y)dy —Q(x, y)dx
H(xy)= J‘(Xo'yo) V(X,Y) ’

where (x,,Y,) €U is an arbitrary point.

The integrability of the system (1) for special cases have been studied by
various authors see e.g.[4, 7, 9, 12, 13, 14, 15] and references therein. All of them
study the eigenvalues of the Jacobian matrix of the system at the singular point,
whenever the system either has at least one linear term or is homogeneous (quasi-
homogeneous) of degree 2 or 3. Recall that a scalar polynomial p: R? — R is quasi-

homogeneous of type (t,t,) and degree k if p(Aix,A%y)=Ap(x,y) for all
A € R. The vector field F = (P,Q) is called quasi-homogeneous of type (t,,t,) and
degree k if P,Q are quasi-homogeneous polynomials of type (t;,t,) and degree
t,+k, t, +k respectively. If both the eigenvalues of the Jacobian matrix of (1), at

a singular point have nonzero real part, the singular point is called hyperbolic and
if just one of the eigenvalues is zero the singular point is called semi-hyperbolic. If
both eigenvalues of the Jacobian matrix at a singular point equal zero the singular

inW.
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point is degenerate. In this case if the Jacobian matrix is not identically zero, the
system is called nilpotent. The integrability of a class of nilpotent systems is studied
in [6]. If the Jacobian matrix is identically zero, i.e., the system has no linear part,
the singular point is called strongly degenerate. One of the ways to study a system
with strongly degenerate singular point is the blowing up method. In this method
one explodes a singular point to a line or closed curve (divisor). Studying those
singular points of the new system which lie on the divisor, can help the study the
original singular point. If some of the singular points on the divisor are strongly
degenerate, then the blowing up process is repeated.

For the analytic nondegenerate planar systems, the Poincaré Theorem states that the
system has a center if and only if there exist analytic first integrals for the system.
But, there are analytic nilpotent systems which have a center and do not admit
analytic first integrals [16]. The theoretical characterization of centers and analytic
first integrals for analytic nilpotent systems can be found in [17]. For the strongly
degenerate systems only naive analyses have been carried out, see for instance [2].
The ideas presented in this paper should contribute to a deeper understanding of
this case.

In this paper we use a blowing up method that relates to Newton polyhedra
of the system. Using this special blowing up, one can avoid the iterative polar or
other blowing ups, to study the homogeneous or quasi-homogeneous systems, see
Example 2.1 and Example 2.2. In other words all the new singular points which lie
on the divisor are hyperbolic or semi-hyperbolic and none of them are degenerate.
Using this blowing up method we give an integrability criterion for (quasi-)
homogeneous polynomial planar systems. Unlike the previous works our
integrability criterion can be applied for the systems with arbitrary degree.

The paper is organized as follows. In Section 2, we give the preliminary
definitions and construct a magnification of the origin for an arbitrary planar
polynomial system. We prove that this magnification is actually a desingularization
of the origin for homogeneous vector fields and a generic family of quasi-
homogeneous vector field. In Section 3, using the desingularization built in Section
2, we give an integrability criterion for homogeneous vector fields. We give a
rational first integral for those systems which have a first integral.

2 Blow up via the Newton polyhedra

In this section we recall the blowing up method using the Newton
polyhedra. Indeed it is a magnification of the origin, associated to the skeleton of
simple fan extending of the vectors which are normal to Newton polyhedra. This
magnification was introduced by Brunella and Miari [8] and it often prevents the
iterative polar or quasi-polar blowing up processes, see Example 2.1 . Throughout
the following sections we suppose that the origin is an isolated singular point of the
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vector fields we deal with. So it is assumed that the degree of homogeneous systems
Is greater than one and the homogeneous linear systems are not the subject of our
study.

Definition 2.1 [8] A magnification of 0 € R? is a pair (M, ) such that:

1. theset M isa C* 2-dimensional manifold; 7: M —» R?isa C”
(infinitely many differentiable), surjective and proper map.
2. Let Z=77"(0) be the divisor of the magnification. Then Z is union

of one-dimensional manifolds in general position on M . Furthermore r|,,,, isa

diffeomorphism from M \Z to R? \ {0}.
A desingularization of a vector field X is a magnification (M, ) such

that:

3. if X is the unique vector field on M defined by means of the
following commutative diagram

then for any p e Z there exist a neighborhood U of p and a function f ,
different from zero outside Z, such that X |, = fX and if >Z(p) =0 then p isa

hyperbolic or semi-hyperbolic singularity of the field X .
Proposition 2.1 [8] Suppose that (M, z) is a magnification of 0 € R?. Let

X,Y bethe corresponding vector fields of the vector fields X,Y defined by means

of the previous diagram. If X,Y are topologically equivalent in a neighborhood of
Z,then X and Y are topologically equivalent in a neighborhood of 0 € R?,

Let F =(P,Q) be a planar vector field, where

P(x,y) = Zn:i a X'y, Qxy)= ZZb Xty

i=0 j=1 i=1j=0
The support of F is defined as the set S ={(i, J): (g;,b;) = (0,0)}.
Consider the set U ; jyes{(i, /) + R3},
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where Rz is the positive quadrant. The boundary of the convex hull of this set is
made of two open rays and a polygon. The polygon together with the rays that do
not lie on a coordinate axis, if there existed, is called the Newton diagram of the
vector field F and we denote it by y. The component parts of the Newton diagram

are called the edges and their endpoints are the vertices of the Newton diagram. If
a vertex of the Newton diagram does not lie on a coordinate axis, then it is said to
be inner, otherwise, it is an exterior vertex.

The principal part of a vector field X , is made of those terms in the formal
series of X such that the corresponding points in the support of X are vertices of
the Newton diagram. It was shown in [8] that there is a topological equivalence
between the planar vector fields and their principal part for an open and dense
family of vector fields.

Let {(a;,b))....,(a,,b)} be acollection of k vectors (a;, b;) € RZ c R?

with mutually prime integer components, each normal to an edge y; of the Newton
diagram y.
Definition 2.2 [8] A skeleton of simple fan extending the collection
{(a,0),....(a..b)}
is a finite collection {(a;,;)} of vectors e; = (a]-,/jj) ER3,j=0,..n,nEN,
each with mutually prime integer components such that

1. e =(a.5)=(10);¢, =(,5,)=(01),

2. {(ai’bl)"”!(ak'bk)}g{(aj’ﬂj)}r}:w

X O _,
3. det(ﬂj1 ﬂjJ_l’ j=1...,n
Remark 2.1 Condition (3) of the definition implies, in particular, that any

pair of consecutive vectors B; ={e; ;,e,;} is a basis of Z?: the inverse of the matrix

Bin Bi)
still has integer elements and furthermore the matrix defining the transformation

from the basis B; to the basis B,, j,1=1,...,n, j#1, has integer elements and its

determinant equals one.
Now we associate a manifold M to the skeleton {ej}’}:0 by means of the

transition maps between two local charts on M.
To every pair B;={e,e} a chat (®;,U;) on M,
. 2 - - -y
®;:U; >1° pr>(X;,Y;) is associated. The transition map from (®;,U;) to
(D,,U,)), j =1, is given by
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a;; C;: by d:
hj|(xj’yj):(ijlyjjl’xjjlyjll)’ 2)
where (X;,y;)=®;(p) for peU; and a;,b;,c;,d; are defined by

jrE e

e v
C ci dyl e

The set M obtained by glueing the n copies of R? by means of the n(n—1) maps
h;, is an analytic manifold [8]. In order to construct the map ; m: M - R?, one

expresses B; ={e, ,,€;} in terms of the basis {e,, e}, the local representation of =
in the chart (®;,U;) is defined by

a; 4 a; Bi . B
h (. y;) = 061y )G Ty, 4)
Note that hj’l is still a monomial map with integer exponents
hi(xy)= (Xy 9 x Ty, (5)

The maps hj:U; - R?,j = 1,..,n are compatible and define an analytic map
m: M — R?, which is surjective and proper. The divisor Z = 77*(0) is the union of
circles S* intersecting transversally. Furthermore, m:M \ Z —» R? \ {0} is a
diffeomorphism. The pair (M, z) is therefore a magnification of 0 € R?, [8].

We remark that Z is expressed locally by :
{y, =0} in the chart (d,,U,);
{x; =0y {y; =0} inthe chart (®;,U;), j=2,...,n-1
{x, =0} in the chart (¥ ,U,).

In the following example we show how this blowing up is effective to

shorten the blowing up process.
Example 2.1 Consider the system

x=y+ax’ +0O(xy[), ©)
y=bx*+0O( x,y[).
Using two iterated polar blow ups, some change of variables and normal form

theory, it was shown in [11, pp. 362-364] that the origin is a cusp of the system (6).
The Newton diagram of the system (6) has two vertices (0,2), (30) and the

associated extending skeleton of simple fan is
{e, =(10), e, =(11), e, =(23), e, =(12), e, = (01)}.
The principal part of the system (6) is
X=Y,

y =bx%. ()
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It is a quasi-homogeneous system of type (2,3) and degree 1. Using the blow up
associated with the Newton polyhedra (x, y) — (x*y,x*y®) on the chart (U, ®,)
(follow by canceling a common factor x), the system can be written as

x=%+%x2,

3. 3 8
y=b->y - Dxy

27 2

The system (8) has two singular points (0,++/2b3), both of them are saddles. The

phase portrait of the system after blowing up and going back through blowing up
(shrinking the divisor to a point) is shown in Fig.1.

(Y-

Fig. 1: Cusp at the origin

Example 2.2 Let X =(P,,Q,) be a homogeneous vector field, where
P.(x,y), Q,(x,y) are homogeneous polynomials of degree n. The Newton
diagram of X has a single side and the vector (1,1) is normal to it. So {e, = (1,0)
, & =(1,1), e, =(0,1)} is a skeleton of simple fan extending of the set {(1,1)}.
Consider two charts (®,,U,), (®,,U,) with the transition map

1
h, (%, Y) = (lelix_]'

1

This map joins together two copies of R? by glueing the half-plane x, >0 with the
half-plane y, >0, and x, <0 with y, <0 but reversing the orientation. The
manifold M so obtained is a Moebius band. On the charts (®,,U,),i =1,2, the local
representations of 7 are:

hy (% Y1) = (%Y, V),

h, (X2, Y2) = (%2, X%, Y,),
and the divisor Z is expressed by {y, =0} in the chart (®,,U;), {x, =0} in the
chart (9,,U,).
Remark 2.2 The blow up described in Example 2.2 on the chart (®,,U,) is indeed

the directional blow up in the x direction. The system after blowing up on this chart
becomes
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Xz = Pn(Xz, XzYz) = XSPn(l, Y2):

. X, X B Pn X2, X n=
Y, = Qn (X2, %, Y,) Xyz (X2, %,Y5) =% (Q,(L Y,) = YoP (1, )
2

(9)

Using the change of the variable % = xj " and denoting the derivative with respect

to  with dot, the system (9) becomes

X, = X,P, @ yz)’

Y, = Qn (17 yz) - yZPn (1, yz)-
Similarly on the chart (®,,U,) the magnification via the Newton polyhedra is
actually the directional blow up in the y direction. The system after the blowing

up and canceling y, ™ becomes

¥ = B, (x,1) =%,Qq (x,,1),
Vi = ylpn (Xlll)'
From now on we suppose that P,,Q, are co-prime in the sense that each element
of the set {(x,y): P,(x,y) =Q,(x,y) =0} is isolated.
Theorem 2.1 The magnification (M, z) builtin Example 2.2, is a desingularization

of the origin.
Proof. Let (M, ) are such that described in Example 2.2. On the chart

(@,,U,) the divisor Z is expressed by {x, = 0} and the local representation of =
on this chart is h,(x,,Y,) = (X,,X,Y,) . Under this transformation after dividing by
x)~ the system becomes

X, =%,P, (1, Y,),

Y, = Qn (1’ yz) - yzpn (1' yz)-

(10)

(11)

(12)

Define the function V(X,,V¥,) = Y,P.(X,,¥,)—X%,Q,(X,,y,). Note that V is a
polynomial of degree n+1. We can factorize V as
V (X5, Y,) = (Y, —arX,) .- (Yo — s Xy), (13)
where a,,...,a,,,€C, ceC.
In the equation (13) note that ¢ equals the coefficient of y" in P,(x,y),
since P,,Q, are co-prime we have c=0 and without loos of generality one can
suppose that c=1. On the exceptional divisor x, =0, the singularities of the

system (12) are the roots of the function
\ (1! y2) = y2 I:)n (11 yz) - Qn (11 yz)
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Thus (0, ,),...,(0, «,,,) are the singular points of the system.

The Jacobian matrix of the system (12) in a neighborhood of the singular
point (0,¢;), 1<i<n+1,is

Pn (11 yz) 0

0
0 A 1' 2] 2Pn17 2
6y2(Qn( ¥2) = Y,R (L Y,))

yo=a

Denote P,(La,) by 4 and ayi(Qn(l, V)= VaPo(L Y, )y -, DY 4. We shall

2

show that A, = 0, and hence if £ =0 then the singular point is hyperbolic and the
singular point is semi-hyperbolic if x4 =0. If on the contrary A4 =0 then since
Q,(1,¢))—P,(1,¢) =0, weshould have Q, (1, ¢;) =0. Hence P,,Q, are not co-
prime, in contradiction to the hypothesis. Thus A, = 0. Furthermore let «; be a
simple root of the function Q,(1,y,)—Y,P,(1,y,). Then we have

n+1

=g VD |, = 1 e

since «; is a simple root then g =0 and in this case the singular point is
hyperbolic. A similar argument shows that on the chart (®,,U,) all the singular
points are hyperbolic or semi-hyperbolic. Thus (M, z) is a desingularization of the
the origin.

3 Integrability of homogeneous systems

In this section we use the desingularization built in Example 2.2, in order
to solve the integrability problem for the homogeneous planar vector fields.
Consider the homogeneous planar polynomial system

X=R(xYy), ¥y=Q\(xy) (14)
where P,,Q, are co-prime homogeneous polynomials of degree n. Associate to
the system (14) the vector field F =(P,,Q,) .

Lemma 3.1 Using the same notation as in the proof of Theorem 1, we have

n+1

> =1

i=1 M
Proof. Consider the function
RLY)
Qn (1’ y) - yPn (1’ y)
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The degree of the numerator of this fraction is smaller than the degree of its
denominator. Using the decomposition in simple fractions of a rational function, by
some direct calculation one can easily show that

A

PLY) ¥ a4 (15)
QL Y)-yR@y) = (y-a)
The multiplier of y" in the numerator of the left side of the equation (15) equals

—1, but in the numerator of the right hand side the multiplier is Z:lﬁ, as desired.
TN
Theorem 3.1 If all the roots of V (x,y) are simple, then the homogeneous
vector field has a rational first integral.
Proof. Since all the roots of V are simple, using the similar notation as the
proof of Theorem 1 we have A #0, 4 #0. Let H(X,y) = I—Ln;l(y—ozix)ﬂi , we

show that H is a first integral for the system (14). On the chart (®,,U,) the system
(14) becomes

X, = X,P, 1, yz)’

Y, = Qn (1, yz) - yZPn 1, yz)-
Thus H(x,y) is a first integral for the system (14) if and only if H(x,,x,y,) isa
first integral for the system (16). We have

(16)

H(X,, X,Y,) = ﬁ (X,Y, -, Xz)[:]

[8 ot

n+1

1 “
= _ll(yz_O‘i)!I :
X, Ci<1
By some direct calculation one has

HOXY) b 1, y,)+ HOXY) @ 1,y)-y,RLy,) =
8X2 8yz

17)
H (XZ’ Xzyz)E— Pn (1’ y2) + ni ﬁ[Qn (1, yz))/ __yczzl-an (1, yz)]J = 0

To show the last equivalence note that
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Q.(Ly,)-v.P (LY, _ 17
f . - (y _ai)!
Y, — g jzll_[,j::i ’

since 4 =P, (1, &) and g =H“+1

(o —a;) we have

j=1,j=i
”iﬁ(Qn(l, Vo) = Y;R(l, yz)jznzﬂp(1 T e
i=L M y2_ai i=1 " I =1, j#i ¢, —aj

The last one is the expression of the Lagrange polynomial which interpolates the
n+1 points («,P,(1,¢)),1=1,...,n+1, thus it equals P,(1,y,) and the

equivalence in (17) obtained. By a similar argument one can easily see that on the
chart (@,,U,), H(x,y) is a first integral for the system (14).

Remark 3.1  The magnification constructed in Section 2 is a
desingularization for a quasi-homogeneous systems too and our method can be used
to solve the integrability problem for quasi-homogeneous systems. The quasi-
homogeneous systems has recently considered for their relation with the principal
part of a system in generalizations of Hatrman-Grobman theorem, for instance see
[1, 3,5, 6].

Remark 3.2 It was shown in [10] that the function
V(x,y) = xQ, (X, y)—YyP,(x,y) is an inverse integrating factor for the system (14).

One can prove (for example using a generalization of the Euler’s formula)
that a quasi-homogeneous vector field (P,Q) of type (t,t,) has an inverse

integrating factor in the form V =t xQ—t,yP.
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