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t-PRIME SUBMODULES

Javad Moghaderi1, Adnan Tercan2

Let R be a commutative ring with identity. For t ∈ N, a proper submodule

N of an R-module M is called a t-prime submodule if rm ∈ N (r ∈ R,m ∈ M),
then m ∈ N or rt ∈ (N :R M). We show that any maximal t-prime submodule, with

respect to inclusion, is prime and a proper submodule is a t-prime submodule if and only
if its quotient module is t-torsion free. We obtain some characterizations of t-prime

submodules. Also various properties of t-prime submodules are investigated. We provide

several examples which illustrate our results.
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1. Introduction

Throughout this article, R denotes a commutative ring with identity and all modules are
unitary. (When the ring R has an identity, say 1, an R-module M is called unitary, if
for any x ∈ M , 1x = x.) Also N, Z and Q will denote, respectively, the set of positive
integers, the ring of integers and the field of rational numbers. If N is an R-submodule
of M , the annihilator of the R-module M/N is defined by AnnR(M/N) = (N :R M) =
{r ∈ R|rM ⊆ N}. Thus the annihilator of M , is denoted by AnnR(M), which is the
same as (0 :R M). For a subset X of an R-module M , (X :R M) = {r ∈ R|rM ⊆ X},
which is a subset of R. Suppose that I is an ideal of R. We denote the radical of I by√
I = {a ∈ R|an ∈ I for some n ∈ N}.

Recall that a proper submodule N of M is called prime (primary) if rx ∈ N , for r ∈ R and
x ∈ M , implies that either x ∈ N or r ∈ (N :R M) (rn ∈ (N :R M), for some n ∈ N)(see
[4], [7], [8]). Several generalizations of prime and primary submodules, like strongly prime,
weakly prime, semi prime, quasi prime submodules were studied in literature. Also the
notions 2-prime ideals and graded 2-prime submodules were defined and studied (see [5],
[11], [2]). Recall that, a proper ideal P of a ring R is called a 2-prime ideal, if a, b ∈ R with
ab ∈ P , implies a2 ∈ P or b2 ∈ P (see [5]).
We fix t ∈ N. In this paper, we introduce and study the notions of t-prime submodules and t-
torsion free modules. Furthermore we introduce the notion of a t-prime ideal which generalize
the 2-prime ideals. In Section 2, we investigate some properties of t-prime submodules and
also obtain some basic structural results. We show that a t-prime submodule is a s-prime
submodule, for any s ≥ t. Moreover we show that any maximal t-prime submodule, with
respect to inclusion, is prime. On the other hand, it is shown that a proper submodule N
of M is a t-prime submodule if and only if M/N is a t-torsion free module. We establish
several connections between t-prime submodules and other notions in modules theory. To
this end, it is shown that, for ring extension f : R → S, such that S is a free R-module
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and N is a submodule of an R-module M , N is a t-prime submodule of M if and only if
N

⊗
R S is a t-prime R-submodule of M

⊗
R S. In Section 3, we provide several examples,

for the notions and the necessary conditions of some propositions in the former sections.

2. t-Prime Submodules

In this section, we introduce the notion t-prime submodule, for t ∈ N and give some
characterizations of it. Moreover, various properties of t-prime submodules are proved.

Definition 2.1. A proper submodule N of a module M over a commutative ring R is said to
be a t-prime submodule, if for a ∈ R and x ∈M with ax ∈ N , then x ∈ N or at ∈ (N :R M).
Also a proper ideal I of R is called a t-prime ideal, if for r, s ∈ R with rs ∈ I, then rt ∈ I
or st ∈ I.

Lemma 2.1. (i) Any proper subspace of a vector space is a t-prime submodule.
(ii) Any prime submodule is a t-prime submodule.

Proof. (i) Let V be a F -vector space and W be a proper subspace of V . Assume that a ∈ F
and x ∈ V such that ax ∈ W . Since F is a field, a = 0 or a has an inverse in F . If a = 0,
then at = 0 ∈ (W :F V ). If a has an inverse in F , then x = a−1(ax) ∈ W . Therefore W is
a t-prime submodule.
(ii) Let N be a prime submodule of an R-module M . Assume that r ∈ R and x ∈ M such
that rx ∈ N . Since N is a prime submodule, x ∈ N or r ∈ (N :R M). If r ∈ (N :R M),
then rt ∈ (N :R M). Thus N is a t-prime submodule. �

Proposition 2.1. Let M be a finitely generated or faithfully flat R-module. Then M has a
t-prime submodule.

Proof. By hypothesis, M has a maximal submodule N . Then N is a prime submodule and
therefore by Lemma 2.1(ii), N is a t-prime submodule. �

Let I be a non-empty subset of R. We denote t
√
I = {r ∈ R|rt ∈ I}.

Note that a proper submodule N of an R-module M is a t-prime submodule, if for a ∈ R
and x ∈M with ax ∈ N , then x ∈ N or a ∈ t

√
(N :R M).

Definition 2.2. (See [9]) A proper ideal I of R is called semiprime, if whenever an ∈ I for
a ∈ R and n ∈ N, then a ∈ I.

Lemma 2.2. Let I and J be ideals of R and t ∈ N. Then the following statements hold:
(i) I ⊆ t

√
I.

(ii) I = R if and only if t
√
I = R.

(iii) If I ⊆ J , then t
√
I ⊆ t
√
J .

(iv) t
√
I ∩ J = t

√
I ∩ t
√
J .

(v) For all s ≥ t, t
√
I ⊆ s
√
I.

(vi)
t
√

s
√
I =

s
√

t
√
I = ts

√
I.

(vii) t
√
I ⊆
√
I.

(viii)
t
√√

I =
√
I.

(ix) If I is a semiprime or radical ideal, then
√
I = s
√
I = I, for any s ∈ N.

Proof. The proofs of parts (i), (iii), (iv), (v) and (vii) are clear.

(ii) Assume that I = R. Then by part (i), t
√
I = R. Now assume that t

√
I = R. Then

1 = 1t ∈ I and so I = R.
(vi) a ∈ s

√
t
√
I if and only if as ∈ t

√
I if and only if ast ∈ I if and only if a ∈ st

√
I. So



t-PRIME SUBMODULES 33

s
√

t
√
I = ts

√
I. Similarly

t
√

s
√
I = ts

√
I.

(viii) By part (i),
√
I ⊆ t

√√
I. Let r ∈ t

√√
I. Then rt ∈

√
I and so there exists n ∈ N such

that rtn = (rt)n ∈ I. Thus r ∈
√
I and hence

t
√√

I ⊆
√
I. Therefore

t
√√

I =
√
I.

(ix) Let I be a semiprime or radical ideal. Then I =
√
I and so by part (viii), s

√
I =

s
√√

I =√
I = I, for any s ∈ N. �

Definition 2.3. (See [13]) The ring R (with identity, not necessarily commutative) is called
a von Neumann regular ring, if for any element a ∈ R, there exists b ∈ R such that a = aba.

Proposition 2.2. (i) A t-prime submodule is a primary submodule.
(ii) A primary submodule N of an R-module M such that (N :R M) is a semiprime or
radical ideal is a t-prime submodule.
(iii) A t-prime submodule is a s-prime submodule, for any s ≥ t.
(iv) A t-prime submodule N of an R-module M such that (N :R M) is a semiprime or
radical ideal; is a s-prime submodule, for any s ∈ N.
(v) If the ring is a von Neumann regular ring, then the notions prime, t-prime and primary
submodules coincide.

Proof. (i) By Lemma 2.2 (vii), it is clear.
(ii) Let N be a primary submodule of an R-module M such that (N :R M) is a semiprime
or radical ideal. Assume that r ∈ R and x ∈ M\N with rx ∈ N . Since N is primary, we

have r ∈
√

(N :R M). So rs ∈ (N :R M), for some s ∈ N. Thus r ∈ (N :R M) and hence

by Lemma 2.2 (i), r ∈ t
√

(N :R M). Therefore N is a t-prime submodule.
(iii) Let N be a t-prime submodule of an R-module M and rx ∈ N , for r ∈ R and x ∈M\N .

Since N is t-prime, r ∈ t
√

(N :R M). So by Lemma 2.2 (v), r ∈ s
√

(N :R M), for any s ≥ t.
Therefore N is a s-prime submodule, for any s ≥ t.
(iv) Let N be a t-prime submodule of an R-module M such that (N :R M) is a semiprime
or radical ideal. Assume that r ∈ R and x ∈ M\N with rx ∈ N . Since N is t-prime,

r ∈ t
√

(N :R M). So by Lemma 2.2 (ix), r ∈ s
√

(N :R M), for any s ∈ N. Therefore N is a
s-prime submodule.
(v) As the notions prime and primary submodules coincide, when the ring is a von Neumann
regular ring, by Lemma 2.1(ii), then the proof follows by part (i). �

Proposition 2.3. Every direct summand of a torsion free module, is a t-prime submodule.

Proof. Let N be a direct summand of a torsion free R-module M . Then there exists an
R-submodule L of M such that M = N ⊕ L. Let rx ∈ N , for r ∈ R and x ∈ M . So there
exist n ∈ N and ` ∈ L such that x = n + `. Hence r` = 0 and as M is torsion free ` = 0
or r = 0. If ` = 0, then x = n ∈ N and if r = 0 then r ∈ t

√
(N :R M). Therefore N is a

t-prime submodule. �

Proposition 2.4. Let N be a t-prime submodule of an R-module M . Then
(i) (N :R M) is a t-prime ideal of R.

(ii)
√

(N :R M) is a prime ideal of R.

Proof. (i) Let rs ∈ (N :R M), for r, s ∈ R. Then rsM ⊆ N and so, for x ∈ M\N ,

rsx ∈ N . Therefore, N is t-prime, sx ∈ N or r ∈ t
√

(N :R M). Hence s ∈ t
√

(N :R M) or

r ∈ t
√

(N :R M).

(ii) Let rs ∈
√

(N :R M), for r, s ∈ R. Then there exists n ∈ N such that rnsn ∈ (N :R M).

So by part (i), rnt ∈ (N :R M) or snt ∈ (N :R M). Thus r ∈
√

(N :R M) or s ∈
√

(N :R M).

It follows that
√

(N :R M) is a prime ideal of R. �
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Theorem 2.1. Let M be an R-module and N be a proper submodule of M . Then the
following statements are equivalent:
(i) N is a t-prime submodule of M .

(ii) If for an ideal I of R and a submodule L of M , IL ⊆ N , then L ⊆ N or I ⊆ t
√

(N :R M).

(iii) N = (N :M r) or r ∈ t
√

(N :R M), for any r ∈ R.

(iv) Rx ⊆ N or (N :R x) ⊆ t
√

(N :R M), for any x ∈M .

(v) N = {m ∈M |rm ∈ N}, for all r ∈ R\ t
√

(N :R M).

(vi) N = {m ∈M |Jm ⊆ N}, for any ideal J of R such that J 6⊆ t
√

(N :R M).

(vii) (N :R m) ⊆ t
√

(N :R M), for any m ∈M\N .

(viii) (N :R L) ⊆ t
√

(N :R M), for any submodule L of M such that N ⊂ L.

(ix) annR(m+N) ⊆ t
√

(N :R M), for all m ∈M\N .

(x) ZR(M/N) ⊆ t
√

(N :R M).

(xi) N = {m ∈M |rm ∈ N, for some r ∈ R\ t
√

(N :R M)}.

Proof. (i) ⇒ (ii) Let N be a t-prime submodule and IL ⊆ N , for an ideal I of R and
submodule L of M . If L 6⊆ N , then there exists x ∈ L\N . For any r ∈ I, rx ∈ IL ⊆ N . So

as N is t-prime, r ∈ t
√

(N :R M). Therefore I ⊆ t
√

(N :R M).
(ii) ⇒ (iii) Assume that for r ∈ R, N 6= (N :M r). So there exists x ∈ (N :M r)\N . Put

L = (N :M r) and I = Rr. Then IL ⊆ N and by part (ii), r ∈ t
√

(N :R M).
(iii) ⇒ (iv) Assume that for x ∈ M , Rx 6⊆ N . For any r ∈ (N :R x), rx ∈ N and so

x ∈ (N :M r)\N . Thus by part (iii), r ∈ t
√

(N :R M). Therefore (N :R x) ⊆ t
√

(N :R M).

(iv)⇒ (v) Let r ∈ R\ t
√

(N :R M) and m ∈ M with rm ∈ N . If m /∈ N , then as r ∈ (N :R
m), by part (iv), r ∈ t

√
(N :R M), which is a contradiction. Hence m ∈ N and therefore

N = {m ∈M |rm ∈ N}.
(v) ⇒ (vi) Let J be an ideal of R such that J 6⊆ t

√
(N :R M). Then there exists r ∈

J\ t
√

(N :R M). So by part (v), N = {m ∈ M |rm ∈ N}. Hence N ⊆ {m ∈ M |Jm ⊆ N} ⊆
{m ∈M |rm ∈ N} = N . Therfore N = {m ∈M |Jm ⊆ N}.
(vi) ⇒ (vii) Let for m ∈ M\N , there exists r ∈ (N :R m)\ t

√
(N :R M). Then Rrm ⊆ N

and by part (vi), m ∈ N , which is a contradiction. Therefore (N :R m) ⊆ t
√

(N :R M).
(vii) ⇒ (viii) Let L be a submodule of M such that N ⊂ L. Then there exists m ∈ L\N .

So by part (vii), (N :R m) ⊆ t
√

(N :R M) and hence (N :R L) ⊆ (N :R m) ⊆ t
√

(N :R M).

Therefore (N :R L) ⊆ t
√

(N :R M).
(viii) ⇒ (ix) Let m ∈ M\N such that rm ∈ N . Then r ∈ (N :R Rm + N). So by part

(viii), r ∈ t
√

(N :R M) . Therefore annR(m+N) ⊆ t
√

(N :R M).
(ix) ⇒ (x) Let r ∈ ZR(M/N). Then there exists m ∈ M\N such that rm ∈ N . So

r ∈ AnnR(m + N) and hence by part (ix), r ∈ t
√

(N :R M). Therefore ZR(M/N) ⊆
t
√

(N :R M).

(x) ⇒ (xi) Let r ∈ R\ t
√

(N :R M) such that rm ∈ N . If m /∈ N , then by part (x),
r ∈ ZR(M/N), which is a contradiction. So m ∈ N and therefore N = {m ∈ M |rm ∈
N, for some r ∈ R\ t

√
(N :R M)}.

(xi)⇒ (i) Let r ∈ R and m ∈M such that rm ∈ N . If r /∈ t
√

(N :R M), then by part (xi),
m ∈ N . Thus N is a t-prime submodule of M . �

Proposition 2.5. Let N be a submodule of an R-module M such that (N :R M) is a
semiprime or radical ideal of R. Then N is a prime submodule if and only if N is a t-prime
submodule.

Proof. Let N be a prime submodule. Then by Lemma 2.1(ii), N is a t-prime submodule.
For the converse, assume that N is a t-prime submodule. Then by Lemma 2.2(ix), N is a
prime submodule. �
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Proposition 2.6. Let N be a t-prime submodule of an R-module M and I be a non-empty
subset of R such that I 6⊆ (N :R M). Then (N :M I) is a t-prime submodule of M .

Proof. Let r ∈ R and x ∈M such that rx ∈ (N :M I). Then Irx ⊆ N . Since N is t-prime,
Ix ⊆ N or rt ∈ (N :R M). If Ix ⊆ N , then x ∈ (N :M I). If rt ∈ (N :R M), then
rt ∈ ((N :M I) :R M). Therefore (N :M I) is a t-prime submodule. �

Corollary 2.1. Let N be a t-prime submodule of an R-module M . Then for any r ∈ R,
(N :M r) = M or (N :M r) is a t-prime submodule of M .

Proof. It is enough to put I = Rr in Proposition 2.6. �

Theorem 2.2. Any maximal t-prime submodule, with respect to inclusion, is prime.

Proof. Let N be a maximal t-prime submodule of an R-module M . Assume that r ∈
R\(N :R M) and x ∈ M with rx ∈ N . Then (N :M r) 6= M . By Corollary 2.1, (N :M r)
is a t-prime submodule. Now as N ⊆ (N :M r) and N is a maximal t-prime submodule,
N = (N :M r) and so x ∈ N . Therefore N is a prime submodule. �

Corollary 2.2. Let M be a finitely generated R-module that has a t-prime submodule. Then
M has a prime submodule.

Recall from [12] that a proper submodule N of an R-module M is said to be a

n-submodule, if r ∈ R\
√
AnnR(M) and x ∈ M with rx ∈ N , then x ∈ N (For more

information see [1]).

Proposition 2.7. Let N be a submodule of an R-module M . Then the following statements
hold.
(i) If N is t-prime, then N is a n-submodule if and only if t

√
(N :R M) ⊆

√
AnnR(M).

(ii) If N is a n-submodule and
√
AnnR(M) ⊆ t

√
(N :R M), then N is a t-prime submodule.

Proof. (i) Let N be a n-submodule and a ∈ t
√

(N :R M). Then atM ⊆ N . Since N is
a n-submodule, it is proper. So there exists m ∈ M\N and hence atm ∈ N . Now as

N is a n-submodule and m /∈ N , at ∈
√
AnnR(M). Thus a ∈

√
AnnR(M). Therefore

t
√

(N :R M) ⊆
√
AnnR(M). For the converse assume that t

√
(N :R M) ⊆

√
AnnR(M) and

r ∈ R and x ∈ M with rx ∈ N . As N is t-prime, x ∈ N or a ∈ t
√

(N :R M) which implies

a ∈
√
AnnR(M). Therefore N is a n-submodule.

(ii) Let r ∈ R and x ∈M with rx ∈ N . Since N is a n-submodule, x ∈ N or r ∈
√
AnnR(M)

which implies r ∈ t
√

(N :R M). Thus N is a t-prime submodule. �

Corollary 2.3. Let N be a submodule of an R-module M such that t
√

(N :R M) =
√
AnnR(M).

Then N is a t-prime submodule if and only if N is a n-submodule.

Recall that a submodule N of an R-module M is called a pure submodule, if for any
r ∈ R, (rM) ∩N = rN [3].

Proposition 2.8. Let N be a proper submodule of a torsion free R-module M such that
t
√

(N :R M) = 0. Then N is a pure submodule if and only if N is a t-prime submodule.

Proof. Let N be a t-prime submodule. It is clear that for any r ∈ R−{0}, rN ⊆ (rM)∩N .
Assume that r ∈ R and x ∈ M with rx ∈ N . If x /∈ N , then as N is t-prime, r ∈
t
√

(N :R M) = 0, which is a contradiction. So x ∈ N and therefore (rM) ∩N = rN . This
means N is a pure submodule. Now let N be a pure submodule, r ∈ R − {0} and x ∈ M
with rx ∈ N . Then rx ∈ (rM) ∩N = rN . Since M is torsion free, x ∈ N and therefore N
is a t-prime submodule. �
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Proposition 2.9. (i) Let {Ni}i∈I be a nonempty set of t-prime submodules of an R-module
M such that (Ni :R M) = (Nj :R M), for any i, j ∈ I. Then

⋂
i∈I Ni is a t-prime submodule.

(ii) Let {Ni}i∈I be a chain of t-prime submodules of a finitely generated R-module M . Then⋃
i∈I Ni is a t-prime submodule of M .

Proof. (i) Let r ∈ R and x ∈ M such that rx ∈
⋂

i∈I Ni. As (
⋂

i∈I Ni :R M) =
⋂

i∈I(Ni :R
M) = (Nj :R M), for all j ∈ I, if r /∈ t

√
(
⋂

i∈I Ni :R M), then r /∈ t
√

(Nj :R M), for all j ∈ I.
Since Nj is a t-prime submodule, x ∈ Nj , for any j ∈ I. So x ∈

⋂
i∈I Ni and therefore⋂

i∈I Ni is a t-prime submodule.
(ii) Let rx ∈

⋃
i∈I Ni, for r ∈ R and x ∈ M . Then rx ∈ Nk for some k ∈ I. Since Nk

is t-prime, we conclude that x ∈ Nk ⊆
⋃

i∈I Ni or rt ∈ (Nk :R M) ⊆ (
⋃

i∈I Ni :R M).
Therefore

⋃
i∈I Ni is a t-prime submodule. �

Definition 2.4. An R-module M is said to be a t-torsion free R-module, if r ∈ R and
x ∈M with rx = 0, then x = 0 or r ∈ t

√
AnnR(M).

It is clear that any torsion free R-module, is a t-torsion free module.

Theorem 2.3. Let N be a proper submodule of an R-module M . Then N is a t-prime
submodule if and only if M/N is a t-torsion free R-module.

Proof. Let N be a t-prime submodule, r ∈ R and x ∈ M/N with rx = 0. Then rx ∈ N
and since N is t-prime, x ∈ N or rt ∈ (N :R M) = AnnR(M/N). If x ∈ N , then x = 0.

If rt ∈ (N :R M) = AnnR(M/N), then r ∈ t
√
AnnR(M/N). So M/N is a t-torsion free

R-module. Now assume that M/N is a t-torsion free R-module. Let r ∈ R and x ∈ M

with rx ∈ N . Then rx = 0 and so x = 0 or r ∈ t
√
AnnR(M/N). If x = 0, then x ∈ N . If

r ∈ t
√
AnnR(M/N), then r ∈ t

√
(N :R M). Therefore N is a t-prime submodule. �

Proposition 2.10. Let f : R → S be a ring extension such that S is a free R-module and
N be a submodule of an R-module M . Then N is a t-prime submodule of M if and only if
N

⊗
R S is a t-prime R-submodule of M

⊗
R S.

Proof. Let {yi}i∈I be a basis for S as an R-module. It is clear that (N :R M) = (N
⊗

R S :R
M

⊗
R S). Assume thatN is a t-prime submodule ofM . Let r ∈ R and α =

∑
i∈J(mi

⊗
yi) ∈

M
⊗

R S, (for finite subset J of I) with rα ∈ N
⊗

R S. Since {yi}i∈I is a basis for S, we have
rmi ∈ N , for any i ∈ J . If α /∈ N

⊗
R S, then there exists i1 ∈ J such that mi1 /∈ N . Since N

is t-prime, r ∈ t
√

(N :R M) and hence r ∈ t
√

(N
⊗

R S :R M
⊗

R S). Therefore N
⊗

R S is a
t-prime submodule of M

⊗
R S. Now for the converse, let N

⊗
R S be a t-prime submodule

of M
⊗

R S, r ∈ R and x ∈ M with and rx ∈ N . So r(x
⊗
y1) ∈ N

⊗
R S. Since N

⊗
R S

is t-prime, r ∈ t
√

(N
⊗

R S :R M
⊗

R S) or x
⊗
y1 ∈ N

⊗
R S. Hence r ∈ t

√
(N :R M) or

x ∈ N . Therefore N is a t-prime submodule of M . �

Let N be a submodule of an R-module M . Consider N [x] = {a0+a1x+ ...+anx
n|n ∈

N, ai ∈ N}. It is clear that M [x] is an R-module and N [x] is a submodule of M [x]. Hence
we have the following direct consequence.

Corollary 2.4. Let N be a submodule of an R-module M . Then N is a t-prime submodule
of M if and only if N [x] is a t-prime R-submodule of M [x].

Proposition 2.11. Let N and L be submodules of an R-module M and I be an ideal of R.
Then the followings hold:
(i) If N and L are t-prime submodules such that I 6⊆ t

√
(N ∪ L :R M) and IN = IL, then

N = L.
(ii) If IN is a t-prime submodule of M such that I 6⊆ t

√
(IN :R M), then IN = N .
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Proof. (i) Since I 6⊆ t
√

(N ∪ L :R M), then by Lemma 2.2 (iii), I 6⊆ t
√

(N :R M). Also since
N is a t-prime submodule and IL ⊆ N , by Theorem 2.1 (i)⇒(ii), we get that L ⊆ N .
Likewise, N ⊆ L. Therefore N = L.
(ii) Since IN is a t-prime submodule and IN ⊆ IN , we conclude that N ⊆ IN , so this
completes the proof. �

Definition 2.5. An R-module M is called a t-prime module, if the zero submodule is t-
prime.

The next proposition provides a useful characterization of t-prime modules.
Recall that a proper submodule N of M is said to be an r-submodule, if for a ∈ R, m ∈M
and whenever am ∈ N with annM (a) = 0, then m ∈ N [6].

Proposition 2.12. Let M be an R-module. Then the following conditions are equivalent.
(i) M is a t-prime module.

(ii) ZR(M) = t
√
AnnR(M).

(iii) Any r-module is a t-prime submodule.

Proof. (i) ⇒ (ii) Let r ∈ ZR(M). Then there exists a nonzero x ∈ M such that rx = 0.

Since zero is a t-prime submodule, r ∈ t
√
AnnR(M). For the converse, let r ∈ t

√
AnnR(M).

Then rtM = 0. For any x ∈ M\{0}, we have rtx = 0. Let s ∈ N be the smallest integer
with rsx = 0. It follows that r(rs−1x) = 0 and rs−1x 6= 0. Hence r ∈ ZR(M).
(ii) ⇒ (iii) Let N be an r-submodule of M and rx ∈ N , for r ∈ R and x ∈ M . If

r /∈ t
√
AnnR(M), then by part (ii), annM (r) = 0. Now, since N is an r-submodule, x ∈ N .

(iii)⇒ (i) Since the zero submodule is an r-submodule, by part (iii) the zero submodule is
a t-prime submodule. �

Proposition 2.13. Let N be a proper submodule of a torsion-free R-module M . Then the
following conditions are equivalent.
(i) N is a t-prime submodule.

(ii) rN = N ∩ rM , for any r ∈ R\ t
√

(N :R M).

(ii) N = (N :M r), for any r ∈ R\ t
√

(N :R M).

Proof. (i) ⇒ (ii) Let N be a t-prime submodule and r ∈ R\ t
√

(N :R M). It is clear that

rN ⊆ N ∩ rM . Let x ∈M . Then rx ∈ N and so by part (i) and since r /∈ t
√

(N :R M), we
have x ∈ N . Therefore rN = N ∩ rM .
(ii) ⇒ (iii) Let r ∈ R\ t

√
(N :R M). It is clear that N ⊆ (N :M r). Consider x ∈ M such

that rx ∈ N . Then by part (ii), rx ∈ rN and since M is torsion free, x ∈ N . Therefore
N = (N :M r).

(iii) ⇒ (i) Assume that r ∈ R\ t
√

(N :R M) and x ∈ M with rx ∈ N . Then x ∈ (N :M r)
and so by part (iii), x ∈ N . Therefore N is a t-prime submodule. �

Proposition 2.14. Let N be a proper submodule of a torsion-free R-module M . If rN = N ,
for any r ∈ R\ t

√
(N :R M), then N is a t-prime submodule.

Proof. Assume that r ∈ R\ t
√

(N :R M) and x ∈ M with rx ∈ N . Then rx ∈ rN and since
M is torsion free, x ∈ N . Therefore N is a t-prime submodule. �

Proposition 2.15. Let N be a t-prime submodule of an R-module M . Then N = (0 :M
AnnR(N)) or AnnR(N) ⊆ t

√
(N :R M).

Proof. Assume that AnnR(N) 6⊆ t
√

(N :R M) and x ∈ (0 :M AnnR(N)). Then for a ∈
AnnR(N)\ t

√
(N :R M), ax = 0. Since N is t-prime, x ∈ N . Therefore N = (0 :M AnnR(N).

�
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Theorem 2.4. Let M be an R-module. The following conditions are eqivalent.
(i) Any proper submodule is a t-prime submodule.
(ii) Any proper cyclic submodule is a t-prime submodule.

Proof. (i) ⇒ (ii) It is clear.
(ii) ⇒ (i) Let N be a proper submodule of M , r ∈ R and x ∈M with rx ∈ N . Then there
exists n ∈ N , such that rx = n. Hence rx ∈ Rn and Rn is a proper submodule of M . So
by part (ii), x ∈ Rn or rt ∈ (Rn :R M). If x ∈ Rn, then x ∈ N . If rt ∈ (Rn :R M), then
rt ∈ (N :R M). Therefore N is a t-prime submodule. �

Proposition 2.16. (i) Let {Pi}i∈I be a nonempty set of prime submodules of an R-module
M . If

⋂
i∈I Pi is a t-prime submodule, then

⋂
i∈I Pi is a prime submodule.

(ii) Let {Pi}i∈I be a nonempty set of primary submodules of an R-module M . If
⋂

i∈I Pi is
a t-prime submodule, then

⋂
i∈I Pi is a primary submodule.

Proof. (i) Let r ∈ R and x ∈ M with rx ∈
⋂

i∈I Pi. If r /∈ (
⋂

i∈I Pi :R M), then as
(Pi :R M) are prime ideals; rt /∈ (

⋂
i∈I Pi :R M). Since

⋂
i∈I Pi is a t-prime submodule, we

have x ∈
⋂

i∈I Pi. Therefore
⋂

i∈I Pi is a prime submodule.
(ii) The proof is similar to part (i). �

Recall from [10], the intersection of all prime submodules contains N , denoted rad(N),
is called the radical of N . If there is no prime submodule containing N , rad(N) = M .
By Lemma 2.1(ii) and Proposition 2.16(i), we arrive at the following corollary.

Corollary 2.5. Let N be a submodule of an R-module M . Then rad(N) is a t-prime
submodule if and only if rad(N) is a prime submodule.

3. Examples

This Section is devoted to examples. We provide several examples which illustrate
our results mentioned in previous sections.

Example 3.1. (i) 4Z as a Z-submodule of Z is a 2-prime submodule, but it is not a prime
submodule.
(ii) 8Z⊕ 4Z as a Z-submodule of Z⊕ Z is not a 2-prime submodule.

Example 3.1 (i) shows that the converse of Proposition 2.3 is not true in general.

Example 3.2. Let M = Z2 ⊕ Z2 and R = Z. Then every proper submodule of M is a
t-prime submodule. (It is clear that every proper submodule of M is prime and so according
to Example 2.1(ii), every proper submodule of M is a t-prime submodule.)

Now we have an example which shows that there exists an R-module that does not
have a t-prime submodule.

Example 3.3. Let p be any prime number and M be the Prüfer p-group i.e., M = Zp∞

and R = Z. Then we show that any proper submodule of M is not a t-prime submodule.
It is clear that the zero is not a t-prime submodule. Let N be a proper submodule of M

which is a t-prime submodule of M . Then there exists n ∈ N such that N =<
1

pn
+ Z >.

Since p(
1

pn+1
+ Z) ∈ N and N is t-prime,

1

pn+1
+ Z ∈ N or p ∈ t

√
(N :R M) this implies

1

pn+1
+ Z = pt(

1

pn+t+1
+ Z) ∈ N , which is a contradiction. Therefore M = Zp∞ does not

have a t-prime submodule.
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Remark 3.1. (i) By Proposition 2.2(i), every t-prime submodule of a module is a primary
submodule. However, the converse is not true in general. For example; if R = Z, M = Z⊕Z
and N = 8Z⊕ 4Z, then as

√
(N :R M) = 2Z, N is a primary submodule of M , but it is not

a 2-prime submodule, because 2(4, 2) ∈ N , but 2 /∈ 2
√

(N :R M) and (4, 2) /∈ N .
(ii) By Proposition 2.2(iii), every t-prime submodule of a module is a (t+1)-prime submod-
ule. However, the converse is not true in general. For example; N = 8Z⊕ 4Z in part (i) is
a 3-prime submodule; but it is not a 2-prime submodule.
(iii) For prime number p, ptZ is a t-prime submodule of Z-module Z; but it is not a prime
nor a s-prime submodule, for s < t.

By Proposition 2.4(ii), for t-prime submodule N of M ,
√

(N :R M) is a prime ideal.
The next example shows that the converse is not true in general.

Example 3.4. Let M = Z ⊕ Z and R = Z. Consider the submodule N = 8Z ⊕ 4Z. By
Remark 3.1(i), N is not a 2-prime submodule; but

√
(N :R M) = 2Z is a maximal ideal.

The following example shows that the sum and intersection of two t-prime submodules
is not a t-prime submodule in general.

Example 3.5. (i) Let M = Z⊕Z and R = Z. We consider the submodules N = 0⊕Z and
K = Z ⊕ 0. It is easy to see that K and N are t-prime submodules. Since N + K = M ,
N +K = Z⊕ Z is not a t-prime submodule of M . (It is not a proper submodule.)
(ii) Let M = R = Z. Take N = 4Z and K = 9Z. It is easy to see that K and N are t-prime
submodules. Now N ∩K = 36Z is not a primary submodule and so, by Proposition 2.2(i),
it is not a t-prime submodule of M.

Example 3.6. Q as a Z-module has only one t-prime submodule. Indeed, it is clear that,
the zero submodule is a prime submodule and so by Lemma 2.1(ii), it is a t-prime submodule
of Q. Let N be a non-zero t-prime submodule. It follows that (N :Z Q) = 0. Then for

0 6= a

b
∈ N and

x

y
∈ Q\N , ay

x

by
= x

a

b
∈ N , which is a contradiction.

Example 3.7. (i) M = Z2⊕Z2 as a R = Z-module is a 2-torsion free module, but it is not
a torsion free R-module.
(ii) M = Z⊕Z2 as a R = Z-module is not a t-torsion free module, for any t ∈ N (Consider
2(0, 1) = (0, 0)).
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