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ON THE RAYLEIGH-RITZ QUOTIENT

Alina Petrescu-Niţă1

In linear algebra, the Rayleigh-Ritz quotient is defined for any operator

of a Hilbert space. In the case of selfadjoint operators, it allows variational char-

acterizations of their eigenvalues. In the present paper, properties are presented

for this relationship in the case of general operators, including the original result

which shows that the Rayleigh-Ritz quotientis give an estimate of the ”variation

speed” for the operator.
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1. Introduction

Let us assume (E, ⟨·, ·⟩) as a complex n-dimensional Euclidean space. There-

fore, E is a vector space over C, equipped with a scalar product. A linear operator

f : E → E is defined as orthogonal when it preserves the scalar product, that is

∀x, y ∈ E, ⟨f(x), f(y)⟩ = ⟨x, y⟩, and selfadjoint (≡ symmetrical) when ∀x, y ∈ E,

⟨f(x), y⟩ = ⟨x, f(y)⟩. We define, as usual, f∗ the adjoint of f (its defining property

being ∀x, y ∈ E, ⟨f∗(x), y⟩ = ⟨x, f(y)⟩), and we show that f is orthogonal if and

only if f is a linear isomorphism and f−1 = f∗; hence f is selfadjoint if and only if

f∗ = f .

When we use matrices, take B = {e1, e2, . . . , en} an orthonormal basis of E

and consider the square matrix A = MB
f = (f(e1)|f(e2)| . . . |f(en)) of the operator

f in relation to B, then the matrix of f∗ in relation to B is of ĀT (denoted as A∗).

It should be reminded that a square matrix A ∈ Mn(C) is called orthogonal when

A∗ ·A = İn, that is when A is invertible and A−1 = A∗, and as a Hermitian matrix

when A = A∗.

Then, the operator f : E → E is orthogonal if and only if the matrix associated

to f is orthogonal in any orthonormal basis; similarly, f is selfadjoint if and only

if, the matrix of f is a Hermitian in any orthonormal basis. It is known that the

eigenvalues of Hermitian operators are real.

We recall that for any linear operator f : E → E of a complex Euclidean space

and for any non-zero vector x ∈ E, the Rayleigh-Ritz quotient of f in x is defined as
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Rf (x) =
⟨f(x), x⟩
||x||2

; [1], [2], [4], [5], [6] (1)

When B is an orthonormal basis of E and A =MB
f is the matrix associated to

f in relation to B, then for any vector x ∈ E (identified with the column-vector X

of the coordinates of x in the basis B) the relationship f(x) = A ·X takes place. We

will define X∗ = X̄T the transposed of the conjugate of the vector X. In addition,

for every x, y ∈ E, we have ⟨x, y⟩ = X∗ ·Y . Hence, ||x||2 = X∗ ·X. Considering these

identifications, the Rayleigh-Ritz quotient may be written equivalently as follows:

Rf (x) =
⟨A ·X,X⟩

||x||2
=

(A ·X)∗ ·X
X∗ ·X

=
X∗ ·A∗ ·X
X∗ ·X

, for any x ̸= 0. (2)

Example 1.1. 1) Let us assume that E = R2 and ρθ : E → E is the rotation

operator with an angle θ around the origin. Then, for every x ∈ R2 \ {0}, ρθ(x), is
the rotated of x with an angle θ; relative to the Euclidean scalar product we have

⟨ρθ(x), x⟩ = ||x|| · ||x|| · cos θ and Rρθ(x) = cos θ is independent of x.

2) Let us assume that v ∈ E is a non-zero vector; since it is linearly indepen-

dent, it may be completed to an orthogonal basis {v, u2, . . . , un} of E (by means of

the Gram-Schmidt process). Then, the vector f(v) will be written in form of

f(v) = a · v +
n∑

k=2

bk · uk (with a, bk ∈ C),

hence

⟨f(v), v⟩ =

⟨
a · v +

n∑
k=2

bk · uk, v

⟩
= a⟨v, v⟩+

n∑
k=2

bk · 0 = a · v∗ · v = a · ||v||2.

In this case, according to (1), Rf (v) =
⟨f(v), v⟩
||v||2

= a, and it results that the Rayleigh-

Ritz quotient is precisely the scalar projection of f(v) along v.

One classic result consists in the following

Theorem 1.1. Theorem (Rayleigh-Ritz [2]). When A ∈ Mn(C) is a Hermitian

matrix and its eigenvalues are arranged in increasing order: λmin = λ1 ≤ λ2 ≤ . . . ≤
λn−1 ≤ λn = λmax, then for any possible vector X ∈ Cn, the following take place:

λ1X
∗ ·X ≤ X∗ ·A ·X ≤ λnX

∗ ·A ·X, (3)

λmin = min
X ̸=0

X∗ ·A ·X
X∗ ·X

= min
||X||=1

X∗ ·A ·X;

λmax = max
X ̸=0

X∗ ·A ·X
X∗ ·X

= max
||X||=1

X∗ ·A ·X.
(4)

This theorem happens for every selfadjoint operator f : E → E and it is

expressed simply through the proposition (1). Namely as follows:
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Proposition 1.1. The function Rf : E \ {0} → C has real values and, moreover,

for the eigenvalues (the lowest and the highest one) of f , we have

λmin = max
x∈E
x̸=0

Rf (x) and λmax = max
x∈E
x ̸=0

Rf (x) (5)

The result can be refined, considering an orthonormal basis B of E in relation

to which the operator f is diagonal. It is known that the matrix A = MB
f will

be decomposed as follows: A = U · D · U∗, where D = diag(λ1, . . . , λn) and U =

(u1|u2| . . . |un) is a matrix having in its column the orthonormal eigenvectors of A.

Considering an orthogonal vector x on u1, we have the following results:

x∗ ·A · x =

n∑
k=1

λk|(U∗ · x)k|2 =
n∑

k=2

λk|(u∗k · x)|2,

and so

x∗ ·A · x ≥ λ2

n∑
k=2

|u∗k · x|2 = λ2

n∑
k=1

|(U∗ · x)k|2 = λ2 · x∗ · x.

Therefore, λ2 = min
x̸=0
x⊥µ1

Rf (x).

Remark 1.1. If A ∈ Mm,n(C) is a rank-k matrix, then A∗ · A is a square, non-

negative, definite matrix, (because X∗ ·(A∗ ·A) ·X = (A ·X)∗ ·(A ·X) = ||A ·X||2 ≥ 0

for any X). Then, the eigenvalues of A∗ · A are non-negative. The non-zero square

roots (as many as k) of these eigenvalues are precisely the singular values of the

matrix A and they form the diagonal of a matrix Σ with the remaining elements

null; moreover, the singular decomposition of A takes the form A = V ·Σ ·W ∗, where

V ∈ Mm(C) and W ∈ Mn(C) are unitary matrices. Such decomposition allows the

direct calculation of the pseudo-inverse of A, namely A+ = V · Σ+ ·W ∗ [3]. The

Rayleigh-Ritz quotient for the matrix A∗ ·A is, according to (1.1)′,

X∗ · (A∗ ·A)∗ ·X
X∗ ·X

=
X∗ ·A∗ ·A∗ ·X

X∗ ·X
=

(A∗ ·X)∗ ·A ·X
X∗ ·X

=

=
||A ·X||2

||X||2
=

(
||A ·X||
||X||

)2

.

Its maximum is the square of the ”augmentation” of the input-output linear system

Cn → Cm defined by the matrix A [4].

2. The Rayleigh-Ritz quotient for linear operators

Let us assume that E is a complex pre-Hilbert space and f : E → E a linear,

not necessarily selfadjoint operator.

Proposition 2.1. The function

ρ : E \ {0} → R, ρ(x) = |Rf (x)|

is bounded and it attains its bounds.
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Proof. Let us define S = {x ∈ E| ||x|| = 1}, the unit sphere. E is a metric

space (isometric with Cn ∼= R2n) and S is a compact set. Moreover, the function

ρ is continues on E \ {0}, and therefore on S ⊂ E \ {0}, too. Consequently, the

restriction ρ|S is bounded and it is touching its bounds m,M ; m = inf
x∈S

|ρ(x)|. When

x ∈ E \ {0} is a vector and u =
x

||x||
is the versor of x, then u ∈ S and x = ||x||u,

and we have

⟨f(x), x⟩ = ⟨||x||·f(u), ||x||·u⟩ = ||x||2 ·⟨f(u), u⟩ = ||x||2 ·Rf (u)·||u||2 = ||x||2 ·Rf (u).

Therefore,
⟨f(x), x⟩
||x||2

= Rf (u); hence Rf (x) = Rf (u) and ρ(x) = ρ(u). Since u ∈ S,

it results that ρ(x) ≥ m. Similarly, we can show that for whatever x ∈ E \ {0}, we
have ρ(x) ≤ M . This means that the function ρ is bounded over E \ {0}, while its

margins are attain on S. �

Remark 2.1. If f is a selfadjoint operator, then the proposition 2.1. is more precise;

namely, according to the Rayleigh-Ritz theorem, the function Rf has real values, its

extreme global values being on E \{0}, precisely λmin and λmax (that is the extreme

eigenvalue of the operator f); [5],[6].

Proposition 2.2. When the operator f is orthogonal, then ∀x ∈ E \ {0},
|Rf (x)| ≤ 1.

Proof. We have ∀x ∈ E, ||f(x)||2 = ⟨f(x), f(x)⟩ = ⟨x, f∗(f(x))⟩ = ||x||2, since

f∗ ◦ f = 1E . Therefore, ||f(x)|| = ||x||, and according to Schwarz’s inequality

|⟨f(x), x⟩| ≤ ||f(x)|| · ||x|| = ||x||2, and hence

|Rf (x)| =
|⟨f(x), x⟩|

||x||2
≤ 1.

�

3. The variation speed of the Rayleigh-Ritz quotient

Let us assume that E is a real pre-Hilbert space and f : E → E a linear

operator. If B is an orthonormal basis of E and A = MB
f , then ∀x, y ∈ E, we

have f(x) = A · X; ⟨x, y⟩ = XT · Y . Then, also, ⟨x, f(y)⟩ = XT · A · Y and

⟨y, f(x)⟩ = Y T · A · X = XT · AT · Y (the latter relationship being between real

numbers and for a ∈ R, aT = a). Then

⟨x, f(y)⟩+ ⟨y, f(x)⟩ = XT · (A+AT ) · Y. (6)

On the other hand, ⟨f(x), x⟩ = (A ·X)T ·X = XT ·AT ·X; and so considering

the gradients we have,

grad ⟨f(x), x⟩ = grad (XT ·AT ·X) = XT · (A+AT ). (7)

Comparing the relationships (6) and (7), we get the following result

⟨x, f(y)⟩+ ⟨f(x), y⟩ = ⟨grad ⟨f(x), x⟩, y⟩. (8)
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In case that f = 1E , the relationship (8) becomes

⟨grad ⟨x, x⟩, y⟩ = 2⟨x, y⟩. (9)

On the other hand, according to (1), and applying the formulas

grad
φ

ψ
=
ψgradφ− φgradψ

ψ2
(ψ ̸= 0) and grad ||x||2 = 2x,

we have

gradRf (x) =
||x||2grad ⟨f(x), x⟩ − ⟨f(x), x⟩grad ||x||2

||x||4
=

=
1

||x||2
grad ⟨f(x), x⟩ − 2x

||x||4
⟨f(x), x⟩.

Therefore, for every x, y ∈ E; x ̸= 0, we have

⟨gradRf (x), y⟩ =
1

||x||2
⟨grad ⟨f(x), x⟩, y⟩ − 2

||x||4
⟨f(x), x⟩ · ⟨x, y⟩.

According to (8), we have

⟨grad ⟨f(x), x⟩, y⟩ = ⟨x, f(y)⟩+ ⟨f(x), y⟩ = ⟨f∗(x), y⟩+ ⟨f(x), y⟩;

So that

⟨gradRf (x), y⟩ =
1

||x||2
(⟨f(x) + f∗(x), y⟩)− 2

||x||4
||x||2Rf (x) · ⟨x, y⟩ =

=
1

||x||2
[⟨f(x) + f∗(x), y⟩ − 2Rf (x) · ⟨x, y⟩] =

=
1

||x||2
⟨f(x) + f∗(x)− 2Rf (x) · x, y⟩ .

Since y is a general random vector in E, we have the following result

Proposition 3.1. If f : E → E is a linear operator of a real pre-Hilbert space, then

for any x ∈ E; x ̸= 0, we have

gradRf (x) =
1

||x||2
(f(x) + f∗(x)− 2Rf (x) · x). (10)

When we know the gradient of a scalar field φ, it is possible to determine the

density of φ along every direction of a versor s, namely
dφ

ds
(x) = ⟨gradφ(x), s⟩; this

enables the determination of the rate of change of φ along the direction of s.

Corollary 3.1. When the linear operator f : E → E is selfadjoint and x ∈ E \ {0},
then

gradRf (x) =
2

||x||2
(f(x)−Rf (x) · x). (11)

This is a direct result of (10), since f∗ = f .
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Corollary 3.2. When the linear operator f : E → E is selfadjoint and when x ∈
E \ {0} is an extreme value point for Rf (x), then x is an eigenvector for f .

Proof. If x is an extreme value point on the open set E \ {0}, then it is a critical

point for Rf (x) and hence, gradRf (x) = 0; according to (11), it results that f(x) =

Rf (x) · x. The corresponding eigenvalue is precisely Rf (x). �

Corollary 3.3. When the linear operator f : E → E is orthogonal and x ∈ E \ {0}
is an extreme local point for Rf (x), then the subspace G of E generated by x and

f(x) is invariant by f .

Proof. In this case, f is an isomorphism and f∗ = f−1. According to (10), it follows

that f(x) + f−1(x) − 2Rf (x) · x = 0. When z ∈ G, then z = αx + βf(x), with

α, β ∈ R, hence f(z) = αf(x) + βf(f(x)). But f(f(x)) + x − 2Rf (x) · f(x) = 0.

Consequently,

f(z) = αf(x) + β(2Rf (x) · f(x)− x);

so f(z) ∈ G. �
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