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IMPROVING DEEP LEARNING-BASED INSTANCE 

SEGMENTATION FOR CRYSTALLIZATION TRAILS WITH 

RESIDUAL MULTI-SCALE FEATURE AND ATTENTION 

MECHANISM 

Xiaoyan ZHANG1, Bo LAN2,*, Lugang ZHANG3 

The process of monitoring crystallization is significant for understanding the 

formation of crystals and assisting in the screening of high-throughput crystal 

forms. Crystal process image recognition is faced with small contours, dense 

targets, and scale changes. Therefore, this paper proposes a network model for the 

segmentation of crystallographic images. Firstly, the model’s generalization ability 

is improved by data augmentation methods such as contrast adjustment and 

Gaussian blur. Afterwards, a residual feature enhancement module is inserted 

between the encoder and decoder to strengthen the feature extraction for the top 

layer of the feature pyramid network, effectively utilizing high-level information and 

enhancing multi-scale feature extraction. Lastly, attention gates are applied for 

automatic learning to focus on targets of varying sizes and shapes, emphasizing 

valuable features while suppressing irrelevant areas in the input image. 

Experimental outcomes indicate that the optimized approach achieves an IoU of 

0.8521, an F1-score of 0.9185, and a sensitivity of 0.9012, outperforming other 

methods. The method can meet the requirements of image segmentation in the 

crystallization process and provide a reliable reference for the automatic process of 

crystal form screening. 

Keywords: crystal, instance segmentation, transfer learning, multi-scale feature, 

attention mechanism. 

1. Introduction 

The development cycle of new drugs is long and expensive. Thousands of 

compounds often need to be screened. The screening of crystal forms is an 

essential part of the whole process. Crystallization is an operation that separates 

substances from solutions in a crystalline state. It can deal with many problems 

that operations cannot solve, including distillation, extraction, and adsorption, 
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which is widely used to separate new products [1]. Assessing crystal morphology 

and size distribution is critical for managing and optimizing product quality and 

production efficiency in crystallization. Various process analysis tools, including 

attenuated total reflection infrared spectroscopy, Raman spectroscopy, focused 

beam reflectometry, and ultrasonic attenuation, have been utilized in the 

crystallization process. These process analysis techniques help to monitor the 

growth behavior during the crystallization process, which can control the 

crystallization process and develop its product quality [2].  

In contrast, image signals represent more intuitive information and are 

regarded as one of the most promising techniques for measuring crystal form and 

size [3]. The changes in crystal morphology and imaging size during 

crystallization are monitored using visual sensing devices. A variety of parameters 

such as crystal morphological characteristics, growth rate, and growth state are 

obtained during the crystallization process [4]. It is possible to further study the 

crystal growth mechanism, identify the crystal habit ratio, and provide an 

adequate basis for regulating the crystal growth process. To investigate the 

crystallization results, it is still necessary for researchers to observe the samples 

through a microscope in most cases. Crystals are manually found to determine if 

the crystallization process is complete. In high-throughput crystal form screening, 

manual crystal identification has become a bottleneck factor affecting the 

experimental progress and automation. 

Conventional methods in image processing have allowed for the 

calculation of crystal form and distribution of dimensions while crystals are 

forming, utilizing visual imaging systems [5]. Vancleef introduced an adaptable 

and dependable image analysis approach that merges edge detection, intensity 

thresholding, and an advanced watershed algorithm for monitoring particle size 

distribution, quantity, and solid concentration via a flow microscope [6]. Offiler 

created a new automated technique that merges a flow cell for crystal growth with 

image analysis, using the Hough transform to identify crystal facets and calculate 

growth rates, which was confirmed through experiments with α-glycine crystals 

[7]. Additionally, the advancement in computer science, particularly deep learning 

within machine learning, has significantly progressed, enhancing image 

characteristic information extraction and recognition accuracy through big data. 

Deep learning has found applications in monitoring the crystallization 

process in pharmaceutical and chemical fields. Huo employed a binocular system 

to measure the distribution and size of crystals based on the fusion of binocular 

images captured by two miniature cameras at different angles [8]. Vagenknecht 

suggested an approach using generative adversarial networks to analyze particle 

size in low-resolution online microscope images, allowing for real-time 

monitoring of particle size distribution in crystallization processes [9]. Manee 

suggested a strategy for controlling crystallization that combines a measurement 
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sensor based on a convolutional neural network (CNN) with a reinforcement 

learning (RL) framework. This strategy aims to improve control loops during 

crystallization, improve the quality of crystal size measurements, and decrease the 

time required for image processing [15]. Salami created an image analysis model 

using deep learning and convolutional neural networks (CNN) to detect unwanted 

crystals in real-time during crystallization, with the goal of improving product 

purity and process efficiency in the production of Cephalexin [16]. Xin introduced 

two techniques to enhance Mask R-CNN: merged sampling and random proposal 

augmentation, which improve training on small datasets and reduce overfitting. 

These techniques were applied to the measurement of zeolite catalyst particles in 

SEM images, significantly increasing measurement accuracy [17]. Fan presented 

a new method for in-situ measurement using binocular stereo imaging to track the 

distribution of crystal length and width while cooling crystallization occurs. This 

method utilizes a stereo vision imaging system combined with deep learning 

algorithms, enhancing the accuracy and efficiency of crystal size distribution 

measurements [18]. 

The proposed method offers several key advancements in crystallization 

image analysis, distinguishing it from existing approaches. Traditional deep 

learning models face challenges with high-density targets, small contours, and 

scale variations in crystal images. To address these issues, our study introduces 

the following specialized optimizations: 

(1) Custom-designed Data Augmentation: To combat data imbalance and 

prevent model overfitting, tailored augmentation techniques are implemented, 

ensuring robustness across various scenarios. 

(2 Residual Feature Enhancement Module: Added at the top layer of the 

Feature Pyramid Network (FPN), this module improves multi-scale feature 

extraction, which is particularly beneficial for detecting and segmenting small 

crystals that are often overlooked by traditional models. 

(3) Attention Mechanism in Feature Fusion: This mechanism helps refine 

the learning of relevant features while suppressing noise, leading to more accurate 

and context-aware feature representation. 

(4) Emphasis on Skip Connections: By focusing on skip connections 

within the instance segmentation network, the model restores full spatial 

resolution and reduces semantic gaps between the encoder and decoder, which 

enhances segmentation performance. 

Together, these targeted optimizations contribute to superior segmentation 

accuracy and adaptability, setting this method apart from existing solutions in the 

analysis of crystallization images. 
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2. Related Work 

In recent years, deep learning-based models have gained significant 

attention for their application in the analysis of crystallization processes, 

particularly in monitoring and controlling crystal size, morphology, and 

distribution in real-time. These models have been developed to tackle challenges 

such as high-density crystal slurries, overlapping particles, and high-throughput 

image analysis, all of which are commonly encountered in industrial 

crystallization processes.  

Several studies have advanced the state of crystallization image analysis 

through the use of deep learning. Li proposed a deep learning-based strategy that 

effectively analyzes in-situ microscopy images of high-density crystallization 

slurries by incorporating image and data augmentation techniques. This method 

enhances the ability to monitor and control the crystallization process in real-time, 

enabling better management of the crystal growth dynamics and product 

quality[10]. Wang introduced a Nonlinear Model Predictive Control (NMPC) 

approach aimed at real-time control of crystal size and standard deviation during 

cooling crystallization processes. This approach improves the precision of 

crystallization control, ensuring more reliable and consistent crystal 

formation[11]. Zong explored deep learning techniques, particularly the Mask R-

CNN-based online image analysis, to address the challenge of accurately 

segmenting images of high solid concentration and overlapping particles in 

continuous industrial crystallization processes. By improving segmentation 

accuracy, this method contributes to better analysis of crystallization behavior in 

large-scale settings[12]. He leveraged deep learning for the analysis of how 

microporous plate sizes influence the crystalline growth of active pharmaceutical 

ingredients (APIs). The integration of microscopy imaging techniques allowed for 

the successful high-throughput analysis of large volumes of crystal data, 

providing insights into the crystallization process[13]. Wu developed an advanced 

image analysis method that integrates the S2A-Net model, a state-of-the-art deep 

learning architecture for object detection. This method enables real-time, accurate 

determination of crystal size distribution and quantity, significantly aiding in the 

observation and analysis of crystallization processes such as taurine 

crystallization[14].  

Additionally, several well-established deep learning architectures have 

been applied to image segmentation tasks in crystallization analysis. U-Net, 

originally designed for biomedical image segmentation, has proven effective in 

leveraging limited annotated samples through data augmentation strategies. This 

allows for end-to-end training on small datasets, which is particularly useful in 

crystallization image analysis where data may be limited[19]. FCN-8s, another 

popular model, facilitates efficient semantic segmentation by employing fully 
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convolutional architectures. This allows for the transformation of arbitrarily sized 

inputs into correspondingly dimensioned outputs, making it suitable for various 

crystallization image sizes[30]. SegNet, with its deep fully convolutional encoder-

decoder architecture, enhances segmentation accuracy and efficiency by using 

pooling indices for nonlinear upsampling between the encoder and decoder, which 

improves the model’s ability to handle complex image features such as 

overlapping crystals and varying particle sizes[28].  

These advancements in deep learning-based models have contributed 

significantly to the field of crystallization process analysis. However, challenges 

remain in dealing with complex images, overlapping particles, and high-density 

slurries, indicating that further innovations in model design, feature extraction, 

and data augmentation are required to fully optimize the analysis of crystallization 

processes. 

3. Model Design 

The research employs a comprehensive deep learning approach to segment 

crystallization pictures. The fundamental model framework adopts an encoder-

decoder structure for feature extraction and image segmentation. Utilizing the U-

net structure as its backbone, the model integrates a FPN and an attention 

mechanism for the segmentation task. Moreover, the encoder generates 

characteristics for FPN input at various scales, with a residual feature 

enhancement module implemented at the highest level of the FPN. The FPN 

output, in conjunction with the decoder through the attention gate, generates high-

level semantic features as well as fine-grained image features. Finally, a mask is 

output to signify the crystallization. Fig. 1 illustrates the visual structure of the 

optimized model. 

 
Fig. 1. The structure of the optimized model 

3.1. Basic network structure 

The basic network structure utilizes the U-net design as its core, consisting 

of both an encoder and a decoder [19]. The encoder facilitates the propagation of 
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contextual information through skip connections, thereby enhancing the extraction 

of complex hierarchical features. The decoder assimilates features of varying 

complexity for the reconstruction process. The U-net's encoder and decoder are 

connected with long-range connections, allowing for the integration of various 

hierarchical features into the decoder, leading to a network that is both more 

precise and scalable. 

The U-net's encoder structure is a conventional convolutional network 

architecture. In the encoder, every stage includes two 3x3 convolutions with mish 

activation, then a 2x2 max pooling layer is used for downsampling. The feature 

channels are doubled at each step. In the decoder, the feature maps undergo up-

sampling via 2×2 convolutions at each stage. The encoder's feature maps from 

each step are combined and incorporated into the decoder. Subsequently, mish 

activation is performed after two 3×3 convolutions. Lastly, a 1x1 convolution is 

utilized on the feature map to decrease it to the required channel quantity, 

resulting in segmented images. 

3.2. Residual feature augmentation 

Throughout the process of crystallization, crystals undergo continuous 

growth and change in both shape and size. Some subtle information in 

crystallization imaging is often missed. Feature pyramid can be applied to fuse 

multi-scale features. The feature pyramid to the convolutional neural network 

enables the extracted features to better represent the multi-dimensional 

information of input images. In the FPN, the feature information at the top level is 

lost due to the reduction of feature channels [20]. The information provided is 

limited to a single scale context and does not align with features at other levels. In 

this paper, the residual feature augmentation module [21] is applied to adaptively 

pool the top-level information of FPN, as shown in Fig. 2. Different contextual 

information is extracted and the loss is reduced at the highest level in the feature 

pyramid using a residual manner. 

Within the FPN framework, the higher-level feature maps are transmitted 

in a downward direction and slowly combined with the lower-level ones. On the 

one hand, low-level feature maps are improved by high-level semantic 

information, so that features are naturally assigned to different contextual 

information. On the other hand, the top layer contains only single-scale contextual 

information incompatible with other features and suffers the loss of information 

due to reduced feature channels. 
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Fig. 2. The FPN with residual feature augmentation module 

 

Fig. 3 displays the overall framework of the residual feature augmentation 

module. At the highest level, the module conducts adaptive pooling that is 

invariant to ratios in order to acquire feature maps of various scales. 1x1 

convolution is applied to modify the feature maps, while bilinear interpolation is 

used to up-sample all feature maps of varying scales to match the size of the 

original top layer. Contextual features are combined using adaptive spatial fusion, 

rather than simply adding them adaptively. The adaptive spatial fusion module 

takes the up-sampled features as input, generates a spatial weight for each feature, 

and aggregates the contextual features using the weight. The features developed 

by the adaptive feature fusion module are combined with the top layer of the 

pyramid by summation, and the feature fusion is performed by propagation to 

other layers. 

 
Fig. 3. The overall framework of the residual feature augmentation module 

3.3. Attention mechanism 

The attention mechanism is recognized as a successful technique for 

improving the efficiency of CNNs. It emulates the biological process of 

observation by suppressing redundant information and emphasizing intricate 

details of the desired target. Vaswani demonstrated dependencies on machine 

translation input by leveraging self-attention [22]. Simultaneously, the attention 

mechanism has been integrated into computer vision. Wang and Lu [23,24] 

utilized spatial attention for image captioning and classification, while Fu [25] 

employed a dual attention mechanism to capture global features in semantic 

segmentation. The attention mechanism is used in different digital image 
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segmentation tasks to achieve better results. Generally, attention modules can 

augment existing CNN models. They use spatial regions and channel 

interrelations to assist CNNs in concentrating on the target's more pragmatic 

features. 

 
Fig. 4.The structure of the attention gate 

 

The attention gate is an attention mechanism that can automatically focus 

on object regions and suppress responses in irrelevant regions. Its structure is 

shown in Fig. 4. The attention gate can be described as: 

       1( ( ))l T T L T
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The Mish activation is denoted by when x is the input feature and g is the 

gating signal. The term represents the sigmoid function: 

              2

1
( )

1 exp( )
x

x
 =

+ −
 (3) 

At first, g and x are subjected to a parallel 1×1 Conv operation, and then 

the resulting characteristics are combined. Following this, a series of Mish 

activation, 1×1 Convolution, and Sigmoid function calculations are performed to 

generate the attention coefficient α by resampling. In the end, the input encoding 

matrix x is multiplied by the attention coefficient α to yield the ultimate output. 

Attention gates demand minimal computational power and a limited number of 

model parameters. They can augment the sensitivity and precision of dense label 

prediction models. 

3.4. Mish activation function 

The activation function plays a critical role in the training and evaluation 

of deep neural networks and increases the nonlinearity of the model in the neural 

network. Swish, Leaky ReLU, Sigmoid, and ReLU are the widely used activation 

functions. The method in this paper uses the Mish activation function. In terms of 

challenging datasets, it works better than Swish and ReLU. Additionally, the 

simplicity of Mish enables its smooth implementation in neural network. 

Mish is a non-monotonic smooth neural network activation function that is 

defined by a specific formula. 

             (4) 
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The ω(x) is defined as ln(1+ex). A graph of the Mish activation function is 

shown in Fig. 5. 

 
Fig. 5. The graphical of Mish activation function 

 

A gating function is implemented by Mish, in which the input to the gate 

is a scalar. The gating features helps replace activation functions such as ReLU. 

Because the input to the gating function is a scalar, there is no need to modify the 

network parameters. 

3.5. Loss function 

The purpose of model training is to increase the ability of the model to 

identify different classifications. In order to accomplish this, a loss function of 

weighted binary cross-entropy is utilized. For the weighted binary cross-entropy 

implementation, positive pixels are weighted by the ratio of positive to negative 

voxels in the training group. The size of the negative class in the crystallized 

image is relatively larger than that of the positive class. Therefore, the weight can 

be adjusted so that the network is not biased towards a specific class when 

training. 

The formula for the loss of weighted binary cross-entropy is as shown 

below: 

   ( ) ( ) ( )
1

1
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N
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i

L y y y y
N
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=
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Where  is the actual label (0 or 1),  is the prediction of the model,  is 

the positive prediction weight, and N is the number of samples. 

4. Results and Analysis 

4.1. Data source 

The datasets used in this paper come from two sources. One sample is 

sourced from the MARCO dataset [26] for machine recognition of crystallization 
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outcomes, while the other was collected in our own laboratory. The MARCO is a 

dataset marked for the classification of crystallization images. The dataset needs 

to be re-annotated when it is applied to the segmentation of crystallization images. 

Adding the laboratory data to the MARCO dataset can enhance the algorithm’s 

performance during segmentation. It is more beneficial to improve the 

generalization ability under different conditions. 

To improve the recognition ability of the model, it is firstly pre-trained on 

the COCO dataset, which is a large dataset proposed by Microsoft for object 

detection or image segmentation. Pre-training the model on the COCO dataset 

enables it to acquire fundamental image feature extraction capabilities. After that, 

the dataset is trained using the pre-trained model. The re-annotated images are 

shown in Fig. 6. 

 

Fig. 6. The re-annotated images of the dataset 

4.2. Data augment 

The training images are extended using the data augmentation method to 

avoid the recognition bias and model overfitting caused by the small number of 

samples in the dataset. Data augmentation is a technique to enrich the number of 

samples in the dataset by modifying existing samples or generating new synthetic 

data. In image segmentation applications, the most commonly used data 

augmentation techniques include adjusting brightness or contrast, zooming in/out, 

cropping, rotating, noise or flipping. In addition to the above methods, the 

following methods are used in this paper. In view of the problem that the 

illumination intensity of crystallization images collected in practical applications 

may vary due to the different environments, image brightness enhancement or 

reduction is used to simulate the light change in practical applications. There may 

be some blur and jitter in the actual captured image, and the Gaussian blur normal 

distribution method is used to process images. The augmented data are shown in 

Fig. 7. 
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Fig. 7. Original image and augment image 

4.3. Network training 

Using the PyTorch deep learning platform, the study in this article was 

carried out on a 64-bit Ubuntu 16.04 LTS system.The computer hardware 

configuration comprises 32 GB of memory, an Intel Xeon E5-2680 CPU, and an 

RTX3090 GPU. 

Model training utilizes the K-fold cross-validation method [27], which 

partitions the raw training dataset into k subsets, followed by k iterations of model 

training and validation. Cross-validation maximizes dataset efficiency, 

guaranteeing that the assessment outcomes accurately represent the model's 

effectiveness on the test dataset. 

In the phase of training the model, the Adam optimization algorithm is set 

up with these parameters: a decay rate of 1e-6, an initial learning rate of 0.0001, 

β_1 = 0.99, and β_2 = 0.999. Moreover, an early stopping training strategy [28] is 

implemented to prevent overfitting during model training. In the testing phase, the 

model inference results are visually presented, with the segmentation outcomes 

overlaid on the crystallized image. 

4.4. Evaluation metrics 

For an image segmentation model, a proper assessment of its performance 

is crucial. This section presents several well-established and commonly employed 

evaluation metrics for image segmentation. The metrics derived from the 

confusion matrix pertain to false negatives (FN), false positives (FP), true 

negatives (TN), and true positives (TP). 

The IoU is calculated by dividing the intersection of two regions by the 

total area they cover. It is used to measure the accuracy of the prediction 

compared to the actual data. 

Defined in terms of the confusion matrix variables, it is: 
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TP

IoU
TP FN FP

=
+ +

 (6) 

The ratio of correctly predicted samples to the total number is the 

accuracy. These samples usually refer to pixels or voxels in object detection or 

image segmentation. In practical applications, accuracy is rarely used alone due to 

the uneven distribution of different categories in the dataset, and it generally 

needs to be used in conjunction with other metrics.  

         TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (7) 

Precision is defined as the proportion of true positive samples among all 

positive predictions. Likewise, the specificity is defined as the proportion of 

accurately predicted negative instances to all negative predictions. Both precision 

and specificity help assess the number of false positive pixels in the image. 

           TP
Precision

TP FP
=

+
 (8) 

           TN
Specificity

TN FP
=

+
 (9) 

Recall is the proportion of positive samples correctly identified. 

Evaluating a model or algorithm is often done by balancing precision and recall. 

           TP
Recall

TP FN
=

+
 (10) 

The F1-score, often utilized to assess the overall effectiveness of a model, 

is calculated as the harmonic mean of precision and recall. 

         2 Precision Recall
F1- score

Precision+ Recall

 
=  (11) 

4.5 Experiment results and analysis 

The instance segmentation results of our network are shown in Fig. 8. It 

can be seen that even with many precipitates, most protein crystals are still 

recognized by the network. The results of instance segmentation are more 

consistent with the shape of protein crystals. 

 
Fig. 8. Test results of the optimized network 
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Table 1 

Experiment results and comparison against other networks. 

Network IoU F1-score Sensitivity 

U-net[19] 0.8123 0.8989 0.8683 

FCN-8s[30] 0.6879 0.8137 0.7043 

SegNet[28] 0.8063 0.8939 0.8413 

Reference [10] 0.8201 0.9005 0.8702 

Reference[11] 0.8354 0.9053 0.8857 

Reference[12] 0.8256 0.9021 0.8725 

Reference[13] 0.8407 0.9104 0.8903 

Reference[14] 0.8309 0.9087 0.8806 

Our method 0.8521 0.9185 0.9012 

In Table 1, there is a quantitative comparison of our network with other 

networks in the dataset. In terms of performance, our network outperforms all 

other models across each evaluation metric. Reference [13] produced the most 

reliable results among the compared networks but still trails our method by 1.14% 

in Intersection over Union (IoU), 0.81% in F1-score, and 1.09% in sensitivity. 

This suggests that while it excels in integrating microscopy imaging techniques 

for high-throughput analysis, our method's architecture is better suited for 

processing complex crystallization images, especially in handling high-density 

slurries and overlapping particles. 

References [11] and [14], which innovate in real-time control and 

observation, respectively, showed commendable performance but still fell short of 

the overall efficacy of our method. On the other hand, the FCN-8s model [30] 

underperformed, likely due to its inability to effectively handle the complexity 

and diversity inherent in crystallization images. Its fully convolutional 

architecture may not capture detailed features of the crystallization process 

adequately. Additionally, while U-Net [19] and SegNet [28] are both successful in 

biomedical image segmentation, they may require further optimization for the 

specific challenges presented by crystallization images. 

Through the analysis of the table, it can be found that different network 

models have different performances in crystallization image segmentation. This 

difference in performance can be explained by the application of the attention 

module, leading to a more refined policy for generally better segmentation results. 

At the same time, the multi-scale architecture samples different granularities of 

the crystallization images. Basic characteristics offer greater clarity and include 

additional location and specific details, yet they lack depth and include more 

interference. High-level characteristics may have lower resolution, yet contain 

valuable semantic details. Effectively combining the two features will 

significantly improve the segmentation task. These differences suggest that 

attention and multi-scale mechanisms can improve the performance of 

segmentation networks. 
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In the table, showing the difference in performance by quantitative 

evaluation is not enough to fully demonstrate the strength of the model. Therefore, 

in Fig. 9, some intuitive comparison examples of several different methods are 

also given for crystallographic image segmentation. The proposed network that 

combines attention and multi-scale mechanisms achieves better results than other 

segmentation networks.The visual outcomes indicate that the suggested technique 

is more effective in isolating the finer elements within images. 

 
Fig. 9. The comparison examples of several different methods 

5. Discussion 

The deep learning model proposed in this article achieved significant 

results in the image segmentation task for crystal crystallization. To enhance the 

model's practicality and extend its application, future research should delve into 

and improve upon the following key areas: 

1) Integration of Transformer Models: Transformers have shown excellent 

performance in natural language processing, with their capability to capture long-

distance dependencies. Considering images as sequences to some extent, future 

work could apply Transformer models to image segmentation. The self-attention 

mechanism within Transformers could process global contextual information in 

images, potentially improving the model's ability to recognize long-range features 

in crystal images, especially with varying crystal sizes and shapes. 

2) Model Reduction and Optimization: To fit edge computing 

environments, the model needs to be streamlined and optimized. Techniques such 

as model pruning can remove unimportant weights to reduce the number of model 

parameters without compromising performance. Weight quantization can decrease 

memory usage and speed up inference, making the model more suitable for 

devices with limited computing resources. Knowledge distillation can transfer 

knowledge from large, complex models to smaller ones, improving efficiency 

while maintaining high performance levels. 

3) Enhancement of Real-time Performance: Real-time processing 

capability is crucial for industrial applications. Future work should focus on 

optimizing the model's inference speed through algorithmic optimization, parallel 

computing, and hardware acceleration. Algorithmic optimization can be achieved 

by improving network structures and reducing computational load; parallel 

computing can exploit the parallel processing capabilities of GPUs or TPUs; 
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hardware acceleration may involve custom hardware designs like FPGAs or 

ASICs to further enhance running speed. 

4) Robustness Enhancement: Although the model performs well on 

specific datasets, its robustness under different conditions needs strengthening. 

Future work will involve more stress testing and exploring new data augmentation 

techniques to improve the model's adaptability to various lighting conditions, 

noise, and crystal types. Also, introducing adversarial training and regularization 

techniques can effectively enhance model robustness. Adversarial training trains 

models with adversarial samples to generalize better to unseen samples, while 

regularization techniques prevent overfitting by adding regular terms to the loss 

function. 

Testing Model Generalization: Assess the model's generalization by 

testing it across different datasets and real-world scenarios to evaluate its 

performance with unseen crystal types and crystallization conditions. To achieve 

this, it is necessary to gather and create a wider range of data sets, such as crystal 

pictures taken from various sources and environments, along with more extensive 

cross-validation. Furthermore, techniques like transfer learning could further 

improve model generalization. 

Through in-depth research in these directions, we anticipate further 

enhancements in model performance, enabling a greater role in practical industrial 

applications. These studies will also contribute to technological progress in the 

field of image segmentation. 

6. Conclusions 

This study successfully introduced a deep learning-based model for crystal 

crystallization trajectory image segmentation, significantly enhancing 

performance by incorporating a residual multi-scale feature enhancement module 

and attention mechanism. The model outperformed existing methods in key 

metrics such as IoU, F1-score, and sensitivity, offering a novel solution for image 

segmentation tasks in crystallization processes. This accomplishment is important 

for the efficient screening of crystal shapes in the pharmaceutical and chemical 

sectors, which could lead to improved automation of crystal screening and better 

quality control and production efficiency. 

Moreover, the model demonstrated advantages in handling complex image 

characteristics like small contours, dense targets, and scale variations by 

employing data augmentation and attention mechanisms, providing fresh 

perspectives for applying deep learning in similar complex image analysis tasks in 

the future. The model's generalizability and robustness could still be improved, 

and its adaptability to different crystal types and crystallization processes requires 

further validation and research. 
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Future work may focus on further optimizing the model structure for 

diverse crystallization processes and industrial scenarios; exploring advanced 

technologies like generative adversarial networks and recurrent neural networks to 

handle more complex crystal images and dynamic processes; conducting 

extensive practical application tests to confirm the model's effectiveness and 

robustness across varied crystallization scenarios; and considering computational 

efficiency and real-time capabilities to support real-time monitoring and online 

control. These initiatives are expected to lead to improved monitoring of the 

crystallization process and better control over product quality, ultimately driving 

technological progress in the pharmaceutical and chemical sectors. 
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