U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 1, 2025 ISSN 2286-3540

IMPROVING DEEP LEARNING-BASED INSTANCE
SEGMENTATION FOR CRYSTALLIZATION TRAILS WITH
RESIDUAL MULTI-SCALE FEATURE AND ATTENTION
MECHANISM

Xiaoyan ZHANG!?, Bo LAN?", Lugang ZHANG?

The process of monitoring crystallization is significant for understanding the
formation of crystals and assisting in the screening of high-throughput crystal
forms. Crystal process image recognition is faced with small contours, dense
targets, and scale changes. Therefore, this paper proposes a network model for the
segmentation of crystallographic images. Firstly, the model’s generalization ability
is improved by data augmentation methods such as contrast adjustment and
Gaussian blur. Afterwards, a residual feature enhancement module is inserted
between the encoder and decoder to strengthen the feature extraction for the top
layer of the feature pyramid network, effectively utilizing high-level information and
enhancing multi-scale feature extraction. Lastly, attention gates are applied for
automatic learning to focus on targets of varying sizes and shapes, emphasizing
valuable features while suppressing irrelevant areas in the input image.
Experimental outcomes indicate that the optimized approach achieves an loU of
0.8521, an F1-score of 0.9185, and a sensitivity of 0.9012, outperforming other
methods. The method can meet the requirements of image segmentation in the
crystallization process and provide a reliable reference for the automatic process of
crystal form screening.

Keywords: crystal, instance segmentation, transfer learning, multi-scale feature,
attention mechanism.

1. Introduction

The development cycle of new drugs is long and expensive. Thousands of
compounds often need to be screened. The screening of crystal forms is an
essential part of the whole process. Crystallization is an operation that separates
substances from solutions in a crystalline state. It can deal with many problems
that operations cannot solve, including distillation, extraction, and adsorption,
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which is widely used to separate new products [1]. Assessing crystal morphology
and size distribution is critical for managing and optimizing product quality and
production efficiency in crystallization. Various process analysis tools, including
attenuated total reflection infrared spectroscopy, Raman spectroscopy, focused
beam reflectometry, and ultrasonic attenuation, have been utilized in the
crystallization process. These process analysis techniques help to monitor the
growth behavior during the crystallization process, which can control the
crystallization process and develop its product quality [2].

In contrast, image signals represent more intuitive information and are
regarded as one of the most promising techniques for measuring crystal form and
size [3]. The changes in crystal morphology and imaging size during
crystallization are monitored using visual sensing devices. A variety of parameters
such as crystal morphological characteristics, growth rate, and growth state are
obtained during the crystallization process [4]. It is possible to further study the
crystal growth mechanism, identify the crystal habit ratio, and provide an
adequate basis for regulating the crystal growth process. To investigate the
crystallization results, it is still necessary for researchers to observe the samples
through a microscope in most cases. Crystals are manually found to determine if
the crystallization process is complete. In high-throughput crystal form screening,
manual crystal identification has become a bottleneck factor affecting the
experimental progress and automation.

Conventional methods in image processing have allowed for the
calculation of crystal form and distribution of dimensions while crystals are
forming, utilizing visual imaging systems [5]. Vancleef introduced an adaptable
and dependable image analysis approach that merges edge detection, intensity
thresholding, and an advanced watershed algorithm for monitoring particle size
distribution, quantity, and solid concentration via a flow microscope [6]. Offiler
created a new automated technique that merges a flow cell for crystal growth with
image analysis, using the Hough transform to identify crystal facets and calculate
growth rates, which was confirmed through experiments with a-glycine crystals
[7]. Additionally, the advancement in computer science, particularly deep learning
within machine learning, has significantly progressed, enhancing image
characteristic information extraction and recognition accuracy through big data.

Deep learning has found applications in monitoring the crystallization
process in pharmaceutical and chemical fields. Huo employed a binocular system
to measure the distribution and size of crystals based on the fusion of binocular
images captured by two miniature cameras at different angles [8]. VVagenknecht
suggested an approach using generative adversarial networks to analyze particle
size in low-resolution online microscope images, allowing for real-time
monitoring of particle size distribution in crystallization processes [9]. Manee
suggested a strategy for controlling crystallization that combines a measurement
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sensor based on a convolutional neural network (CNN) with a reinforcement
learning (RL) framework. This strategy aims to improve control loops during
crystallization, improve the quality of crystal size measurements, and decrease the
time required for image processing [15]. Salami created an image analysis model
using deep learning and convolutional neural networks (CNN) to detect unwanted
crystals in real-time during crystallization, with the goal of improving product
purity and process efficiency in the production of Cephalexin [16]. Xin introduced
two techniques to enhance Mask R-CNN: merged sampling and random proposal
augmentation, which improve training on small datasets and reduce overfitting.
These techniques were applied to the measurement of zeolite catalyst particles in
SEM images, significantly increasing measurement accuracy [17]. Fan presented
a new method for in-situ measurement using binocular stereo imaging to track the
distribution of crystal length and width while cooling crystallization occurs. This
method utilizes a stereo vision imaging system combined with deep learning
algorithms, enhancing the accuracy and efficiency of crystal size distribution
measurements [18].

The proposed method offers several key advancements in crystallization
image analysis, distinguishing it from existing approaches. Traditional deep
learning models face challenges with high-density targets, small contours, and
scale variations in crystal images. To address these issues, our study introduces
the following specialized optimizations:

(1) Custom-designed Data Augmentation: To combat data imbalance and
prevent model overfitting, tailored augmentation techniques are implemented,
ensuring robustness across various scenarios.

(2 Residual Feature Enhancement Module: Added at the top layer of the
Feature Pyramid Network (FPN), this module improves multi-scale feature
extraction, which is particularly beneficial for detecting and segmenting small
crystals that are often overlooked by traditional models.

(3) Attention Mechanism in Feature Fusion: This mechanism helps refine
the learning of relevant features while suppressing noise, leading to more accurate
and context-aware feature representation.

(4) Emphasis on Skip Connections: By focusing on skip connections
within the instance segmentation network, the model restores full spatial
resolution and reduces semantic gaps between the encoder and decoder, which
enhances segmentation performance.

Together, these targeted optimizations contribute to superior segmentation
accuracy and adaptability, setting this method apart from existing solutions in the
analysis of crystallization images.
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2. Related Work

In recent years, deep learning-based models have gained significant
attention for their application in the analysis of crystallization processes,
particularly in monitoring and controlling crystal size, morphology, and
distribution in real-time. These models have been developed to tackle challenges
such as high-density crystal slurries, overlapping particles, and high-throughput
image analysis, all of which are commonly encountered in industrial
crystallization processes.

Several studies have advanced the state of crystallization image analysis
through the use of deep learning. Li proposed a deep learning-based strategy that
effectively analyzes in-situ microscopy images of high-density crystallization
slurries by incorporating image and data augmentation techniques. This method
enhances the ability to monitor and control the crystallization process in real-time,
enabling better management of the crystal growth dynamics and product
quality[10]. Wang introduced a Nonlinear Model Predictive Control (NMPC)
approach aimed at real-time control of crystal size and standard deviation during
cooling crystallization processes. This approach improves the precision of
crystallization control, ensuring more reliable and consistent crystal
formation[11]. Zong explored deep learning techniques, particularly the Mask R-
CNN-based online image analysis, to address the challenge of accurately
segmenting images of high solid concentration and overlapping particles in
continuous industrial crystallization processes. By improving segmentation
accuracy, this method contributes to better analysis of crystallization behavior in
large-scale settings[12]. He leveraged deep learning for the analysis of how
microporous plate sizes influence the crystalline growth of active pharmaceutical
ingredients (APIs). The integration of microscopy imaging techniques allowed for
the successful high-throughput analysis of large volumes of crystal data,
providing insights into the crystallization process[13]. Wu developed an advanced
image analysis method that integrates the S2A-Net model, a state-of-the-art deep
learning architecture for object detection. This method enables real-time, accurate
determination of crystal size distribution and quantity, significantly aiding in the
observation and analysis of crystallization processes such as taurine
crystallization[14].

Additionally, several well-established deep learning architectures have
been applied to image segmentation tasks in crystallization analysis. U-Net,
originally designed for biomedical image segmentation, has proven effective in
leveraging limited annotated samples through data augmentation strategies. This
allows for end-to-end training on small datasets, which is particularly useful in
crystallization image analysis where data may be limited[19]. FCN-8s, another
popular model, facilitates efficient semantic segmentation by employing fully
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convolutional architectures. This allows for the transformation of arbitrarily sized
inputs into correspondingly dimensioned outputs, making it suitable for various
crystallization image sizes[30]. SegNet, with its deep fully convolutional encoder-
decoder architecture, enhances segmentation accuracy and efficiency by using
pooling indices for nonlinear upsampling between the encoder and decoder, which
improves the model’ s ability to handle complex image features such as
overlapping crystals and varying particle sizes[28].

These advancements in deep learning-based models have contributed
significantly to the field of crystallization process analysis. However, challenges
remain in dealing with complex images, overlapping particles, and high-density
slurries, indicating that further innovations in model design, feature extraction,
and data augmentation are required to fully optimize the analysis of crystallization
processes.

3. Model Design

The research employs a comprehensive deep learning approach to segment
crystallization pictures. The fundamental model framework adopts an encoder-
decoder structure for feature extraction and image segmentation. Utilizing the U-
net structure as its backbone, the model integrates a FPN and an attention
mechanism for the segmentation task. Moreover, the encoder generates
characteristics for FPN input at various scales, with a residual feature
enhancement module implemented at the highest level of the FPN. The FPN
output, in conjunction with the decoder through the attention gate, generates high-
level semantic features as well as fine-grained image features. Finally, a mask is
output to signify the crystallization. Fig. 1 illustrates the visual structure of the
optimized model.
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Fig. 1. The structure of the optimized model
3.1. Basic network structure

The basic network structure utilizes the U-net design as its core, consisting
of both an encoder and a decoder [19]. The encoder facilitates the propagation of



216 Xiaoyan Zhang, Bo Lan, Lugang Zhang

contextual information through skip connections, thereby enhancing the extraction
of complex hierarchical features. The decoder assimilates features of varying
complexity for the reconstruction process. The U-net's encoder and decoder are
connected with long-range connections, allowing for the integration of various
hierarchical features into the decoder, leading to a network that is both more
precise and scalable.

The U-net's encoder structure is a conventional convolutional network
architecture. In the encoder, every stage includes two 3x3 convolutions with mish
activation, then a 2x2 max pooling layer is used for downsampling. The feature
channels are doubled at each step. In the decoder, the feature maps undergo up-
sampling via 2x2 convolutions at each stage. The encoder's feature maps from
each step are combined and incorporated into the decoder. Subsequently, mish
activation is performed after two 3x3 convolutions. Lastly, a 1x1 convolution is
utilized on the feature map to decrease it to the required channel quantity,
resulting in segmented images.

3.2. Residual feature augmentation

Throughout the process of crystallization, crystals undergo continuous
growth and change in both shape and size. Some subtle information in
crystallization imaging is often missed. Feature pyramid can be applied to fuse
multi-scale features. The feature pyramid to the convolutional neural network
enables the extracted features to better represent the multi-dimensional
information of input images. In the FPN, the feature information at the top level is
lost due to the reduction of feature channels [20]. The information provided is
limited to a single scale context and does not align with features at other levels. In
this paper, the residual feature augmentation module [21] is applied to adaptively
pool the top-level information of FPN, as shown in Fig. 2. Different contextual
information is extracted and the loss is reduced at the highest level in the feature
pyramid using a residual manner.

Within the FPN framework, the higher-level feature maps are transmitted
in a downward direction and slowly combined with the lower-level ones. On the
one hand, low-level feature maps are improved by high-level semantic
information, so that features are naturally assigned to different contextual
information. On the other hand, the top layer contains only single-scale contextual
information incompatible with other features and suffers the loss of information
due to reduced feature channels.
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Fig. 2. The FPN with residual feature augmentation module

Fig. 3 displays the overall framework of the residual feature augmentation
module. At the highest level, the module conducts adaptive pooling that is
invariant to ratios in order to acquire feature maps of various scales. 1x1
convolution is applied to modify the feature maps, while bilinear interpolation is
used to up-sample all feature maps of varying scales to match the size of the
original top layer. Contextual features are combined using adaptive spatial fusion,
rather than simply adding them adaptively. The adaptive spatial fusion module
takes the up-sampled features as input, generates a spatial weight for each feature,
and aggregates the contextual features using the weight. The features developed
by the adaptive feature fusion module are combined with the top layer of the
pyramid by summation, and the feature fusion is performed by propagation to
otherlayers. . ____._
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Fig. 3. The overall framework of the residual feature augmentation module
3.3. Attention mechanism

The attention mechanism is recognized as a successful technique for
improving the efficiency of CNNs. It emulates the biological process of
observation by suppressing redundant information and emphasizing intricate
details of the desired target. Vaswani demonstrated dependencies on machine
translation input by leveraging self-attention [22]. Simultaneously, the attention
mechanism has been integrated into computer vision. Wang and Lu [23,24]
utilized spatial attention for image captioning and classification, while Fu [25]
employed a dual attention mechanism to capture global features in semantic
segmentation. The attention mechanism is used in different digital image
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segmentation tasks to achieve better results. Generally, attention modules can
augment existing CNN models. They use spatial regions and channel
interrelations to assist CNNs in concentrating on the target's more pragmatic
features.
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Fig. 4.The structure of the attention gate

The attention gate is an attention mechanism that can automatically focus
on object regions and suppress responses in irrelevant regions. Its structure is
shown in Fig. 4. The attention gate can be described as:
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The Mish activation is denoted by when x is the input feature and g is the
gating signal. The term represents the sigmoid function:
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At first, g and x are subjected to a parallel 1x1 Conv operation, and then
the resulting characteristics are combined. Following this, a series of Mish
activation, 1x1 Convolution, and Sigmoid function calculations are performed to
generate the attention coefficient a by resampling. In the end, the input encoding
matrix x is multiplied by the attention coefficient a to yield the ultimate output.
Attention gates demand minimal computational power and a limited number of
model parameters. They can augment the sensitivity and precision of dense label
prediction models.

3.4. Mish activation function

The activation function plays a critical role in the training and evaluation
of deep neural networks and increases the nonlinearity of the model in the neural
network. Swish, Leaky ReL. U, Sigmoid, and ReLU are the widely used activation
functions. The method in this paper uses the Mish activation function. In terms of
challenging datasets, it works better than Swish and RelLU. Additionally, the
simplicity of Mish enables its smooth implementation in neural network.

Mish is a non-monotonic smooth neural network activation function that is
defined by a specific formula.

f(x) =x - tanh( w(x)) (4)
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The w(x) is defined as In(1+¢*). A graph of the Mish activation function is
shown in Fig. 5.
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Fig. 5. The graphical of Mish activation function

A gating function is implemented by Mish, in which the input to the gate
is a scalar. The gating features helps replace activation functions such as ReLU.
Because the input to the gating function is a scalar, there is no need to modify the
network parameters.

3.5. Loss function

The purpose of model training is to increase the ability of the model to
identify different classifications. In order to accomplish this, a loss function of
weighted binary cross-entropy is utilized. For the weighted binary cross-entropy
implementation, positive pixels are weighted by the ratio of positive to negative
voxels in the training group. The size of the negative class in the crystallized
image is relatively larger than that of the positive class. Therefore, the weight can
be adjusted so that the network is not biased towards a specific class when
training.

The formula for the loss of weighted binary cross-entropy is as shown
below:

12X . N
L:_ﬁé[a)pyi log(9;)+(1-y;)log(1- ;) | (5)
Where ¥, is the actual label (0 or 1), 0 is the prediction of the model, o, IS
the positive prediction weight, and N is the number of samples.

4. Results and Analysis

4.1. Data source
The datasets used in this paper come from two sources. One sample is
sourced from the MARCO dataset [26] for machine recognition of crystallization
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outcomes, while the other was collected in our own laboratory. The MARCO is a
dataset marked for the classification of crystallization images. The dataset needs
to be re-annotated when it is applied to the segmentation of crystallization images.
Adding the laboratory data to the MARCO dataset can enhance the algorithm’s
performance during segmentation. It is more beneficial to improve the
generalization ability under different conditions.

To improve the recognition ability of the model, it is firstly pre-trained on
the COCO dataset, which is a large dataset proposed by Microsoft for object
detection or image segmentation. Pre-training the model on the COCO dataset
enables it to acquire fundamental image feature extraction capabilities. After that,
the dataset is trained using the pre-trained model. The re-annotated images are
shown in Fig. 6.

Fig. 6. The re-annotated images of the dataset

4.2. Data augment

The training images are extended using the data augmentation method to
avoid the recognition bias and model overfitting caused by the small number of
samples in the dataset. Data augmentation is a technique to enrich the number of
samples in the dataset by modifying existing samples or generating new synthetic
data. In image segmentation applications, the most commonly used data
augmentation techniques include adjusting brightness or contrast, zooming in/out,
cropping, rotating, noise or flipping. In addition to the above methods, the
following methods are used in this paper. In view of the problem that the
illumination intensity of crystallization images collected in practical applications
may vary due to the different environments, image brightness enhancement or
reduction is used to simulate the light change in practical applications. There may
be some blur and jitter in the actual captured image, and the Gaussian blur normal
distribution method is used to process images. The augmented data are shown in
Fig. 7.
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Fig. 7. Original image and augment image
4.3. Network training

Using the PyTorch deep learning platform, the study in this article was
carried out on a 64-bit Ubuntu 16.04 LTS system.The computer hardware
configuration comprises 32 GB of memory, an Intel Xeon E5-2680 CPU, and an
RTX3090 GPU.

Model training utilizes the K-fold cross-validation method [27], which
partitions the raw training dataset into k subsets, followed by k iterations of model
training and validation. Cross-validation maximizes dataset efficiency,
guaranteeing that the assessment outcomes accurately represent the model's
effectiveness on the test dataset.

In the phase of training the model, the Adam optimization algorithm is set
up with these parameters: a decay rate of 1e-6, an initial learning rate of 0.0001,
B 1=0.99,and B_2 = 0.999. Moreover, an early stopping training strategy [28] is
implemented to prevent overfitting during model training. In the testing phase, the
model inference results are visually presented, with the segmentation outcomes
overlaid on the crystallized image.

4.4. Evaluation metrics

For an image segmentation model, a proper assessment of its performance
is crucial. This section presents several well-established and commonly employed
evaluation metrics for image segmentation. The metrics derived from the
confusion matrix pertain to false negatives (FN), false positives (FP), true
negatives (TN), and true positives (TP).

The loU is calculated by dividing the intersection of two regions by the
total area they cover. It is used to measure the accuracy of the prediction
compared to the actual data.

Defined in terms of the confusion matrix variables, it is:



222 Xiaoyan Zhang, Bo Lan, Lugang Zhang

TP

~TP+FN+FP (6)

The ratio of correctly predicted samples to the total number is the
accuracy. These samples usually refer to pixels or voxels in object detection or
image segmentation. In practical applications, accuracy is rarely used alone due to
the uneven distribution of different categories in the dataset, and it generally
needs to be used in conjunction with other metrics.

TP+TN @)

TP+TN + FP +FN

Precision is defined as the proportion of true positive samples among all
positive predictions. Likewise, the specificity is defined as the proportion of
accurately predicted negative instances to all negative predictions. Both precision
and specificity help assess the number of false positive pixels in the image.

loU

Accuracy =

Precision = — (8)
TP+ FP

Specificity = _ N ©)
TN+ FP

Recall is the proportion of positive samples correctly identified.
Evaluating a model or algorithm is often done by balancing precision and recall.

Recall = _TP (10)

TP+FN
The F1-score, often utilized to assess the overall effectiveness of a model,
is calculated as the harmonic mean of precision and recall.
2 - Precision - Recall (11)

Precision+ Recall

F1-score=

4.5 Experiment results and analysis

The instance segmentation results of our network are shown in Fig. 8. It
can be seen that even with many precipitates, most protein crystals are still
recognized by the network. The results of instance segmentation are more
consistent with the shape of protein crystals.

Fig. 8. Test results of the optimized network
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Table 1
Experiment results and comparison against other networks.

Network loU F1-score Sensitivity
U-net[19] 0.8123 0.8989 0.8683
FCN-8s[30] 0.6879 0.8137 0.7043
SegNet[28] 0.8063 0.8939 0.8413
Reference [10] 0.8201 0.9005 0.8702
Reference[11] 0.8354 0.9053 0.8857
Reference[12] 0.8256 0.9021 0.8725
Reference[13] 0.8407 0.9104 0.8903
Reference[14] 0.8309 0.9087 0.8806
Our method 0.8521 0.9185 0.9012

In Table 1, there is a quantitative comparison of our network with other
networks in the dataset. In terms of performance, our network outperforms all
other models across each evaluation metric. Reference [13] produced the most
reliable results among the compared networks but still trails our method by 1.14%
in Intersection over Union (loU), 0.81% in F1-score, and 1.09% in sensitivity.
This suggests that while it excels in integrating microscopy imaging techniques
for high-throughput analysis, our method's architecture is better suited for
processing complex crystallization images, especially in handling high-density
slurries and overlapping particles.

References [11] and [14], which innovate in real-time control and
observation, respectively, showed commendable performance but still fell short of
the overall efficacy of our method. On the other hand, the FCN-8s model [30]
underperformed, likely due to its inability to effectively handle the complexity
and diversity inherent in crystallization images. Its fully convolutional
architecture may not capture detailed features of the crystallization process
adequately. Additionally, while U-Net [19] and SegNet [28] are both successful in
biomedical image segmentation, they may require further optimization for the
specific challenges presented by crystallization images.

Through the analysis of the table, it can be found that different network
models have different performances in crystallization image segmentation. This
difference in performance can be explained by the application of the attention
module, leading to a more refined policy for generally better segmentation results.
At the same time, the multi-scale architecture samples different granularities of
the crystallization images. Basic characteristics offer greater clarity and include
additional location and specific details, yet they lack depth and include more
interference. High-level characteristics may have lower resolution, yet contain
valuable semantic details. Effectively combining the two features will
significantly improve the segmentation task. These differences suggest that
attention and multi-scale mechanisms can improve the performance of
segmentation networks.
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In the table, showing the difference in performance by quantitative
evaluation is not enough to fully demonstrate the strength of the model. Therefore,
in Fig. 9, some intuitive comparison examples of several different methods are
also given for crystallographic image segmentation. The proposed network that
combines attention and multi-scale mechanisms achieves better results than other
segmentation networks.The visual outcomes indicate that the suggested technique
is more effective in isolating the finer elements within images.

Image Ground Truth U-net Reference([13] Our Method

Fig. 9. The comparison examples of several different methods

5. Discussion

The deep learning model proposed in this article achieved significant
results in the image segmentation task for crystal crystallization. To enhance the
model's practicality and extend its application, future research should delve into
and improve upon the following key areas:

1) Integration of Transformer Models: Transformers have shown excellent
performance in natural language processing, with their capability to capture long-
distance dependencies. Considering images as sequences to some extent, future
work could apply Transformer models to image segmentation. The self-attention
mechanism within Transformers could process global contextual information in
images, potentially improving the model's ability to recognize long-range features
in crystal images, especially with varying crystal sizes and shapes.

2) Model Reduction and Optimization: To fit edge computing
environments, the model needs to be streamlined and optimized. Techniques such
as model pruning can remove unimportant weights to reduce the number of model
parameters without compromising performance. Weight quantization can decrease
memory usage and speed up inference, making the model more suitable for
devices with limited computing resources. Knowledge distillation can transfer
knowledge from large, complex models to smaller ones, improving efficiency
while maintaining high performance levels.

3) Enhancement of Real-time Performance: Real-time processing
capability is crucial for industrial applications. Future work should focus on
optimizing the model's inference speed through algorithmic optimization, parallel
computing, and hardware acceleration. Algorithmic optimization can be achieved
by improving network structures and reducing computational load; parallel
computing can exploit the parallel processing capabilities of GPUs or TPUs;
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hardware acceleration may involve custom hardware designs like FPGAs or
ASICs to further enhance running speed.

4) Robustness Enhancement: Although the model performs well on
specific datasets, its robustness under different conditions needs strengthening.
Future work will involve more stress testing and exploring new data augmentation
techniques to improve the model's adaptability to various lighting conditions,
noise, and crystal types. Also, introducing adversarial training and regularization
techniques can effectively enhance model robustness. Adversarial training trains
models with adversarial samples to generalize better to unseen samples, while
regularization techniques prevent overfitting by adding regular terms to the loss
function.

Testing Model Generalization: Assess the model's generalization by
testing it across different datasets and real-world scenarios to evaluate its
performance with unseen crystal types and crystallization conditions. To achieve
this, it is necessary to gather and create a wider range of data sets, such as crystal
pictures taken from various sources and environments, along with more extensive
cross-validation. Furthermore, techniques like transfer learning could further
improve model generalization.

Through in-depth research in these directions, we anticipate further
enhancements in model performance, enabling a greater role in practical industrial
applications. These studies will also contribute to technological progress in the
field of image segmentation.

6. Conclusions

This study successfully introduced a deep learning-based model for crystal
crystallization  trajectory image segmentation, significantly enhancing
performance by incorporating a residual multi-scale feature enhancement module
and attention mechanism. The model outperformed existing methods in key
metrics such as loU, F1-score, and sensitivity, offering a novel solution for image
segmentation tasks in crystallization processes. This accomplishment is important
for the efficient screening of crystal shapes in the pharmaceutical and chemical
sectors, which could lead to improved automation of crystal screening and better
quality control and production efficiency.

Moreover, the model demonstrated advantages in handling complex image
characteristics like small contours, dense targets, and scale variations by
employing data augmentation and attention mechanisms, providing fresh
perspectives for applying deep learning in similar complex image analysis tasks in
the future. The model's generalizability and robustness could still be improved,
and its adaptability to different crystal types and crystallization processes requires
further validation and research.
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Future work may focus on further optimizing the model structure for
diverse crystallization processes and industrial scenarios; exploring advanced
technologies like generative adversarial networks and recurrent neural networks to
handle more complex crystal images and dynamic processes; conducting
extensive practical application tests to confirm the model's effectiveness and
robustness across varied crystallization scenarios; and considering computational
efficiency and real-time capabilities to support real-time monitoring and online
control. These initiatives are expected to lead to improved monitoring of the
crystallization process and better control over product quality, ultimately driving
technological progress in the pharmaceutical and chemical sectors.
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